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Abstract: With the widespread application of remote sensing technologies and UAV im-
agery in various fields, dense object detection has become a significant and challenging
task in computer vision research. Existing end-to-end detection models, particularly those
based on DETR, often face criticism due to their high computational demands, slow con-
vergence rates, and inadequacy in managing dense, multi-scale objects. These challenges
are especially acute in remote sensing applications, where accurate analysis of large-scale
aerial and satellite imagery relies heavily on effective dense object detection. In this pa-
per, we propose the DHQ-DETR framework, which addresses these issues by modeling
bounding box offsets as distributions. DHQ-DETR incorporates the Distribution Focus
Loss (DFL) to enhance residual learning, and introduces a High-Quality Query Selection
(HQQS) module to effectively balance classification and regression tasks. Additionally, we
propose an auxiliary detection head and a sample assignment strategy that complements
the Hungarian algorithm to accelerate convergence. Our experimental results demonstrate
the superior performance of DHQ-DETR, achieving an average precision (AP) of 53.7% on
the COCO val2017 dataset, 54.3% on the DOTAv1.0, and 32.4% on Visdrone, underscoring
its effectiveness for real-world dense object detection tasks.

Keywords: detection transformer; dense object detection; multi-scale object detection;
distribution modeling

1. Introduction
Object detection is a foundational element in computer vision, involving the determi-

nation of object locations and their categorical classification. Its significance transcends
general applications, particularly in specialized fields such as remote sensing and Un-
manned Aerial Vehicle (UAV) imagery. In these areas, object detection is crucial for tasks
including monitoring environmental changes, identifying urban structures, and evaluating
disaster zones. Dense object detection is particularly important in these contexts due to the
high density and complexity of objects in satellite and aerial imagery, necessitating precise
mapping and real-time decision-making.

Presently, the architectures employed in object detection can be broadly divided into
two categories: convolutional neural networks (CNNs) and Transformers. The development
and refinement of CNN-based object detectors have been the subject of extensive research.
Initially, a two-stage strategy predominant in the field involved region proposal followed
by classification. However, these approaches often suffer from performance degradation
when dealing with low-resolution imagery, and their intricate pipeline hampers real-time
inference capabilities [1–3]. This shortcoming has paved the way for efficient one-stage
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detectors, which have emerged as a significant area of focus in both research and application.
These detectors generate dense predictions directly on feature maps, thus achieving a more
favorable trade-off between accuracy and computational efficiency [4–11]. Some approaches
utilize anchor boxes, adjusted by offsets and scales derived from prior knowledge [6–10],
while others advocate for anchor-free methods, emphasizing greater adaptability and
criticizing the lack of versatility in anchor-based designs [4,5,12]. However, one-stage
detectors are not without limitations, and overcoming these presents a significant challenge
for further advancements. For instance, these detectors find it challenging to make sparse
predictions without compromising on detection performance and recall rates. Additionally,
the dense predictions they generate do not naturally align with the desired outcome,
necessitating manual post-processing steps, such as non-maximum suppression (NMS),
to eliminate duplicate predictions. This additional step introduces delays in inference,
and may degrade accuracy. While improved NMS methods have been proposed, their
generalizability remains limited. Moreover, the literature has yet to adequately address
challenges surrounding dense multi-scale object detection [13–15].

The Detection Transformer (DETR) has transformed the object detection paradigm by
recasting it as a set prediction problem, leveraging transformer encoder–decoder architec-
tures and the Hungarian algorithm for matching [16]. As a pioneering method, DETR has
initiated a new direction in object detection research, yet there is ample room for refine-
ment in areas such as training methodologies and computational efficiency. For example,
Deformable DETR improves upon DETR’s slow convergence and performance on small
objects by incorporating multi-scale deformable attention modules [17]. DAB-DETR en-
hances the interpretability of DETR by integrating anchor boxes into the decoder’s query
modeling [18]. DN-DETR accelerates convergence by bypassing the Hungarian matching
process, instead feeding noisy ground truth directly to the decoder [19]. Group DETR lever-
ages one-to-many training relationships by introducing multiple object queries, thereby
improving performance [20]. Sparse-DETR reduces computational demands in the encoder
through the use of sparse queries, while Focus-DETR achieves a refined balance between
model complexity and accuracy by selectively focusing on 30% of the foreground tokens
and semantic features [21]. RT-DETR further reduces computation without sacrificing
performance by restricting multi-head self-attention to downsampled features at a factor of
32 [22].

The Detection Transformer (DETR) has been the subject of extensive research, ex-
ploring various methods to enhance its performance. Nonetheless, DETR continues to
encounter challenges, particularly in the realm of dense multi-scale object detection, where
its performance remains limited. To address these challenges, we introduce DHQ-DETR,
a novel approach that redefines the paradigm of object detection. Firstly, we revolutionize
the concept of the bounding box by positing that the ground truth adheres to a Dirac
distribution. In conjunction with the Intersection over Union (IoU) loss, we implement the
distribution focus loss (DFL), which exhibits consistent performance in managing objects
across diverse scales. Secondly, we integrate a high-quality query selection module to
improve the initialization of object queries, thereby ensuring better alignment between clas-
sification and regression tasks. Lastly, drawing inspiration from CO-DETR, we introduce
an additional detection head and a refined assignment method that increases the number
of positive samples in the decoding layer. This enhancement not only boosts the stability of
the Hungarian algorithm, but also accelerates model convergence [23,24].

In this paper, we unveil DHQ-DETR, an end-to-end object detection model, the archi-
tecture of which is depicted in Figure 1. DHQ-DETR achieves notable detection results,
including an AP of 53.7% on the COCO val2017 dataset, an AP of 54.3% on the DOTAv1.0
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test set, and an AP of 32.4% on the Visdrone test set. The principal contributions of our
research are summarized as follows:

1. We propose a groundbreaking distribution-based approach to box modeling and
incorporate the distribution focus loss, which demonstrates robustness when dealing
with dense multi-scale targets.

