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Abstract: This paper studies the performance of an interplanetary CubeSat equipped with
a continuous-thrust primary propulsion system in a heliocentric mission scenario, which
models a nodal flyby with a potential near-Earth asteroid. In particular, the mathematical
model discussed in this work considers a small array of (commercial) miniaturized electric
thrusters installed onboard a typical CubeSat, whose power-generation system is based on
the use of classic solar panels. The paper also discusses the impact of the size of thrusters’
array on the nominal performance of the transfer mission by analyzing the trajectory of the
CubeSat from an optimization point of view. In this context, the propulsive characteristics of
a commercial electric thruster which corresponds to a iodine-fueled gridded ion-propulsion
system are considered in this study, while the proposed procedure can be easily extended
to a generic continuous-thrust propulsion system whose variation in thrust magnitude
and specific impulse as a function of the input electric power is a known analytic function.
Using an indirect approach, the paper illustrates the optimal guidance law, which allows
the interplanetary CubeSat to reach a given solar distance, with the minimum flight time,
by starting from a circular (ecliptic) parking orbit of assigned radius. The mission scenario
is purely two-dimensional and models a rapid nodal flyby with a near-Earth asteroid whose
nodal distance coincides with the solar distance to be reached.

Keywords: interplanetary CubeSat; iodine-fueled gridded ion-propulsion system; nodal
flyby mission; preliminary trajectory design; rapid heliocentric transfer; near-Earth asteroid
remote sensing

1. Introduction
Robotic exploration of near-Earth asteroids is an important step in understanding

the origin and evolution of the Solar System and is a necessary prelude to future hu-
man exploration of these fascinating minor celestial bodies, whose number continues to
increase as observation techniques improve, with the additional recent help of artificial
intelligence [1–3]. Designing and then hopefully operating and ultimately successfully
completing an interplanetary space mission is usually a long and complex process [3–6],
the costs of which can be significantly reduced by using a small and fairly standardized
spacecraft [7,8], such as a typical CubeSat [9–11]. The potential of a CubeSat to support
or autonomously carry out a scientific space mission in low-Earth orbit has already been
demonstrated by the considerable number of space vehicles of this class successfully
launched and deployed in orbit over the last two decades [12–14]. Compared to the applica-
tion in a planetocentric (Earth) orbit, the use of a CubeSat in a heliocentric mission scenario
appears rarer nowadays; this is the case despite the way in which the recent success of the
Light Italian CubeSat for Imaging of Asteroids (LICIACube) within the more ambitious
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Double Asteroid Redirection Test (DART) mission [15,16] has highlighted the interesting
performances of a CubeSat in a challenging, deep space mission scenario which involved
the in situ study of a minor celestial body such as an asteroid. In fact, the scientific return
of the successful LICIACube mission is only the latest, in chronological order, important
result obtained thanks to the use of a small-sized spacecraft in a heliocentric environment.
In this context, NASA’s Mars Cube One (MarCO) mission [17–19] must be considered as
pioneering, both in the use of CubeSats far from circumterrestrial space and in the use
of such interesting spacecraft for the exploration of the Solar System, in this specific case
of Mars.

On the other hand, the use of such small space vehicle in interplanetary missions [20]
poses several problems related primarily to the size of the spacecraft and its reduced
payload capacity when compared to a classic interplanetary probe [21–25]. In this context,
the difficulty (and in some cases the impossibility) of using a primary propulsion system
installed on board to perform the interplanetary transfer [17–19] has so far been one of
the factors that have limited (although not excluded) the use of CubeSats in a heliocentric
mission scenario [26,27]. However, nowadays, the rapid technological progress in the
realization of highly efficient miniaturized space engines [28–30] allows us to install on
board a CubeSat a continuous-thrust propulsion system such as a classic solar electric
thruster [31–34], or even a more exotic photonic solar sail [35–37], which uses the solar
radiation pressure to produce (deep space) thrust without consuming any propellant mass.
For example, in this context, the author has recently analyzed the optimal (i.e., the minimum
time) transfer trajectories [38] of a CubeSat propelled by an electric thruster, modeled on
the characteristics of the proposed Miniaturized Asteroid Remote Geophysical Observer
(M-ARGO) spacecraft [39,40], or equipped with a hybrid propulsion system [41]; this
combines a photonic solar sail in a Sun-facing configuration (i.e., a configuration where the
sail mean plane is perpendicular to the direction of the radial unit vector which defines the
Sun-spacecraft line) with a more conventional solar electric thruster.

The purpose of this paper is to analyze the rapid transfer performance of a CubeSat
equipped with a small array of miniaturized (commercial) solar electric thrusters. This
operates in a heliocentric scenario, modeling a minimum-time nodal flyby mission to a
near-Earth asteroid. More precisely, the goal of the CubeSat-based interplanetary mission
considered in this work is to reach, with the minimum flight time, one of the two nodal
points of the heliocentric orbit of a target celestial body whose orbit around the Sun has a
non-zero inclination to the Ecliptic. In particular, the target celestial body coincides with a
(potential) near-Earth asteroid and the spacecraft transfer trajectory is designed by minimiz-
ing the total flight time for a given value of both the initial mass of the small spacecraft and
the mass of propellant stored on board. To the best of the author’s knowledge, the concept
of a nodal flyby mission for the close observation of a minor celestial body (such as an
asteroid) was proposed by Perozzi et al. [42] in 2001, although the idea behind this concept
could probably be older. In particular, in the interesting work of Perozzi et al. [42], a nodal
flyby scenario is analyzed in detail and optimized considering a multiple-impulse trajectory
which can be obtained, typically, by employing a high-thrust chemical propulsion system.
Starting from the idea described in Ref. [42], Mengali et al. [43,44] have subsequently
studied the optimal performance (using an indirect approach) of a photonic solar sail or an
electric solar wind sail [45–47] in reaching the nodal distance of a series of asteroids known
at the time of the preparation of the papers referred to in Refs. [43,44].

In the context of a nodal flyby heliocentric mission—by analyzing the interplanetary
transfer scenario within an optimal framework and employing a simplified spacecraft
mass breakdown model—this paper investigates the connection between the number of
solar electric thrusters installed on board (i.e., the size of the array of the miniaturized
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thrusters), the payload mass that can be used to perform the scientific exploration of the
target near-Earth asteroid, the (optimal) flight time, and the solar (i.e., the nodal) distance
to be reached. In this regard, the paper presents and illustrates a set of graphs to quickly
derive some characteristics of the CubeSat heliocentric transfer trajectory. The information
obtained can be used in the first preliminary phase of the design of a nodal flyby mission
for asteroid exploration when the primary propulsion system of the CubeSat is used to
obtain the planned interplanetary transfer trajectory.

