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Abstract: Vegetation anomalies are frequently occurring and may greatly affect ecological
functions. Many near-real-time (NRT) detection methods have been developed to detect
these anomalies in a timely manner whenever a new satellite observation is available.
However, the undisturbed vegetation conditions captured by these methods are only ap-
plicable to a particular pixel or vegetation type, resulting in a lack of universality. Also,
most methods that use single characteristic parameter may ignore the multi-spectral ex-
pression of vegetation anomalies. In this study, we developed a universal framework to
simultaneously detect various vegetation anomalies in NRT from Landsat observations.
Firstly, Landsat surface reflectance data from the Benchmark Land Multisite Analysis and
Intercomparison of Products (BELMANIP) sites were selected as a reference vegetation
dataset to calculate the normalized difference vegetation index (NDVI) and the normalized
burn ratio (NBR), which describe vegetation conditions from the perspectives of greenness
and moisture, respectively. After the elimination of cloud-contaminated pixels, the high-
quality NDVI and NBR data over the BELMANIP sites were further normalized in order to
remove the differences in the growth of the varying vegetation. Based on the normalized
NDVI and NBR, kernel density estimation (KDE) was used to create a universal measure of
undisturbed vegetation, which described the uniform spectral frequency distribution of
different undisturbed vegetation with a series of accumulated probabilities on a monthly
basis. Whenever a new Landsat observation is collected, the vegetation anomalies are
determined according to the universal measure in NRT. To demonstrate the potential of
this framework, three study areas with different anomaly types (deforestation, fire event,
and insect outbreak) in distinct ecozones (rainforest, coniferous forest, and deciduous
broad-leaf forest) were used. The quantitative analyses showed generally high overall
accuracies (>90% with the kappa > 0.82). The user accuracy for the fire event and the
producer accuracy for the earlier insect infestation were relatively lower. The accuracies
may be affected by the complexity of the land surface, the quality of the Landsat image,
and the accumulated probability threshold.

Keywords: anomaly detection; near-real-time; kernel density estimation; Landsat

1. Introduction
Increasingly active human activities have become one of the primary drivers of eco-

logical environmental changes [1]. In addition, surface discrete events such as locust
plagues [2], wildfires [3], and floods [4] are occurring with greater frequency in the context
of global warming and frequent climate extremes [5]. As one of the major components of
the land surface, forest and other plants play a vital role in the carbon and water cycles.
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In this study, vegetation anomalies are defined as instances of poor growth or even cover
loss due to human or natural factors such as deforestation [6,7], fire events [8,9], insect
outbreaks [10,11], hurricanes [12], and so on. Large-scale and long-duration vegetation
anomalies can have a detrimental impact on the stability of ecosystem services, as they
impede the photosynthesis and transpiration processes. Consequently, it is of paramount
importance to detect these vegetation anomalies in an accurate and timely manner [13].

Remote sensing has been the primary technology employed in vegetation monitoring
for decades. Numerous algorithms have been devised to detect anomalies in vegetation
from satellite observations. Early methods commonly detect anomalies by single image
analysis or bi-temporal differences. For example, a threshold was set for an anomaly-
sensitive index on a single image to detect the European spruce bark beetle attack [14].
In the case of identifying the burned pixels in the western boreal of Canada, a threshold
was set for the discrepancy between pre-fire and post-fire images [15]. In addition to the
use of threshold judgment, classification methods are also employed. For example, the
change areas in the northern forest of New England were identified by comparing the
bi-temporal classification results [16]. Based on the no-forest change and forest change
training samples, the forest anomaly maps in the Cascade Range of Oregon were created
by directly classifying the paired bi-temporal images [17,18]. Although these methods are
capable of accurately detecting, they are highly reliant on the region’s specific characteristics
when determining the threshold value and collecting training samples.

Applying cloud-free time series stacks in vegetation anomaly detection has been ex-
tensively studied over the past decade. The Vegetation Change Tracker (VCT) method [17]
has demonstrated high accuracy in detecting harvest, fire, and urban development in
the United States. The method calculates an integrated forest z-score (IFZ) for the years
being monitored based on the forest samples. Whether the forest has changed can be
discovered by the number of consecutive high or low IFZ values. Algorithms such as
Landsat-based detection of Trends in Disturbance and Recovery (LandTrendr) [19] and
Detecting Breakpoints and Estimating Segments in Trend (DBEST) [20] segment the trend
series into a sequence of linear fitted straight lines. Breakpoints connecting neighboring
segments are regarded as potential vegetation cover changes. LandTrendr is designed
for Landsat and performed well on several hundred points across western Oregon and
Washington in the United States. DBEST, in contrast to LandTrendr, is not constrained by
any specific sensor or spatio-temporal scale. Other methods, such as Breaks for Additive
Season and Trend (BFAST) [21], use an additive decomposition model to decompose the
entire time series into trend, seasonal, and residual components and detect breakpoints
in the first two components. Smith et al. [22] utilized the BFAST method in tropical dry
forest deforestation in Mexico and Costa Rica. The Bayesian Estimator of Abrupt change,
Seasonal change, and Trend (BEAST) method [23] is similar to BFAST. The difference is that
the BEAST method integrates all potential decomposition models and offers an anomaly
probability. These algorithms are effective when capturing vegetation dynamics over a long
period, but they aim to reconstruct anomaly history, which means retrospectively detecting
anomalies in an existing historical period [13]; thus, they are lacking instantaneity.