2. We introduce a high-quality query selection module designed to resolve the misalign-
ment inherent in the initialization of object queries.

3. We develop a refined assignment strategy, coupled with an extra detection head,
to enhance the stability and convergence speed of the DETR training process.

Figure 1. Illustration of the Distribution-DETR architecture. The High-Quality Query Selection
(HQQS) module is employed to initialize object queries aligned with both classification and local-
ization tasks. By modeling the offsets between predictions and labels as distributions, the model
enhances its capacity to localize occluded target boundaries. Furthermore, the decoder integrates an
assignment strategy to strengthen positive supervision.

The remainder of this paper is structured as follows: Section 2 provides a brief re-
view of the relevant background work and theoretical foundations, with a focus on the
development of DETR and its variants. Section 3 details the proposed DHQ-DETR model,
highlighting its key components and innovative training strategies. Section 4 outlines the
experimental setup, datasets, evaluation metrics, as well as a comparative analysis with
baseline models. Finally, Section 5 summarizes our research and discusses potential future
research directions.

2. Related Work
2.1. CNN-Based Detectors

CNN-based detectors frequently employ pyramid feature representations, a corner-
stone technique in the field of object detection. Initially introduced in SSD, these pyramids
are designed for the efficient detection of both small and large-scale targets by leveraging
high-resolution feature maps for the former and low-resolution maps for the latter [8].
To integrate a richer semantic spectrum and capture multi-scale features, components such
as FPN and PAN have been developed to meld features between the backbone network
and the detection head [25,26]. Furthermore, incorporating plug-and-play attention mod-
ules, including SENet and CBAM, has proven effective in tackling multi-scale detection
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challenges by applying attention weights in either the spatial or feature dimensions [27,28].
These modules help overcome the intrinsic limitations of convolutional neural networks
and enhance the model’s ability to represent features effectively. CNN-based detectors
require post-processing to eliminate redundant predictions. Numerous studies have inves-
tigated the optimization of post-processing methods. For example, Soft-NMS mitigates the
impact of highly overlapping boxes by decreasing their scores rather than removing them
outright [13]. Adaptive NMS modifies the suppression threshold dynamically, contingent
on the distribution of various object classes within overlapping regions [15]. ConvNMS
replaces the traditional threshold computation with convolutional kernels [29]. Learn-
ing NMS involves training the model to independently acquire appropriate suppression
strategies [30]. WBF determines the ultimate fused bounding box position and dimensions
through weighted voting, based on the overlap and confidence of the bounding boxes [31].
Additionally, there is a push towards employing more adaptable techniques for defining
bounding boxes. Gaussian YOLOv3, for instance, incorporates Gaussian modeling to refine
the location information of the bounding box, incorporating mean and variance to quan-
tify the uncertainty of the location, which is then integrated into NMS [32,33]. However,
the assumption that bounding boxes adhere to a Gaussian distribution is simplistic, as their
actual distribution tends to be more arbitrary and flexible. Consequently, Generalized Focal
Loss (GFL) explores the use of arbitrary distributions in depicting bounding boxes within
convolution-based detectors, which also informs the present research [34].

2.2. End-to-End Object Detector

In contrast to CNN-based detectors, the DETR model obviates the need for post-
processing, thanks to its global self-attention architecture, which shows promise in detect-
ing large-scale or occluded targets [16]. However, the full potential of DETR has yet to
be realized compared to CNN-based detectors. This has led to the proposal of various
enhanced and generalized methods for DETR. For instance, Deformable DETR improves
convergence speed and performance on small objects by integrating a Multi-Scale De-
formable Attention Module [17]. DAB-DETR models the decoder queries of DETR using
four-dimensional anchor boxes [18]. DN-DETR fed noisy ground truth boxes directly to
the decoder, learning relative offsets through shortcut connections [19]. Group DETR intro-
duces multiple object queries and leverages a one-to-many advantage during training to
enhance detection performance [20]. Sparse-DETR reduces the computational complexity
in the encoder by utilizing sparse queries [21]. Focus-DETR achieves comparable perfor-
mance by selecting approximately 30% of foreground tokens and semantically enriching
fine-grained features [35]. RT-DETR restricts global multi-head self-attention to features
downsampled by 32 times, diminishing computational expense without degradation in
model performance [22]. Despite these improvements, the majority focus on enhancing
training methods, convergence speed, or computational efficiency, rather than addressing
dense multi-scale detection. The adoption of DETR in remote sensing faces significant
challenges due to the pronounced scale variations between pedestrians and vehicles in UAV
aerial images from the VisDrone dataset or DOTAv1.0, as well as the occlusion challenges
in crowded scenes, as illustrated in Figure 2 [36].
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Figure 2. The figure highlights the challenges in remote sensing target detection, where variations
in density and scale complicate detection. Targets may be tightly clustered or vary greatly in size,
making accurate identification difficult, especially in aerial or satellite imagery.

3. Materials and Methods
In Section 3.1, we present the overall structure of the DHQ-DETR model using a

system architecture diagram, highlighting the main components and their interactions.
Section 3.2 provides a detailed account of the distribution offset estimation method and
describes the design of the distribution focus loss (DFL), while Section 3.3 explains the
implementation of the high-quality query selection (HQQS) module. In Section 3.4 we
detail the development and function of the short-circuit training decoder and auxiliary
detection head. This organization aims to give readers a clearer understanding of the
model’s components and their collaboration to enhance object detection performance.