The technical characteristics of the generic miniaturized electric thruster of the array
considered in this study are modeled on those of the commercial BIT-3 RF ion thruster
engine [48,49], as declared by the manufacturer Busek co. inc. This specific RF ion thruster
was recently installed aboard NASA’s Lunar IceCube [50], that is, one of the ten 6U CubeSats
launched on the maiden flight of the Space Launch System [51] that successfully launched
the Orion spacecraft in November 2022. The status of the CubeSat Lunar IceCube after
launch appears to be unknown. The same model of miniaturized electric thruster was
also installed in the Lunar Polar Hydrogen Mapper (LunaH-Map), a CubeSat designed
to study the Moon’s surface and verify the potential presence of water ice. Like the
Lunar IceCube, the LunaH-Map CubeSat was launched (and successfully deployed) during
the first flight of the Space Launch System, although the small spacecraft was unable to
successfully execute the lunar flyby maneuver due to a critical failure in the propulsion
system. The performance characteristics of the BIT-3 RF ion thruster engine have been
detailed in the literature; in this regard, the interesting work by Tsay et al. [49] is a nice
and useful example which illustrates the analytic expressions that describe the variation in
both the engine’s thrust magnitude and the specific impulse with the power-processing
unit input power. These analytical (and very compact) expressions, which are originally
derived for a single engine unit—which includes also the propellant tank—have been used
in Section 2 to obtain a surrogate (and sufficiently simple) thrust model of the array of
miniaturized electric thrusters installed on board a reference interplanetary CubeSat. In the
simplified thrust model used in this paper, the total available thrust magnitude is expressed
as a function of the processing unit input power, whose maximum (local) value depends
on the electrical power supplied by the solar panel-based power-generation system of
the interplanetary CubeSat. As for the characteristics of this power-generation system,
the performances of the MMA’s High Watts per Kilogram “HaWK” solar arrays [52] were
taken into consideration to model both the maximum (local) value of the electrical power
and the corresponding subsystem mass, as illustrated in Section 2.

The optimal guidance law and the optimal interplanetary transfer trajectory—that is,
the spacecraft trajectory that minimizes the flight time required to reach a prescribed solar
distance by starting from an assigned (ecliptic and Keplerian) circular orbit—is discussed
in Section 3. In particular, the classical calculus of variations [53–55] and the well-known
Pontryagin Maximum Principle (PMP) [56] is used in the mathematical model described in
that section to optimize the spacecraft trajectory during the rapid heliocentric flight. In this
context, using the PMP, the optimal control law in terms of thrust vector direction and total
thrust magnitude is obtained as a function of both the state variables of the CubeSat and
the components of the adjoint vector [57], for a given size of the array of the miniaturized
electric thrusters.

The optimization process is then used in Section 4 to simulate the optimal transfer
trajectories of a set of potential CubeSat configurations as a function of the solar distance
to be reached, i.e., the distance from the Sun of the node of the heliocentric orbit of the
target near-Earth asteroid. In this context, a reference CubeSat configuration is assumed to
obtain some sort of nominal transfer performance values for comparison purposes. In this
regard, the reference CubeSat has a single BIT-3 RF ion thruster unit. In other words,
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the characteristics of the reference CubeSat are similar to those of NASA’s two small space
satellites launched two years ago, Lunar IceCube and LunaH-Map. After estimating the
performance of the reference CubeSat, the impact of a thruster array on the interplanetary
transfer in the nodal flyby mission was investigated considering a number of engines
equal to two or three installed inside a CubeSat, whose characteristics—in terms of initial
mass—are consistent with those of the M-ARGO spacecraft [4,39,40], when the number of
engine units is equal to three.

The parametric study illustrated in Section 4 was then the starting point for analyzing
some applications of missions specifically related to some asteroids whose nodal distance
is sufficiently close to the parking circular orbit. This part of the study is illustrated in
Section 5. Finally, Section 6 contains the conclusions of the work and concludes the paper.

2. Simplified Mathematical Model for Preliminary Trajectory Analysis
This section is basically divided into three parts. The first part is dedicated to the

modeling of the performances of a miniaturized electric propulsion system based on the
characteristics of the BIT-3 RF ion thruster engine. The characteristics of such miniaturized
thruster have been derived from the literature data. In this regard, the starting point is the
analytical, simple mathematical model proposed by Tsay et al. [49] roughly 9 years ago;
this is still a good approximation of the latest thruster’s performance data, which can be
retrieved from the Busek website (see Ref. [58]). The second part of this section discusses a
simplified thrust model of a CubeSat equipped with a propulsion system based on a small
array of miniaturized electric thrusters (all identical to each other). In that case, the thrust
model uses the analytical results illustrated in the first part of the section. Finally, the last
part of the section discusses the mass breakdown model of the interplanetary CubeSat,
which will be used in the rest of the paper to determine the transfer performance in the
nodal flyby mission scenario.

2.1. Thrust Model of a Single Engine Unit Based on the BIT-3 Performance

Assume a single engine unit (which will be indicated in the rest of the paper with a
subscript ①), and consider the work by Tsay et al. [49], which gives the variation in the
thrust magnitude T① and the specific impulse Isp①

as a function of the (power-processing
unit) input power P①. The latter can be selected between a minimum admissible value
of Pmin①

= 55 W and a maximum admissible value of Pmax①
= 75 W. In other terms,

according to Ref. [49], the BIT-3 electric propulsion system is “throttleable” in the range
of the input power P① ∈ [Pmin①

, Pmax①
] ≡ [55, 75] W. Note that Ref. [58] indicates for the

input power a range of [56, 75] W, so that the range derived from the work by Tsay et al. [49]
is substantially coincident with the latest measured performance of the BIT-3 electric
propulsion system [58].

In particular, according to the graphs reported in Figure 11 of Ref. [49], the functions
T① = T①(P①) and Isp①

= Isp①
(P①) can be expressed through two very simple, linear,

equations as

T① = a1 P① + a0 (1)

Isp①
= b1 P① + b0 (2)

where {a0, a1, b0, b1} are four (dimensional) coefficients, most likely obtained through a
classical best-fit procedure applied on a suitable set of experimental data. More specifically,
Ref. [49] indicates that the values of such (best-fit) coefficients are

a1 = 2.51 × 10−5 N/W , a0 = −7.239 × 10−4 N , b1 = 45.209 s/W , b0 = −1305.3 s (3)
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so that the two functions given by Equations (1) and (2) are drawn in Figure 1. Note that
Equation (1) (or the graph in Figure 1) returns a maximum value of T① given by

Tmax①
= a1 Pmax①

+ a0 ≃ 1.16 mN (4)

which is in fact obtained when P① = 75 W, while the data sheet retrieved from the
manufacturer’s website [58] indicates a thrust magnitude up to 1.1 mN. On the other hand,
Equation (2) (or, again, the graph in Figure 1) gives a maximum value of the specific impulse
Isp①

of roughly 2081 s, while Ref. [58] declares a value up to 2150 s, i.e., a difference of about
3%. The analytical expression of the propellant mass flow rate ṁp①

for a single engine unit
can be easily derived from Equations (1) and (2). In this regard, if g0 = 9.80665 m/s2 denotes
the standard gravity, the variation in ṁp①

as a function of P① is obtained by the following
(simple) rational equation which involves the best-fit coefficients {a0, a1, b0, b1} [59]:

ṁp①
=

T①

g0 Isp①

≡ a1 P① + a0

g0 b1 P① + g0 b0
(5)

which is shown in Figure 2. In this case, the engine data sheet [58] indicates a (sin-
gle) reference value of the propellant mass flow rate equal to 52µg/s, which is about
9% lower than the average value extrapolated from Figure 2 or Equation (5). Conse-
quently, Equations (1), (2) and (5) can be considered an acceptable (analytical) approxima-
tion of the actual latest thrust performance of the BIT-3 as declared by the manufacturer,
and will be used in the rest of the paper to describe in a compact form the (single unit)
thruster’s performance.

55 60 65 70 75
0.6

0.8

1

1.2

55 60 65 70 75
1000

1500

2000

Figure 1. Variation in the thrust magnitude T① and specific impulse Isp①
with the input power P① for

a single engine unit, as described by Equations (1) and (2).

In particular, observing the small variation in ṁp①
with P① as clearly described by the

graphs of Figure 2, and in order to further simplify the thrust model of a single engine unit,
we assume a constant value of the propellant mass flow rate in the form

ṁp①
= β ≜ 56.67µg/s when P① ∈ [Pmin①

, Pmax①
] (6)
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Figure 2. Variation in the propellant mass flow rate ṁp①
with the input power P① for a single engine

unit, as described by Equation (5).

The mathematical model describing the single engine unit is completed by the data
regarding the dry mass of the unit me①

and the maximum load of propellant mp①
(i.e., iodine

with solid storage). According to the available data sheet [58] and assuming an engine
unit with integrated gimbal, one has a dry mass me①

= 1.4 kg and a maximum propellant
mass mp①

= 1.5 kg, with a (occupied) volume equal to 1.6 U. Therefore, the maximum
value of the total mass of a single engine unit (which includes the stored propellant) is
me①

+ mp①
= 2.9 kg.

2.2. Thrust Model of an Array of Engines

The mathematical model of a single engine unit described in the previous section is
now used to obtain a simplified version of the thrust model of a (small) array of N ∈ N+

miniaturized electric thrusters. In the general case of an array with N thrusters, we denote
as follows: P—the (power-processing unit) input power; T—the total thrust; ṁp—the
resulting propellant mass flow rate; me—the total dry mass; mp—the total propellant mass
carried on board the small spacecraft.

2.2.1. Case of N = 1

The limit case of N = 1 refers to an interplanetary CubeSat with a single electric
thruster, as in the case of the NASA’s Lunar IceCube and LunaH-Map [50]. Bearing in mind
the admissible range [Pmin①

, Pmax①
] of the power-processing unit input power described in

the previous section, when the electric thruster is switched on, the expression of the total
thrust magnitude as a function of P is given by

T =


0 if P < Pmin①

T① if P ∈ [Pmin①
, Pmax①

]

Tmax①
otherwise

(7)

where T① and Tmax①
are given by Equations (1) and (4), respectively. On the other hand,

using the approximation given by Equation (6), when the thruster is switched on, the pro-
pellant mass flow rate ṁp is given by the following simple equation:

ṁp =

0 if P < Pmin①

β otherwise
(8)
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Equations (7) and (8) are drawn in Figure 3 when the input power is P ∈ [0, 90] W.

0 10 20 30 40 50 60 70 80 90
0

0.2
0.4
0.6
0.8

1
1.2

0 10 20 30 40 50 60 70 80 90
0

10
20
30
40
50
60

Figure 3. Thrust model when N = 1 in terms of variation in T and ṁp with P; see
Equations (7) and (8).

Note that the power-processing unit input power P can be considered a sort of control
term whose value defines both the thrust magnitude T and the propellant mass flow rate.
In this context, the maximum admissible value of P depends on both the payload power
and the electrical power given by the power generation subsystem, as described later in
this section.

2.2.2. Case of N = 2

Consider now the case of N = 2, that is, the case in which the array of electric thrusters
is composed of two engine units sequentially activated. When P ≤ Pmin①

, the power-
processing unit’s input power is not sufficient to activate even a single engine unit, which
is instead able to operate if P ∈ [Pmin①

, Pmax①
]. On the other hand, if the value of P is

greater than the sum Pmin①
+ Pmax①

= 130 W, both the electric thrusters in the array can be
turned on. In particular, when P ≥ 2 Pmax①

= 150 W, the array of (two) engines gives the
maximum allowable magnitude of the thrust, whose total value is 2 Tmax①

≃ 2.32 mN; see
also Equation (4). For a generic value of P, bearing in mind also Equation (7), the thrust
magnitude of the array of two thrusters is modeled through the following relationship:

T =



0 if P < Pmin①

T① if P ∈ [Pmin①
, Pmax①

]

Tmax①
if P ∈ (Pmax①

, Pmin①
+ Pmax①

)

Tmax①
+ a1 (P − Pmax①

) + a0 if P ∈ [Pmin①
+ Pmax①

, 2Pmax①
]

2Tmax①
otherwise

(9)

The expression of the total propellant mass flow rate ṁp as a function of P is similar to
that written in the previous equation. In particular, recalling that the propellant mass flow
rate of a single engine unit is assumed to be constant (with P①) and equal to β given by
Equation (6), one has

ṁp =


0 if P < Pmin①

β if P ∈ [Pmin①
, Pmin①

+ Pmax①
)

2β otherwise

(10)
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The variation in T and ṁp with P ∈ [0, 170] W, as modeled by the last two equations, is
shown in Figure 4.
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Figure 4. Thrust model when N = 2 in terms of variation in T and ṁp with P; see
Equations (9) and (10).