3.1. The Overall Structure

The overall framework of DHQ-DETR is illustrated in Figure 1. Unlike DETR, DHQ-
DETR employs a high-quality query selection module to diversify object query initialization,
thereby reducing redundant high-confidence features. Furthermore, in the decoder, instead
of directly predicting the offset of the anchor box in the Sigmoid domain, the model predicts
the probability distribution of predefined offset values and integrates these predictions to
determine the updated anchor box value. Additionally, across decoding layers, Distribution
Focal Loss (DFL) guides the distribution towards convergence to a Dirac distribution.
Finally, to enhance the convergence speed of DETR, we incorporate an auxiliary prediction
head and propose a novel positive and negative sample allocation method that aligns
classification and regression tasks. Supplementing the Hungarian algorithm, this approach
significantly improves the stability and convergence speed of model training.

3.2. Distribution-Based Modeling
3.2.1. Basic Decoder

The decoding scheme presented in Figure 3a is prevalent in most contemporary DETR-
like models. It comprises several decoding layers tasked with adjusting anchor positions.
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Initially, the cross-attention mechanism in the decoding layer decoderi+1 updates the hidden
features Fhide

i , as depicted in the following equation:

Fhide
i+1 = decoderi+1(Fhide

i , Qi, K, V), (1)

where the variable Qi represents the object query derived from the preceding layer. The de-
coding layer decoderi+1 utilizes Qi to extract local features, which subsequently inform the
update of the hidden features Fhide

i . The key and value, denoted by K and V, respectively,
are obtained from the outputs of the encoder. Following this, a feedforward network FFNdec

is employed to compute four offsets, ∆xi+1, corresponding to adjustments in the center
coordinates, length, and width. FFN is a module composed of several fully connected and
activated layers, which maps the features of the latent space into offsets of the four dimen-
sions of the anchor box. The parameters of FFNdec are shared across multiple decoding
layers, which allows for the following representation:

∆xi+1 = FFNdec(Fhide
i+1 ). (2)

The computed offset is then applied to the object query to finalize the adjustments
as follows:

Qi+1 = σ(∆xi+1 + σ̂(Qi)), (3)

where σ and σ̂ denote the sigmoid and inverse sigmoid functions, respectively.

Figure 3. (a) DETR’s decoding indirectly updates the prediction box by repeatedly updating it on
the domain of the sigmoid function, which has inconsistency issues for multi-scale objects. (b) The
distribution-based DETR decoder eliminates the need for repetitive sigmoid and inverse sigmoid
calculations by employing probability distributions to represent the deviation between predicted and
ground truth boxes, enhancing robustness in scenarios with dense occlusion.

3.2.2. Distribution-Based Decoder

The basic method is unstable because the value of ∆xi+1 is highly dependent on Qi.
For instance, when dealing with small anchor boxes, their width and height approach zero,
resulting in a larger update for ∆xi+1 due to the maximal derivative of the Sigmoid function
near zero. Conversely, updates for large anchor boxes are more stable. In conclusion,
the basic method provides inconsistent updates for multi-scale Qi, a common phenomenon
in remote sensing. Addressing this inconsistency could enhance the utilization of end-to-
end detection methods in remote sensing. Additionally, in densely overlapping scenes,
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the ambiguity of anchor box boundaries leads to inaccurate predictions of ∆x. In such
cases, direct single-parameter regression by the model lacks robustness.

To alleviate this problem, we use discrete distributions to model a single parameter.
By applying clamping, scaling, and sampling to the Sigmoid function, the continuous offset
in the range [−1, 1] is discretized into several offset categories using the following equation:

Voffset = s ·
(

MinMaxScaler
(

log
a

1− a

))
. (4)

The potential offset Voffset is generated by uniformly sampling points a on the interval
[0.5, 1). As depicted in Figure 4, the sparsity of Voffset becomes more pronounced as the offset
distance increases from 0. Here, s is the scaling factor, which varies with the feature map
size and is usually set to 1. Drawing inspiration from FCOS [5], we utilize the anchor point
and its distances to the four boundaries to describe the position of the box comprehensively.
The probabilities associated with each offset are estimated by the feedforward network
FFNdistr, and the final regression parameter values are obtained through integration. This
process, referred to as distribution decoding and illustrated in Figure 3b, can be expressed as

∆xi+1 = Softmax(FFNdistri(Fhide
i+1 )) ·Voffset. (5)

It is obtained by multiplying each offset by its predicted score and integrating. Con-
sequently, the iterative update of the object query layer during the decoding phase is
defined as

Qi+1 = Clamp(∆xi+1 + Qi), (6)

In this method, the decoder does not need to predict the update value on the Sigmoid
domain, but directly updates the box. This approach not only reduces the reliance on
sigmoid operations, but also enhances the model’s ability to interpret occluded scenes.
Although the discussion focuses on width and height offsets, the underlying concept is
equally applicable to offsets in the left, right, up, and down directions relative to the
anchor point.

Figure 4. Schematic diagram of the numerical distribution of Vo f f set. Each red scatter point represents
a potential offset, with the negative segment indicating the distance from the anchor point to the left
and upper boundaries.

3.2.3. Distribution Focal Loss

As previously mentioned, predicting a single offset is not robust, leading us to draw
inspiration from Generalized Focal Loss (GFL) [34]. Our aim is to align the discrete dis-
tribution of offsets closely with the Dirac distribution. Specifically, we seek to attain the
highest possible score at the two pre-set offsets nearest to the target offset while ensuring
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the integral sum approximates the target offset. Upon implementation, when the model
predicts a boundary with high confidence, it will resemble the Dirac distribution. Con-
versely, when predicting an uncertain or indistinct boundary, the distribution will resemble
a normal distribution because the model has learned that the offset should be near the most
accurate location. The uncertainty at both extremes can be counterbalanced by positive and
negative adjustments, thereby maintaining a relatively stable overall integral value.