2.2.3. Case of N = 3

Paralleling the procedure described above for the case of N = 2, it is possible to easily
obtain the thrust model for an array composed of three engine units sequentially activated,
i.e., the case of N = 3. In this configuration, the result is the two following equations,
which give the thrust magnitude and the propellant mass flow rate as a function of the
power-processing unit input power P, viz.

T =



0 if P < Pmin①

T① if P ∈ [Pmin①
, Pmax①

]

Tmax①
if P ∈ (Pmax①

, Pmin①
+ Pmax①

)

Tmax①
+ a1 (P − Pmax①

) + a0 if P ∈ [Pmin①
+ Pmax①

, 2Pmax①
]

2Tmax①
if P ∈ (2Pmax①

, 2Pmax①
+ Pmin①

)

2Tmax①
+ a1 (P − 2Pmax①

) + a0 if P ∈ [2Pmax①
+ Pmin①

, 3Pmax①
]

3Tmax①
otherwise

(11)

and

ṁp =


0 if P < Pmin①

β if P ∈ [Pmin①
, Pmin①

+ Pmax①
)

2β if P ∈ [Pmin①
+ Pmax①

, 2Pmax①
+ Pmin①

)

3β otherwise

(12)

The functions T = T(P) and ṁp = ṁp(P) with P ∈ [0, 250] W, when N = 3, are shown in
Figure 5. Incidentally, the upper part of this specific figure is similar to that obtained by
Takao et al. [60] (see, indeed, the graph in Figure 4 of that reference) in 2021; this is achieved
by considering the heliocentric mission scenario of a solar power sail whose characteristics
are consistent with these of the proposed Japanese mission named “Oversize Kite-craft
for Exploration and Astronautics in the Outer Solar system” (OKEANOS) [61,62]. In this
regard, an interesting and potential extension of the model discussed in this work could be
the one that foresees the application to the fascinating concept of solar power sail like the
one proposed in the scenario regarding the probe OKEANOS.
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Figure 5. Thrust model when N = 3 in terms of variation in T and ṁp with P; see
Equations (11) and (12).

2.2.4. Case of N ≥ 4

The analysis of the N ≥ 4 case is simple and immediate through using the results
obtained in the previous subsection, but it is not detailed here because—in the author’s
opinion—the use of an array composed of more than three engine units (like those modeled
at the beginning of this section) would be hardly compatible with the volumetric charac-
teristics of a potential CubeSat for interplanetary use. In fact, for example, the N = 4 case
would require a volume reserved for the propulsion system equal to 4 × 1.6 U = 6.4 U,
which would correspond to more than half of the theoretical one of an interplanetary
CubeSat such as the ESA’s M-ARGO.

2.3. CubeSat Mass Breakdown and Power Model

The last part of this section describes the simplified mass breakdown and power model
of the interplanetary CubeSat equipped with an array of miniaturized electric thrusters of
size N ∈ {1, 2, 3}. The purpose of this simplified model is not to define the masses of the
small spacecraft in detail, but to determine a simple and flexible analytical tool that can be
used within the optimal trajectory design discussed in the next section.

In this context, the CubeSat total mass, m0, at the beginning of the interplanetary
transfer (i.e., at the initial time instant t = t0 ≜ 0) is modeled as the sum of five terms
(or macro-components): the total dry mass me of the miniaturized electric thruster array;
the total mass mp of the propellant stored on board the CubeSat; the mass mpow of the
power-generation system based on the use of typical high-performance solar panels; the
mass mpay of the scientific payload; and the mass moth of the remaining spacecraft subsys-
tems (including the contingency factor), such as, for example, the communication system,
the thermal control system, and the structure. Accordingly, the CubeSat initial mass m0 is
given by the sum

m0 = me + mp + mpow + mpay + moth (13)

Each of the terms on the right-hand side of the previous equation is now modeled as a
function of data extrapolated from the literature and also as a function of the number
N ∈ {1, 2, 3} of miniaturized electric thrusters that form the array. In this regard, according
to the model discussed at the beginning of this section, the values of me and mp are obtained
as a function of N as

me = N me①
, mp = N mp①

(14)
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where me①
= 1.4 kg and mp①

= 1.5 kg [58]. Obviously, the mass of a small array of
miniaturized electric thrusters is different from the simple sum of the mass of each (single)
engine unit. However, any differences in mass can then be included in the term moth, which
also includes an appropriate contingency factor. In order to simplify the mass breakdown
model of this potential interplanetary CubeSat, the value of moth is assumed to be a fixed
fraction of the total space vehicle’s mass, viz.

moth = k m0 with k ≜ 0.4 (15)

The mass mpow of the power generation subsystem is calculated considering the
electric power required by both the (N) miniaturized electric thrusters and the scientific
payload, including other subsystems. In particular, considering a fixed value equal to
Ppay = 25 W of the electric power required by the payload (for example, in the case of the
NASA’s Lunar IceCube, the payload power capability is roughly 18 W), and denoting with
γ the power-to-mass ratio of the power generation subsystem, one has

mpow =
Ppay + N Pmax①

γ
(16)

The value of the power-to-mass ratio γ depends on the design characteristics of the power
generation subsystem. In this regard, the mathematical model discussed in this paper
considers the performance of the MMA’s high watts per kilogram “HaWK” solar arrays [52],
as declared by the manufacturer in the corresponding data sheet (see the data indicated
in Ref. [63]). Accordingly, and considering a high performance solar array, the assumed
value of the power-to-mass ratio is γ = 133 W/kg, while a value of about 106 W/kg is
consistent, for example, with a HaWK solar array with standard performance [63]. Finally,
we assume a payload mass mpay = 4 kg, that is, a value consistent with the payload mass
installed onboard the NASA’s Lunar IceCube. In the latter case, in fact, the payload mass
was 3.5 kg with a volume of nearly 2U.

Substituting Equations (14)–(16) into Equation (13), the compact expression of the
CubeSat launch mass m0 as a function of the number N of miniaturized electric thrusters is
obtained as

m0 =

(
mpay + Ppay/γ

)
+ N

(
me①

+ mp①
+ Pmax①

/γ
)

1 − k
(17)

The value of m0 and the masses of the other subsystems have been summarized in
Table 1 and shown in Figure 6 by using a pie chart, when N ∈ {1, 2, 3}. Note that the
reference case of N = 1 has a total launch mass slightly below 13 kg, that is, a value
consistent with the actual launch mass of the two NASA’s CubeSats Lunar IceCube and
LunaH-Map, which was about 14 kg.

Table 1. Mass breakdown model of the potential interplanetary CubeSat as a function of the number
N of miniaturized electric thrusters.

N 1 2 3

me [kg] 1.4 2.8 4.2
mp [kg] 1.5 3 4.5
mpow [kg] 0.75 1.32 1.88
mpay [kg] 4 4 4
moth [kg] 5.1 7.41 9.72

m0 [kg] 12.75 18.53 24.3
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(a) (b)

(c)

Figure 6. CubeSat mass breakdown as a function of N. In particular, recall that mp is the total
propellant mass stored onboard the spacecraft. (a) Case of N = 1; (b) case of N = 2; (c) case of N = 3.

Finally, the variation in the available electric power Pav as a function of the distance
from the Sun, i.e., the output value of the power generation subsystem as a function of the
Sun–CubeSat distance r, was modeled using a simple r−2-type relationship. In this regard,
bearing in mind that the design value of the required electric power is given by the sum
Ppay + N Pmax①

, one has

Pav =
(

Ppay + N Pmax①

) ( r⊕
r

)2
(18)

where r⊕ ≜ 1 AU is a reference distance which coincides with the semi-major axis of
the Earth’s heliocentric orbit. Note that the literature presents more detailed and refined
model for Pav, which consider both the degradation of the solar array performance and the
effect of the spacecraft temperature on the output power [64]. However, the simple model
approximated by Equation (18), which is shown in Figure 7, is considered in this context
consistent with a preliminary analysis of the CubeSat’s transfer performance.

At a given distance r from the Sun—that is, for a given value of the available electric
power Pav given by Equation (18)—the power-processing unit input power P can be selected
in the range defined by the following equation:

P ∈

[0, (Pav − Ppay)] if Pav > Ppay

[0] otherwise
(19)

In other words, the available electrical energy is used first to power the payload (and other
subsystems) and the remaining power is possibly diverted to the electric propulsion system.
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Figure 7. Available electric power Pav as a function of the distance from the Sun r ∈ [0.8, 1.1] AU and
the size N of the array of miniaturized thrusters; see Equation (18), which schematizes the simplified
mathematical model used to estimate the local value of Pav.

Note that the special case of P = 0 models the shutdown of the engine array, while the
case of P = Pav − Ppay indicates an operation of the CubeSat’s electric propulsion system at
maximum local thrust, when the engine units are sequentially activated.

3. Heliocentric Trajectory Design and Optimal Guidance Law
This section discusses the mathematical model used to describe the heliocentric dy-

namics of the interplanetary CubeSat equipped with the array of miniaturized electric
thrusters. The aim is to obtain a model to determine the spacecraft heliocentric trajectory
which allows the performance index

J ≜ −∆t (20)

to be maximized, where ∆t is the total flight time required to reach an assigned distance
from the Sun by starting from a circular parking orbit of radius r⊕. The latter is the typical
approximation which is used to model an escape phase from the Earth by using a parabolic
orbit. Note that the maximization of J gives the minimum-time transfer trajectory. The first
step in this direction is the modeling of the spacecraft thrust vector and the temporal
variation in the total mass of the small space vehicle.

In this context, the thrust vector T of the spacecraft is modeled: (1) by using the results
of Section 2; and (2) by assuming that the thrust direction defined through the thrust unit
vector T̂ ≜ T/∥T∥ is unconstrained, as usually assumed in a spacecraft equipped with an
electric propulsion system [65]. Accordingly, the CubeSat thrust vector is simply given by
the following relationship:

T = T T̂ (21)

where T = T(P) is the thrust magnitude which is a function of the power-processing unit
input power P as described by Equations (7), (9) and (11) for N = 1, N = 2, and N = 3,
respectively. On the other hand, the temporal variation in the CubeSat’s mass is related to
the propellant mass flow rate as

ṁ = −ṁp (22)

where ṁp = ṁp(P) is given by Equations (8), (10) and (12) for N = 1, N = 2, and N = 3,
respectively. Recall that the range of P is given by Equation (19) as a function of the value
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of the available electric power Pav, which is, in turn, a function of the solar distance r, as
described by Equation (18).

The heliocentric dynamics of the CubeSat in a two-dimensional mission scenario,
where both the spacecraft trajectory and thrust vector are constrained to lie in the plane
of the initial parking orbit, is studied using a classical polar reference frame where the
azimuthal angle θ is measured from the line connecting the Sun and the CubeSat at time
t0 = 0. In particular, according to the common approach used to obtain a preliminary
trajectory design of a spacecraft in a heliocentric scenario, we consider only the gravitational
attraction of the Sun (as in the typical Keplerian model) and the thrust induced by the
propulsion system. Therefore, other effects such as, for example, the force due to the
solar radiation pressure or the third-body gravitational effects, have been neglected in this
first-order analysis. These latter (perturbative) effects can then be included in a subsequent
mission analysis which refines the results obtained from the preliminary one. In the polar
reference frame, the equations of motion of the spacecraft with a time-varying mass m are
given by Equation (22) and the well-known