In light of this, we introduce the Distribution Focal Loss (DFL), which is designed to
facilitate the convergence of the distribution towards the Dirac distribution. We denote the
true offset as ∆xgt, with its neighboring discrete values to the left and right represented
by ∆x−gt and ∆x+gt, respectively. By computing the probabilities for predicting all possible
discrete points of ∆x, we employ cross-entropy loss to refine the adjustment values of the
target boxes. The DFL can be formulated as follows:

DFL(∆x, ∆xgt) = (∆xgt − ∆x−gt)×CE(∆x, ∆x+gt) + (∆x+gt − ∆xgt)×CE(∆x, ∆x−gt), (7)

where CE denotes the cross-entropy loss. The Distribution Focal Loss serves to supervise
the offset between the decoding layers of the boxes, thereby effectively achieving the goal
of residual learning in stacked decoding layers. Furthermore, this approach unifies offsets
and object queries into a singular numerical space, in contrast to the basic method.

In Figure 5, we display various distribution scenarios that emerged during the training
phase of the model. The probability density function in the first row exhibits a close
alignment with the ground truth value, resembling a Dirac function in shape. In the second
row, the model’s localization appears less certain, resulting in object boundary offsets
tending to avoid larger values. This behavior contributes to enhancing the robustness of
the model, particularly when combined with the use of the Hungarian algorithm.

Figure 5. Schematic diagram of the offset distribution. Assuming that regression parameters adhere
to the Dirac distribution, we represent the object boundary offset as the integral of the distribution to
bolster the model’s capability in localizing objects within occluded scenes.

3.3. High-Quality Query Selection Module
3.3.1. Basic Method

In DETR, object queries are conventionally represented as boxes within the image
plane. These boxes are initialized by merging static anchor boxes with learned offsets.
The initialization process is as follows: initially, a linear projection layer Wscore is applied to



Remote Sens. 2025, 17, 514 9 of 20

map the feature dimension to the number of categories present in the dataset, facilitating
the identification of the maximum response value from the encoder’s output feature fenc.

fscore = Max( fenc ·Wscore). (8)

Subsequently, the top-k encoder features with the highest response values are selected,
where index denotes the indices of these top-k points within fenc.

Index = topK( fscore). (9)

We utilize the calculated index to retrieve the selected feature f
′
enc, referred to as a

token, and initialize the object query using this token,

Q0 = σ(FFNenc( f ′enc) + σ̂(Astatic)), (10)

where FFNenc denotes a feedforward network responsible for learning the offset between
anchors and the ground truth, and Astatic represents the statically initialized anchors
based on the token’s image position. Each Astatic consists of four floating-point numbers
ranging from 0.0 to 1.0, indicating the anchor box’s central position, width, and height.
The functions σ and σ̂ represent the sigmoid and inverse sigmoid operations, respectively.
The resulting initialized object query is expressed as Q0. The fundamental approach priori-
tizes the response scores of local features across all categories, focusing on the selection of
foreground features. However, in remote sensing applications, numerous objects are often
present within a single image. Without increasing the number of object queries, features
corresponding to small-scale or occluded objects may be underrepresented, leading to
missed detections. Furthermore, even with an adequate number of object queries, inac-
curacies may arise during the subsequent matching process performed by the Hungarian
algorithm. DETR employs the Hungarian matching algorithm to establish an end-to-end
one-to-one correspondence between prediction and label boxes. It constructs a cost matrix
for bipartite matching by calculating the matching cost for all pairs of prediction and label
boxes. Let y = {(cj, bj)}N

j=1 denote the set of true label boxes, where cj and bj represent the

category and coordinates of label box j, respectively. Similarly, ŷ = {(ĉi, b̂i)}nobj

i=1 is the set of
prediction boxes, with ĉi and b̂i representing the category and coordinates of prediction
box i. The cost for matching prediction box i with label box j is given by

Cost(i, j) = Lcls(ĉi, cj) + λboxLbox(b̂i, bj) + λiouLiou(b̂i, bj),

where λbox and λiou are weight hyperparameters for the bounding box and IoU losses,
typically set to λbox = 5 and λiou = 2. To form a square cost matrix, nobj − N columns
of zero vectors are added, representing pseudo-labels that do not affect the final match-
ing result. The matching process, as shown in Figure 6, involves assigning one-to-one
correspondences to positive samples (e.g., rows marked in blue).

As depicted in Figure 6, the cost matrix is populated by calculating the discrepancies
between predicted values and actual ground truth. Each ground truth is optimally matched
with a prediction to minimize the total cost, which includes both classification and regres-
sion losses. The cost function’s structure, which combines classification and regression
losses, can lead to an imbalance between these processes. Object queries linked to objects
with indistinct features are often discarded due to classification challenges, potentially
resulting in incorrect matching with larger, neighboring objects.
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Figure 6. Cost matrix schematic diagram. This figure illustrates the calculation and population of
all possible losses between predictions and ground truth into a square matrix, with the Hungarian
algorithm identifying the minimal one-to-one matching solution. Note: the values in the figure are
randomly generated and are for illustrative purposes only, not representative of experimental data.

3.3.2. HQQS Module

In remote sensing detection of dense targets, noise in the image can lead to low
response scores, potentially causing the elimination of valid object queries in the initial
phase. During subsequent decoding, these queries may be incorrectly matched with nearby
simple targets, causing further learned and updated offsets. This mismatch primarily arises
because the conventional method initializes object queries based on response scores, which
produce numerous redundant object queries for large objects with prominent features.
When objects are densely packed and anchor boxes overlap, there is a risk of erroneous
matching with smaller targets. In conclusion, the conventional method exhibits limited
interaction between classification and regression tasks.