ṙ = u , θ̇ =
v
r

, u̇ = −µ⊙
r2 +

v2

r
+

T
m

cos α , v̇ = −u v
r

+
T
m

sin α (23)

where µ⊙ is the gravitational parameter of the Sun, u is the radial component of the
CubeSat inertial velocity, v is the transverse component of the CubeSat inertial velocity,
and α ∈ [−180, 180] deg is the thrust angle, which defines the direction of the thrust vector
in the polar reference frame. In particular, the case of α = 0 deg indicates a thrust vector
aligned with the Sun–CubeSat (radial) line, while the case α = 90 deg is consistent with
a thrust direction perpendicular to the radial line with a positive component along the
direction of the CubeSat’s inertial velocity vector. Note that the two control (scalar) terms
in the CubeSat’s heliocentric dynamics are as follows: (1) the power-processing unit input
power P (which gives the value of the thrust magnitude), whose admissible range is given
by Equation (19); and (2) the thrust angle α. The equation of the mass variation (22) and the
classical equations of motion (23) can be rewritten, in a more useful dimensionless form,
by introducing the following (dimensionless) terms indicated through a tilde superscript

r̃ =
r

r⊕
, t̃ =

t√
r3
⊕/µ⊙

, ũ =
u√

µ⊙/r⊕
, ṽ =

v√
µ⊙/r⊕

, m̃ =
m
m0

, T̃ =
T

m0 µ⊙/r2
⊕

(24)

Accordingly, Equations (22) and (23) become

r̃′ = ũ , θ′ =
ṽ
r̃

, ũ′ =
ṽ2

r̃
− 1

r̃2 +
T̃
m̃

cos α , ṽ′ = − ũ ṽ
r̃

+
T̃
m̃

sin α , m̃′ = − ˜̇mp (25)

where the prime symbol indicate the derivative with respect to the dimensionless time t̃,
while the term ˜̇mp is the dimensionless form of the propellant mass flow rate given by

˜̇mp ≜
ṁp

m0

√
µ⊙/r3

⊕

(26)

The dimensionless form of the equations describing the CubeSat heliocentric dynamics
given by Equation (25) is used in the rest of the section to study the optimal transfer
trajectory. In this context, the optimal values of the two control terms are obtained by
using an indirect approach to the trajectory optimization [53,66] and the classical PMP [56].
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To this end, the dimensionless costate variables {λr, λθ , λu, λv, λm} are introduced and
the dimensionless Hamiltonian function H is formed as

H ≜ λr ũ +
λθ ṽ

r̃
+ λu

(
ṽ2

r̃
− 1

r̃2 +
T̃
m̃

cos α

)
+ λv

(
− ũ ṽ

r̃
+

T̃
m̃

sin α

)
− λm ˜̇mp (27)

which gives the five Euler–Lagrange (dimensionless) differential equations

λ′
i = −∂H

∂i
with i ∈ {r̃, θ, ũ, ṽ, m̃} (28)

that are numerically integrated together with the CubeSat’s dimensionless equations of
motion (25). The explicit expressions of the dimensionless Euler–Lagrange equations are
omitted for the sake of conciseness, as usual. In particular, according to Equation (27)—and
recalling that T̃ = T̃(P) and ˜̇mp = ˜̇mp(P)—the part of H which explicitly depends on the
two control terms {P, α} is

Hc =
T̃
m̃
(λu cos α + λv sin α)− λm ˜̇mp (29)

so that, according to the PMP [56], the maximization of Hc gives the optimal value of the
thrust angle α. The latter, in fact, is given by the well-known relationship

cos α =
λu√

λ2
u + λ2

v
, sin α =

λv√
λ2

u + λ2
v

(30)

Substituting the previous equation into (29), one obtains a reduced version of Hc in which
compares only the second (and last) control term, i.e., the input power P, viz.

HcP = HcP(P) ≜
T̃
m̃

√
λ2

u + λ2
v − λm ˜̇mp (31)

The right hand of the previous equation gives variation with P of the reduced (dimension-
less) Hamiltonian function HcP . Again, according to the PMP, the maximization of the
single-variable function HcP = HcP(P) gives the optimal value of the input power P and,
therefore, the local (optimal) value of the thrust magnitude and the propellant mass flow
rate. In this respect, the maximization of Equation (31) is numerically obtained by using a
rather standard approach based on golden section search method [67].

For example, consider the case of N = 3, that is, the case of an array composed of three
miniaturized electric thrusters sequentially activated. In this case, Table 1 gives an initial
mass of the CubeSat equal to m0 = 24.3 kg. Assume—just for illustrative purposes—that, in
a given time instant during the transfer phase, (1) the spacecraft solar distance is r = 0.9 AU,
(2) the CubeSat local mass is m = 23 kg, and (3) the value of the dimensionless adjoint
variables {λu, λv, λm} is {0.5, 0.6, −0.5}. In this example case, Equation (30) becomes

cos α =
0.5√

0.52 + 0.62
≃ 0.64 , sin α =

0.6√
0.52 + 0.62

≃ 0.768 (32)

which gives the optimal value of the thrust angle α ≃ 50.2 deg, while Equation (18) gives an
available electric power Pav = (25 + 3 × 75)× (1/0.9)2 ≃ 308.6 W, so that the admissible
range of the power-processing unit input power is P ∈ [0, (308.6 − 25)] W ≡ [0, 283.6] W.
In particular, the expression of HcP given by Equation (31) returns the graph in Figure 8.
Note that the value of 283.6 W is greater than 3 Pmax①

= 225 W, which is the value of
the input power that gives the maximum thrust magnitude in an array of three electric
thrusters sequentially activated.
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Figure 8. Example of the variation with the input power P of the dimensionless function
HcP = HcP (P) given by Equation (31).

According to the graph in Figure 8, the value of P that maximizes HcP is
P ≥ 3 Pmax①

= 225 W, so that Equations (11) and (12) give the optimal value of the to-
tal thrust magnitude T = 3Tmax①

≃ 3.48 mN and the corresponding total propellant mass
flow rate ṁp = 3 β ≃ 170µg/s. The latter indicate that all three electric thrusters are
activated at full throttle in that specific point of the (optimal) transfer trajectory. Of course,
this is only an illustrative example of the procedure to evaluate the optimal controls, which
are calculated indeed at each integration step during the simulation of the optimal CubeSat
trajectory with sequentially activated engine units. In this regard, next section illustrates
a set of numerical results obtained by using the procedure discussed just in this part of
the paper.

It is interesting to observe that preliminary numerical simulations—that is, the opti-
mization of a large number of heliocentric transfer trajectories—indicate that the maximiza-
tion of the function HcP defined in Equation (31) is obtained substantially when the input
electric power is at the boundaries of its admissible range given by Equation (19). This is an
interesting observation because it allows us to obtain a simplified and suboptimal control
law for the power-processing unit input power P, in order to reduce the computational
effort needed to solve the optimization problem. In this regard, a suboptimal value of the
control P can be obtained by considering the value of the function HcP at the boundaries of
the admissible range of P. Bearing in mind that, when P = 0 one has T = 0 and ṁp = 0,
a simplified (suboptimal) expression of the control P can be written as

P =

Pav − Ppay if Pav > Ppay and HcP(Pav − Ppay) > 0

0 otherwise
(33)

The suboptimal control law given by the previous equation can be used to quickly obtain a
near-optimal transfer trajectory which can then be refined using the effective maximization
of the function HcP = HcP(P). In most scenarios, the control law given by Equation (33)
determines the optimal (effective) transfer trajectory, with a reduction in computation time
of about two orders of magnitude when compared to the actual (numerical) maximization
of the function defined in Equation (31).

4. Numerical Results
The differential system composed of the dimensionless equations of motion (25) and

the dimensionless Euler–Lagrange Equation (28) has been numerically integrated using a
variable-step, variable-order PECE solver based on the classical Adams–Bashforth–Moulton
algorithm [67,68], with a relative and absolute tolerance of 10−10. The (dimensionless)
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boundary value problem associated with the optimization process is solved using a nu-
merical routine based on the shooting method with a final tolerance of 10−7, while the
first guess of the solution has been obtained by adapting the semi-analytical procedure
recently proposed by the author in Refs. [69,70]. In this context, the analytical form of
the suboptimal control law given by Equation (33) allows us to significantly reduce the
computation time compared to a standard approach to solving these kinds of (not so simple)
optimization problems.

The optimization method and the numerical procedure illustrated above were em-
ployed to obtain the rapid transfer trajectory as a function of the number N of (sequentially
activated) miniaturized electric thrusters in the array, and the target value r f = r(t f ) of
the solar distance to be reached by the interplanetary CubeSat, where t f = t0 + ∆t ≡ ∆t is
the final time instant which is one of the scalar outputs of the procedure. In this context,
the CubeSat’s inertial velocity at the end of the flight is left free, as the spacecraft azimuthal
angle and the vehicle’s total mass. In particular, at the end of the trajectory optimization
the final mass m f = m(t f ) of the CubeSat is compared with its minimum admissible value
given by the difference m0 − mp, where the two terms {m0, mp} are detailed in Table 1,
in order to verify whether the obtained solution is consistent with the CubeSat mass dis-
tribution model. In fact, recall that mp is the total mass of the propellant stored on board
the spacecraft.

The trajectory optimization was performed assuming N ∈ {1, 2, 3} and two distinct
ranges of final (target) distance r f , namely r f ∈ [1.005, 1.15] AU and r f ∈ [0.85, 0.995] AU.
In these two intervals, which are consistent with a sort of orbit raising (case of r f > r⊕)
or orbit lowering (case of r f < r⊕), the value of r f used in the numerical simulations has
been varied with a step of 0.005 AU. Therefore, a total number of 3 × 2 × 30 = 180 optimal
control problems have been solved using the approach described in the previous section.
Note that the numerical simulations consider a variation of ±15% of the initial Sun–CubeSat
distance, which is equal to r⊕.

The results of the numerical simulations, in terms of the minimum flight time ∆t as
a function of both N and r f , are shown in the graphs collected in Figure 9. In particular,
as expected, for a given final distance r f the minimum flight time, ∆t decreases as the
number of electric thrusters N increases. However, the difference in flight time from
N = 2 to N = 3 is much less marked than that obtainable from a single engine (N = 1)
to two propulsion units (N = 2), especially for values of r f very different from r⊕. This
is an interesting result, because it indicates that a series of thrusters with N ≥ 4 probably
does not provide an appreciable performance increase (in terms of flight time reduction)
compared to the case of a smaller value of N as that used in this study.
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Figure 9. Minimum flight time ∆t as a function of N and the final (target) distance r f . Black line →
N = 1; blue line → N = 2; red line → N = 3. (a) Case of r f < r⊕; (b) case of r f > r⊕.



Remote Sens. 2025, 17, 513 17 of 24

From the point of view of propellant expenditure, i.e., from the point of view of the
final mass m f of the spacecraft, all the 180 optimal transfer trajectories calculated during
the simulation campaign are compatible with the value of the propellant mass mp stored
on board the CubeSat (see also Table 1). This aspect emerges from Figure 10, which shows
the mass of propellant (m0 − m f ) required to complete the transfer as a function of N and
r f . In fact, note that the required propellant mass is always less than 1.5 kg when N = 1,
or 3 kg when N = 2, or 4.5 kg when N = 3. As expected, to reach a given value of the
target distance r f , the propellant mass needed to complete the transfer increases as the
number N of propulsion units increases. However, the percentage impact of propellant
expenditure on the total available propellant mass is a decreasing function of N, for a given
value of r f , as shown in Figure 11. This is an important point, because the effect of an
increasing number of engine units allows us to obtain a greater residual mass (in percentage
terms) of propellant at the end of the heliocentric flight. Such a sort of propellant reserve
can be used, for example, to further extend the interplanetary mission and to visit another
target celestial body.
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Figure 10. Propellant expenditure (m0 − m f ), as a function of N and r f , for a rapid transfer. The leg-
end is the same as in Figure 9.
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Figure 11. Propellant expenditure percentage (m0 − m f )/mp, as a function of N and r f , for a rapid
transfer. The legend is the same as in Figure 9.

For example, consider the case of r f = 1.1 AU. In this scenario, Figure 9b gives
a minimum flight time of about 181 days when N = 1, while one has a flight time of
154 days (i.e., −15%) if N = 2, and a flight time of 144 days (i.e., −20%) if N = 3. In the
same scenario, Figure 10b gives a propellant expenditure of (m0 − m f ) =≃ 0.88 kg when
N = 1, while the required propellant is 1.36 kg if N = 2 (i.e., +53% with respect to the
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case of a single engine unit), and 1.9 kg if N = 3 (i.e., +114%). However, if compared with
the total propellant mass stored on board the spacecraft, the required mass of propellant
is about 59% of mp if N = 1, or 45% if N = 2, or 42% if N = 3; see the graphs sketched in
Figure 11b.

In any case, it is useful to remember that the trajectories discussed in this work are
optimal from the point of view of flight time, and not from the point of view of propellant
consumption. In other words, it is certainly possible to obtain transfer trajectories that
require a lower propellant consumption than that indicated in Figure 10, obviously at the
expense of a greater flight time. In this sense, the analysis of minimum-time trajectories is
the first step for a more refined study of the transfer problem [71] which, at a subsequent
step, requires also the inclusion of the ephemeris constraints.