To address the identified inconsistency in the query selection process, we have devel-
oped a High-Quality Query Selection (HQQS) module, which is designed to improve the
overall effectiveness of query selection. Our module employs a feedforward network to
process all input tokens, xall , as represented by the following equation:

Xbox = σ(FFNenc(xall) + σ̂(anchorstatic)). (11)

Following this, we utilize Non-Maximum Suppression (NMS) to simultaneously
consider the uniqueness of predicted positions and their associated confidence levels,

Q0 = TopK(QS(Xbox, Xscore)). (12)

The final step involves selecting the top K tokens from the retained boxes to initialize
the query. It is important to note that within the HQQS module, QS is implemented with
a class-agnostic approach, using an Intersection over Union (IoU) filtering threshold of
0.8. This module operates independently of the post-processing NMS used in one-stage
detectors, adhering to a fixed computational flow aimed at eliminating redundant high-
confidence features. This strategy enhances query diversity and improves the detection
accuracy for objects that are partially obscured or of small scale. We have deliberately cho-
sen lenient criteria for suppression to avoid incorrect suppression in challenging scenarios,
while simultaneously ensuring the computational efficiency of the module.

3.4. Short-Circuit Training Decoder

The lack of accurate initial positions in object queries presents a significant chal-
lenge for optimizing the decoding layer and exacerbates the inherent instability of using
the Hungarian algorithm for positive sample assignment. To address this, we have fil-
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tered object queries to remove redundancy, ensuring that challenging objects are also
correctly initialized.

The Hungarian algorithm employed by DETR is limited in generality and robustness,
as it relies solely on a manually designed weighted sum of the prediction and label losses
for the classification and regression tasks. Additionally, DETR guarantees an equal number
of positive samples and labels in each batch of training data, whereas staged detection
algorithms typically have hundreds of positive samples per batch. This discrepancy hinders
the convergence and learning process of the decoder. Beyond DETR, developing an accurate
matching mechanism to support the Hungarian algorithm can improve the stability and
convergence speed of the original method.

Drawing inspiration from Task-aligned One-stage Object Detection [24], we have
incorporated additional auxiliary detection heads and innovative assignment strategies
into our model. These enhancements facilitate a one-to-many matching between the
encoder’s predictions and ground truth labels. Specifically, the quality of the predicted
bounding boxes is assessed based on the confidence of the correctly predicted class as
well as the IoU metric, thereby yielding more precise soft labels. For instance, a prediction
with inaccurate localization will have its classification label correspondingly adjusted
downwards. A comprehensive description of the assignment process is presented in
Algorithm 1. Line 3 of the algorithm ensures that the object queries remain within the
bounds of the annotated box. Lines 4 and 5 evaluate the accuracy of the object query based
on Intersection over Union (IoU), selecting the top k entries. Lines 6 and 7 calculate the
prediction quality for two tasks, IoU and classification confidence, and integrate these
to formulate the Align metric. Lines 8 and 9 apply the Align metric to the original one-
hot label to establish an accurate positive and negative sample matching mechanism for
subsequent training.

Algorithm 1 Task-aligned assignment algorithm

Input:
- Gb: a set of ground truth boxes
- Gc: a set of class labels
- Pb: a set of predicted boxes
- Pc: a set of predicted class scores
- Ap: a set of static anchor points
- k: a hyperparameter with a default value of 10
- α: a hyperparameter with a default value of 1
- β: a hyperparameter with a default value of 6

Output:
- Tb: a set of target boxes
- Tc: a set of target scores

1: Initialize the output sets Tb ← ∅ and Tc ← ∅.
2: for each ground truth gb ∈ Gb and corresponding gc ∈ Gc do
3: cb ← Select candidates from Pb where Ap is within gb based on L2 distance.
4: Compute IoU between cb and gb: Dg = IoU(cb, gb).
5: ck ← Select the top k candidates for gb from cb according to Dg.
6: Let ck

c and ck
d denote the predicted scores and IoU between ck and gb, respectively.

7: Align metric← ck
c

α × ck
d

β
;

8: C1−hot ← get_one_hot_labels(ck, gc);
9: Cc ← C1−hot ×Align metric;

10: Tb ← Tb ∪ Cb;
11: Tc ← Tc ∪ Cc;
12: end for
13: return Tb, Tc.
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Subsequent to this step, the need for Hungarian matching is obviated, and loss calcu-
lation is performed on this new branch,

L = Lori + λLaux, (13)

where the loss is separated into two components: the original Hungarian matching loss and
the auxiliary loss. The scalar λ represents a balance parameter, and our findings indicate
that setting it to 1 yields favorable results. Furthermore, the loss can be decomposed into
smooth L1 loss [37], Generalized Intersection over Union (GIoU) loss [38,39], and cross-
entropy loss, with the following weighting scheme:

L = 5Lbox + 2Liou + Lcls. (14)

Table 1. Comparison of model performance on the COCO validation set at input size 800 × 1333
pixels. DHQ-DETR achieves a 0.6% increase in AP compared to baseline.