5. Potential Mission Applications
The procedure proposed in this paper to obtain the rapid transfer trajectory of an

interplanetary CubeSat as a function of N and r f has been employed, in this section,
to evaluate the performance in a nodal flyby mission towards a potential near-Earth
asteroid. In this context, a catalog of these fascinating minor celestial bodies has been
retrieved from Ref. [72]. In particular, this catalog contains the orbital elements of about
37,080 minor celestial objects at the end of December 2024. Using that (Keplerian) orbital
data, the value of the solar distance of both the ascending node ra and the descending node
rd has been obtained by using a standard astrodynamics formula [73].

Subsequently—assuming a constraint on the maximum and minimum admissible
value of the distance from the Sun at the instant of the nodal flyby, i.e., assuming a dis-
tance constraint of the type r f ∈ [0.85, 1.15] AU—one obtains that approximately 10,320
(or 10,194) ascending (or descending) nodes are reachable, while 1870 celestial bodies
have both the ascending and descending nodes at a distance compatible with the assumed
range of r f . Therefore, there are roughly 18644 potential small celestial objects which
can be reached with r f ∈ [0.85, 1.15] AU, which correspond to as many (potential) nodal
flyby mission scenarios. Assuming that both the ascending and descending nodes are at
a distance compatible with the range of r f —that is, considering 1870 potential mission
scenarios—one obtains the graph sketched in Figure 12, which reports all the admissible
pairs {ra, rd} that can be reached by the interplanetary CubeSat.
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Figure 12. Distribution of the solar distance of the ascending ra and descending rd node for the set of
near-Earth asteroids listed in the catalog retrieved from Ref. [72].
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In this context—that is, in the case of both ra and rd are within the range [0.85, 1.15] AU—
the solution of the optimal control problem gives the minimum flight time required to reach
the ascending or the descending note of each of the 1870 potential (near-Earth asteroids)
targets. The numerical results, in terms of cumulative percentage, are re-assumed in
Figure 13. For example, according to the graphs sketched in that figure, when the final
distance is set to obtain a flyby at the ascending node of the asteroid’s orbit, one has that
50% of the entire set of the potential targets are reachable with a flight time less than about
150 days if N = 1, while the flight time is 130 days if N = 2, or 120 days if N = 3. On the
other hand, for an assigned small celestial object, one can select the more convenient (form
the flight time point of view) node to be reached through a nodal flyby mission. In that
case, the numerical results are given in Figure 14, showing the cumulative percentage
in the best option between the ascending or descending node from the point of view of
the required flight time. Note that Figures 13 and 14 requires the numerical solution of
1870 optimization problems.
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Figure 13. Cumulative percentage of the minimum flight time in a transfer towards a potential
near-Earth asteroid in which {ra, rd} ∈ [0.85, 1.15] AU. Black line → N = 1; blue line → N = 2; red
line → N = 3. (a) Case of r f = ra; (b) case of r f = rd.
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Figure 14. Best option between the ascending or descending node from the point of view of the flight
time: cumulative percentage. The legend is the same as in Figure 13.

The data summarized in Figure 14 allow the designer to quickly evaluate the impact
of the value of N on the transfer performance in terms of both the minimum flight time
and the number of potential targets which can be reached by the interplanetary CubeSat,
whose design characteristics are indicated in Table 1. For example, consider the case of
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a nodal flyby with asteroid 1685 Toro, which has a solar distance of the ascending (or
descending) node of 1.1262 AU (or 1.0899 AU). In this specific mission scenario, if the
number of the engine units is N = 3, then the optimization process described in this work
gives a minimum flight time of 162.5 days (or 137 days), while the required propellant
mass is roughly 8.5% (or 7.5%) of the initial mass of the CubeSat.

6. Conclusions
This paper investigated the performance of an interplanetary CubeSat in a nodal

flyby mission to a near-Earth asteroid. In particular, the small spacecraft is equipped with
a set of miniaturized electric thrusters whose characteristics are modeled after those of
commercial propulsion systems. The proposed approach allows the designer to rapidly
evaluate the impact of the number of engine units on the transfer performance, from the
perspective of minimum flight time and the required propellant mass that is evaluated
using a simplified mass breakdown model. The proposed approach has been applied to
a recent catalog of near-Earth asteroids and a set of potential targets has been analyzed
with a low computational effort. The simplified assumptions used to describe the problem
from a mathematical point of view make the approach proposed in this paper suitable for
a preliminary analysis of the interplanetary mission. In fact, a refinement of the results
obtained could be achieved by considering both the constraints related to the planetary
ephemerides and the possibility of realizing optimal transfer trajectories from the point of
view of propellant consumption. Obviously, in the latter case, the availability of minimum-
time transfer trajectories (such as those presented in this work) represents the necessary
starting point for a correct setting of the propellant-mass optimization problem.
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Nomenclature
The following nomenclatures are used in this manuscript:

{a0, a1} best fit coefficients for the thrust magnitude; see Equation (1)
{b0, b1} best fit coefficients for the specific impulse; see Equation (2)
g0 standard gravity [m/s2]
k dimensionless contingency factor
H dimensionless Hamiltonian function
Isp specific impulse [s]
J performance index [days]
m mass [kg]
ṁp propellant mass flow rate [kg/s]
N number of miniaturized thrusters in the array
P power-processing unit input power [W]
Ppay payload power [W]
r Sun-spacecraft distance [AU]
T thrust magnitude [N]
T thrust vector [N]
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t time [days]
u radial component of the spacecraft velocity [km/s]
v transverse component of the spacecraft velocity [km/s]
µ⊙ Sun’s gravitational parameter [km3/s2]
α thrust angle [deg]
β reference value of the propellant mass flow rate [kg/s]
∆t total flight time [days]
γ power-to-mass ratio [W/kg]
λi dimensionless variable adjoint to i-th dimensionless spacecraft state
θ azimuthal angle [deg]

Subscripts
① referred to a single engine unit
0 initial, parking orbit
⊕ at 1 astronomical unit from the Sun
av available value
e electric engine dry
f final, target point
max maximum value
min minimum value
oth other subsystems
pay payload
pow power generation subsystem
p propellant

Superscripts
· derivative with respect to t
′ derivative with respect to t̃
∼ dimensionless version of the term
∧ unit vector
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