Model Epochs AP AP50 AP75 APS APM APL Params GFLOPS

DETR-R50 [16] 500 42.0 62.4 44.2 20.5 45.8 61.1 41M 86
Anchor DETR-R50 [40] 50 42.1 63.1 44.9 22.3 46.2 60.0 39M –
Conditional DETR-R50 [41] 50 40.9 61.8 43.3 20.8 44.6 59.2 44M 90
DAB-DETR-R50 [18] 50 42.2 63.1 44.7 21.5 45.7 60.3 44M 94
DN-DETR-R50 [19] 50 44.1 64.4 46.7 22.9 48.0 63.4 44M 94
Align-DETR-R50 [42] 50 46.0 64.9 49.5 25.2 50.5 64.7 42M 94
RT-DETR-R50 [22] 72 53.1 71.3 57.7 34.8 58.0 70.0 42M 136
YOLOv5 L [10] 300 49.0 67.3 – – – – 46M 109
YOLOv7 L [11] 300 51.2 69.7 55.5 35.2 55.9 66.7 36M 104
YOLOv8 L [12] 300 52.9 69.8 57.5 35.3 58.3 69.8 43M 165

DETR-R101 [16] 500 43.5 63.8 46.4 21.9 48.0 61.8 60M 152
Anchor DETR-R101 [40] 50 43.5 64.3 46.6 23.2 47.7 61.4 58M –
Conditional DETR-R101 [41] 50 42.8 63.7 46.0 21.7 46.6 60.9 63M 156
DAB-DETR-R101 [18] 50 43.5 63.9 46.6 23.6 47.3 61.5 63M 174
DN-DETR-R101 [19] 50 45.2 65.5 48.3 24.1 49.1 65.1 63M 174
Align-DETR-R101 [42] 50 46.9 65.5 50.9 25.6 51.9 66.0 61M 174

DETR-DC5-R50 [16] 500 43.3 63.1 45.9 22.5 47.3 61.1 41M 187
Anchor DETR-DC5-R50 [40] 50 44.2 64.7 47.5 24.7 48.2 60.6 39M 151
Conditional DETR-DC5-R50 [41] 50 43.8 64.4 46.7 24.0 47.6 60.7 44M 195
DAB-DETR-DC5-R50 [18] 50 44.5 65.1 47.7 25.3 48.2 62.3 44M 202
DN-DETR-DC5-R50 [19] 50 46.3 66.4 49.7 26.7 50.0 64.3 44M 202
Align-DETR-DC5-R50 [42] 50 48.3 66.7 52.5 29.7 52.8 65.9 42M 200

DETR-DC5-R101 [16] 500 44.9 64.7 47.7 23.7 49.5 62.3 60M 253
Anchor DETR-DC5-R101 [40] 50 45.1 65.7 48.8 25.8 49.4 61.6 58M –
Conditional DETR-DC5-R101 [41] 50 45.0 65.5 48.4 26.1 48.9 62.8 63M 262
DAB-DETR-DC5-R101 [18] 50 45.8 65.9 49.3 27.0 49.8 63.8 63M 282
DN-DETR-DC5-R101 [19] 50 47.3 67.5 50.8 28.6 51.5 65.0 63M 282
Align-DETR-DC5-R101 [42] 50 49.3 67.4 53.7 30.6 54.3 66.4 61M 280

DHQ-DETR 72 53.7 71.6 57.9 34.7 58.4 70.6 43M 154
The bold data represent the best results of different evaluation indicators.

4. Results
Dataset and evaluation metrics. Our experimental analysis was conducted using

three benchmark datasets: DOTAv1.0, VisDrone, and MS COCO 2017 [36,43,44]. These
datasets span both natural image (COCO) and remote sensing image domains (DOTA
and VisDrone), offering a comprehensive evaluation of our method’s versatility. The MS
COCO 2017 dataset includes 115,000 training images and 5000 validation images, featuring
80 object categories commonly seen in daily life. Objects in COCO are typically larger
relative to the image resolution, with more structured backgrounds and less scale variation
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compared to remote sensing datasets. In contrast, DOTAv1.0 and VisDrone represent
challenging remote sensing tasks. DOTAv1.0 focuses on aerial imagery, characterized by
large-scale scenes with diverse object scales, dense distributions, and complex, unstruc-
tured backgrounds. VisDrone, captured from drone perspectives, emphasizes dense and
overlapping small objects, such as vehicles and pedestrians, within cluttered urban envi-
ronments. Both datasets highlight the difficulties of small object detection, high-density
scenarios, and intricate backgrounds, which are less prominent in COCO. We evaluate
performance using the standard Average Precision (AP) metric, with AP50 denoting AP
at an IoU threshold of 50%, and AP representing the average AP across IoU thresholds
ranging from 0.5 to 0.95. By leveraging these datasets, we validate our method’s ability
to adapt to both natural and remote sensing domains, demonstrating robust performance
across diverse detection challenges.

Table 2. Results on the DOTAv1.0 test set. Our model achieves a 1.3 increase in AP over the baseline.
✓indicates that the corresponding method or data was used, while × indicates that it was not used.

Model Extra Data AP AP50 AP75

YOLOv5 (2020) [10] × 49.0 73.0 50.9
YOLOv8 (2023) [12] × 52.9 74.5 56.1
DETR (2020) [16] × 46.7 72.3 49.5
DN-DETR (2022) [19] × 53.1 78.2 57.5
RT-DETR (2023) [22] × 53.0 79.0 57.8

DecoupleNet D2 (2024) [45] ✓ - 78.0 -
PP-YOLOE-R-l (2022) [46] ✓ - 80.0 -
MAE + MTP (2024) [47] ✓ - 80.7 -
LSKNet (2024) [48] ✓ - 81.6 -
Strip R-CNN (2025) [49] ✓ - 82.3 -

DHQ-DETR × 54.3 81.5 58.9
The bold data represent the best results of different evaluation indicators.

Implementation details. We adopt RT-DETR as our baseline model. During training,
the loss computed in the short-circuit training decoder is exclusively used to update the
decoder’s parameters, with the gradients for the backbone and encoder being discarded.
The training involves the use of four NVIDIA RTX A6000 GPUs for parallel processing.
The AdamW optimizer is utilized with a learning rate of 1 × 10−3, a momentum of 0.937,
and a weight decay of 5 × 10−4. The training process lasts for 72 epochs on the COCO
dataset, accompanied by a linear learning rate decay that reduces it to 10% of the initial
value. Unless otherwise stated, the decoder stage is initialized with 300 queries, and the
model’s training parameters remain unchanged throughout the experiments.

4.1. Main Results

In the present section, we undertake an empirical analysis to assess the efficacy
and generalization ability of the DHQ-DETR model. It should be noted that all models
involved in this research process input images by resizing them to a consistent dimension of
800 × 1333 pixels. We present a comparative evaluation of several state-of-the-art methods
on the frequently utilized COCO dataset for object detection in Table 1. Our empirical
results indicate a significant improvement of 0.6 in AP on the COCO validation set. This
advancement can be ascribed to the optimized offset distribution, which enhances the
quality of representation, refines the precision of object localization, and consequently
achieves superior performance metrics.
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DOTAv1.0 is a dataset designed for remote sensing target detection, characterized by
challenges such as high target density and significant scale variations. In Table 2, compara-
tive analysis on the benchmark test set revealed that the enhanced method demonstrated
greater robustness and higher detection accuracy under these complex conditions. Further-
more, when compared with the most advanced detection methods, the proposed method
achieved performance levels nearly equivalent to state-of-the-art techniques without utiliz-
ing additional data. The Visdrone dataset, which consists of drone aerial imagery featuring
dense objects, poses a substantial challenge for detectors in terms of dense multi-scale
detection. For this investigation, we evaluated detection algorithms specifically enhanced
for multi-scale detection, resulting in a notable 1.4-point increase in AP on the test set
(Table 3). Our experimental data were derived from the competitive results presented by
Zhu et al. [36]. It is evident from our findings that the DETR does not exhibit a clear strength
in detecting small objects, whereas our enhanced method significantly outperforms it in
this regard.

Table 3. Results on the Visdrone test set. Our model achieves a 1.4-point increase in AP over the
baseline and demonstrates enhanced performance compared to models optimized for the object scale
characteristics of Visdrone.

Model AP AP50 AP75

Cascade R-CNN [1] 16.0 31.9 15.0
HTC-drone [50] 22.6 45.2 20.0
Libra-HBR [51] 25.6 48.3 24.0
HRDet+ [52] 28.4 54.5 26.1
S + D [1,53] 28.6 51.0 28.3
ACM-OD [3,54] 29.1 54.1 27.4
DPNet [1,55] 29.6 54.0 28.7
RRNet [56] 29.1 55.8 27.2
RetinaNet [7] 11.8 21.3 11.6
CornerNet [57] 17.4 34.1 15.8
YOLOv3 [58] 17.8 37.3 15.0
TridentNet [59] 22.5 43.3 20.5
CNAnet [60] 26.4 48.0 25.5
EHR-RetinaNet [7] 26.5 48.3 25.4
CN-DhVaSa [61] 27.8 50.7 26.8

DETR (2020) [16] 23.1 39.8 25.7
DN-DETR (2022) [19] 31.4 51.6 26.8
RT-DETR (2023) [22] 31.0 50.2 26.9
CZ Det (2023) [62] 32.2 54.9 31.2

DHQ-DETR 32.4 55.4 30.0
The bold data represent the best results of different evaluation indicators.

4.2. Ablation Studies
4.2.1. Distribution-Based Location Offset

In the ablation study on the distribution-based location offset, we explored various
sampling levels of distribution discretization. The results indicate an improvement of 0.7%
in the AP when the distribution representation is combined with DFL. The details are
presented in Table 4.

To rigorously assess the impact of the distribution-based location offset on the model’s
positioning accuracy, an ablation study was meticulously designed. We employed non-
uniform sampling within the range of [−0.5, 0.5] for the offset, with the “Sampling level”
denoting the number of sampling points. The model was trained uniformly for 36 epochs.
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As indicated in Table 4, the model incorporating the distribution-based location offset
retained satisfactory detection efficacy even in the absence of the Distance-Friendly Loss
(DFL). However, the addition of DFL enhanced the AP by 0.7%. This enhancement can be
attributed to the fact that DFL can promote explicit residual learning between decoding
layers, which makes the predicted discrete distribution converge to the Dirac distribution.
Therefore, the model has stronger explanatory power when dealing with fuzzy boundaries.

Table 4. Results of ablation study on distribution-based location offset. ✓indicates that the corre-
sponding method or data was used, while × indicates that it was not used.

Model Sampling Level DFL Epochs AP AP50

RT-DETR [22] × × 36 48.7 67.1
DHQ-DETR 16 × 36 48.5 66.6
DHQ-DETR 32 × 36 48.8 67.0
DHQ-DETR 64 × 36 48.7 67.1
DHQ-DETR 16 ✓ 36 49.1 67.3
DHQ-DETR 32 ✓ 36 49.4 67.5
DHQ-DETR 64 ✓ 36 49.3 67.3
The bold data represent the best results of different evaluation indicators.

4.2.2. HQQS Module

An in-depth ablation study was conducted on the HQQS module, and the quantitative
results are presented in Table 5. We compared three methods: (1) Vanilla, which utilizes
standard cross-entropy as the classification loss; (2) IoU-aware, which integrates IoU
into the classification loss to enhance the selection of queries; and (3) HQQS module,
which considers IoU during the query selection phase to initialize features with spatial
correspondence. We evaluated two metrics on the COCO validation set: the proportion of
encoder feature classification scores exceeding 0.5 (Propcls), and the mean maximum IoU
between encoder-predicted boxes and ground-truth instances (MeanIoU). The findings
demonstrate that the HQQS module not only matches the Propcls performance of the IoU-
aware method, but also significantly improves the spatial correspondence of initialized
queries. The incorporation of the HQQS module led to a 0.8% increase in AP.

Table 5. Results of the ablation study on the HQQS module. The symbol Propcls denotes the propor-
tion of selected query feature scores greater than 0.5, while MeanIoU represents the average IoU with
instances that have the highest IoU. The HQQS module improves the precision and comprehensive-
ness of object-based queries by 10%. ✓indicates that the corresponding method or data was used,
while × indicates that it was not used.

Model IoU-Aware [63] HQQS AP Propcls MeanIoU

RT-DETR [22] × × 47.9 0.35 0.47
RT-DETR [22] ✓ × 48.7 0.82 0.45
RT-DETR [22] ✓ ✓ 49.5 0.79 0.58
The bold data represent the best results of different evaluation indicators.

4.3. Assignment Strategies

In the decoder, the employment of an auxiliary detection head alongside a judicious
assignment strategy facilitates a one-to-many mapping between object queries and ground
truths. Nonetheless, there is considerable variation in the assignment strategies employed
by different models. For example, RetinaNet relies on anchors and anchor-based offsets,
Faster R-CNN uses region proposal networks, ATSS incorporates statistical measures such
as mean and variance to distinguish positive and negative samples, and FCOS focuses
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on the central position of the bounding box. Our approach utilizes the same detection
head as YOLOv8. To gauge the effectiveness of our proposed assignment strategy, we
conducted a comparative experiment. Table 6 illustrates that the adoption of our addi-
tional assignment strategies, as opposed to the Vanilla approach, can bolster the positive
supervision of the decoder, thereby enhancing performance. Notably, our strategy yielded
the most substantial improvement in AP, with a 2.1% increase, by effectively aligning
classification and regression tasks and providing more precise segmentation of positive
and negative samples.

Table 6. Results of the ablation study on assignment strategies. Our detection head and assign-
ment strategy demonstrated the most favorable outcomes, improving the AP by 2.1% compared to
the baseline.

Assignment Strategies Epochs AP AP50

Vanilla 36 48.7 67.1
RetinaNet [7] 36 49.6 67.9
Faster R-CNN [3] 36 49.9 68.9
FCOS [5] 36 50.1 68.6
ATSS [64] 36 50.4 68.9
Ours 36 50.8 69.0
The bold data represent the best results of different evaluation indicators.

5. Discussion
The DHQ-DETR model effectively tackles the intricate challenge of detecting dense

multi-scale objects in remote sensing imagery, demonstrating impressive performance
across specific datasets. However, this approach has several limitations that require further
investigation. Addressing these limitations could pave the way for future research aimed
at improving the model’s robustness and applicability.

5.1. Limitations

Despite advancements in the convergence speed of DHQ-DETR and enhanced de-
tection performance of DETR for densely populated small targets, which expand the
applicability of end-to-end detection methods in remote sensing, several limitations persist.
A major challenge in applying natural image object detection techniques to remote sensing
imagery is the unique characteristics of these datasets, including resolution constraints
and complex environmental factors. Specifically, scenes with vast areas and small objects
pose significant difficulties for natural object detection models, which often struggle to
capture fine-grained details. This limitation frequently leads to missed detections or false
positives for smaller targets. To address these challenges, divide-and-conquer strategies are
commonly employed. For instance, when processing datasets like DOTAv1.0, large 8k × 8k
images are typically cropped into smaller sections. This approach helps fit the data within
memory constraints while preserving image details. However, although these strategies
alleviate computational limitations, they inadvertently disrupt the global spatial context—a
crucial factor for accurately identifying small or densely packed objects in remote sensing
applications. Moreover, even though DHQ-DETR demonstrates outstanding performance
on datasets such as COCO val2017, DOTAv1.0, and Visdrone, its generalizability to untested
datasets or real-world conditions remains unaddressed. Additional challenges include
managing occlusions, variable illumination, and diverse object appearances, which are par-
ticularly significant in remote sensing scenarios. Extreme environmental conditions, such
as overlapping objects and inconsistent lighting, further impede detection performance,
highlighting the need for robust and adaptive solutions tailored to the unique requirements
of remote sensing imagery.
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5.2. Future Research Directions

To address these limitations, future research should focus on several strategies. Opti-
mization through model simplification or pruning could reduce computational demands
without significant performance trade-offs, facilitating deployment in resource-constrained
environments. Techniques such as transfer learning and domain adaptation could enhance
the model’s robustness and adaptability across diverse and unseen datasets. To better
handle highly occluded and variable scenes, further architectural modifications and data
augmentation techniques should be explored. Scalability issues might be mitigated by
investigating hierarchical or multi-resolution processing methods, thereby enhancing the
model’s capability to handle large, high-resolution images typical in remote sensing. Finally,
integrating complementary data sources, such as LiDAR or hyperspectral imaging, could
provide additional contextual information, potentially improving detection accuracy in
challenging scenarios. In conclusion, while the DHQ-DETR model represents a significant
advancement in dense multi-scale object detection, targeted research addressing its limita-
tions could further enhance its utility and application, leading to broader adoption across a
range of remote sensing tasks.

6. Conclusions
This study attempts to address the complex challenges of dense multi-scale object

detection in aerial images using a distribution-based box offset modeling approach in the
remote sensing field. We introduce the Distribution Focus Loss (DFL) to facilitate residual
learning between decoded outputs and ground truth labels, thereby enhancing the model’s
ability to accurately localize objects in densely occluded scenes. Additionally, to initialize
object queries with precise spatial relationships, we present a High-Quality Query Selection
(HQQS) module. To accelerate convergence and improve decoder performance, we employ
an auxiliary head with an innovative assignment strategy that enables one-to-many match-
ing during training, providing additional positive supervision. Our experimental results
confirm the effectiveness of the proposed DHQ-DETR model, achieving an AP of 53.7% on
the COCO val2017 dataset, 54.3% on the DOTAv1.0 test set, and 32.4% on the Visdrone test
set, surpassing other existing detectors of similar scale.
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