Recently, researchers have devoted greater attention to the near-real-time (NRT) detec-
tion of vegetation anomalies from remote sensing data. NRT detection methods emphasize
recognizing vegetation anomalies from each new satellite observation. This is significant in
timely grasping anomaly extents and releasing early warnings to prevent further loss [24].
Parametric approaches are dominant in the relevant literature. The fundamental principle
of these approaches is commonly that using parametric functions such as cosine or sine,
double logistic or harmonic cycles to fit a stable periodic time series for each pixel in order
to capture the undisturbed vegetation condition [25–30]. When a new satellite image is
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collected, the anomaly is identified by the residual between the new observation and the
prediction of the fitted time series. Representative approaches are as below: BFAST Moni-
tor [22,31] is a modification of BFAST and has been used to monitor drought disturbance
in NRT in Somalia. Continuous Change Detection and Classification (CCDC) enables
NRT anomaly detection although it is also applicable for the above retrospective detec-
tion [32]. Modified from CCDC, NRT-CCDC [33] improves data input, anomaly judgment
criterion and anomaly probability offering. The COntinuous Monitoring of Land Distur-
bance (COLD) [30] also improves upon the CCDC by optimizing data input and filtering
out irrelevant changes. Moreover, Stochastic Continuous Change Detection (S-CCD) [13]
improved upon the COLD algorithm by incorporating the state space theory to fit the
temporal dynamics of satellite observations in a recursive manner, thereby enhancing the
accuracy and computational efficiency of NRT anomaly detection.

The nonparametric kernel density estimation theory was firstly employed in the field
of vegetation anomaly detection by Estay et al. [34]. It was integrated into the R package
‘npphen’, which has been examined in insect outbreak cases [35,36] and drought evaluation
of a wildfire event [37]. This method is appropriate for both NRT and retrospective
detection. For each pixel in the study area, the ‘npphen’ package allows for the estimation
of the spectral frequency distribution within one undisturbed phenological annual cycle
from its stable historical records. Then, anomalies can be determined according to the new
observation’s position relative to this distribution. This method is free from the errors that
arise from time series fitting due to a few outliers and missing data. Currently, the Anomaly
Vegetation Change Detection (AVOCADO) algorithm [26] provides an enlightening idea
of NRT continuous monitoring based on the ‘npphen’ package. Differentiating itself from
‘npphen’, the historical records in AVOCADO are derived from the neighboring pixels that
share the same vegetation type as the study area. The AVOCADO attempts to estimate a
unified phenological distribution for the entire study area in advance; therefore, there is
no need to set aside and process the historical baseline for each pixel during the detection
process, which significantly accelerates the detection process. The performance of the
AVOCADO algorithm was evaluated in three tropical forest ecosystems with anomalies
such as selective logging and shifting agriculture.

Parametric approaches may not be optimal for semi-arid and arid ecosystems, where
vegetation phenology cycles cannot be represented by regular annual waves [38]. This is
due to the fact that mathematical functions with explicit seasonal components may not be
appropriate for such ecosystems. In addition, they are computationally expensive and may
be heavily dependent on the quality and speed of accurate fitting [13,39]. In contrast, the
‘npphen’ package is more flexible and can be applied to any ecosystem, as it captures the
vegetation phenology directly from statistical estimation. However, it is still necessary to
estimate the undisturbed vegetation condition separately at the pixel scale, in a manner
analogous to the parametric approaches. Although the AVOCADO algorithm represents a
significant advance over the ‘npphen’ package, utilizing a reference vegetation pixel dataset
to create an undisturbed vegetation distribution for a specific study area, there are still
some limitations. Firstly, the representative reference vegetation must be re-selected when
applied to other areas with different vegetation types. Moreover, the detection process will
be laborious when applied to larger areas with diverse vegetation types. In such instances,
it is necessary to determine the specific vegetation type for each pixel and to create the
undisturbed distribution for each vegetation type [26]. In essence, the current methods
are inadequate for some special ecosystems. Furthermore, the undisturbed vegetation
conditions captured by these methods vary from pixels and vegetation types, which limit
their universality.
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In terms of variable input, instead of directly utilizing multi-band spectral re-
flectance [30,32], a large part of current algorithms just employ single index related to vege-
tation condition, like the NDVI [27,40], the EVI [36,39,41], the RGI [25], the NDMI [26,42],
etc. In fact, some studies reported that combining multiple bands or indices can provide
more comprehensive information to realize accurate anomaly recognition in contrast to us-
ing just a single band or index, because vegetation anomalies usually have a multi-spectral
expression [32,43,44].

This study proposes a universal framework for vegetation anomaly detection (UFVAD)
to robustly detect anomalies in NRT from Landsat observations. UFVAD uses vegetation
parameters calculated from observations over the BELMANIP sites. It develops a universal
measure of undisturbed vegetation via kernel density estimation (KDE). This measure
monthly describes the undisturbed vegetation distributions with a series of accumulated
probabilities. Based on this measure, UFVAD can detect anomalies in NRT whenever a new
observation is available. To evaluate the performance of UFVAD, it was applied to detect
various vegetation anomalies (deforestation, fire event, and insect outbreak) in three forest
areas with different ecozones.

2. Study Area and Landsat Data
2.1. Study Area

Three study areas were selected according to their ecozones and vegetation anomaly
types (shown in Figure 1). The first area (denoted by SA) is located in Guaviare, South-
eastern Colombia. The most important vegetation type in Guaviare is the tropical humid
forest. Driven by armed groups’ illegal occupation, grazing, road construction and other
factors, Guaviare became one of the departments with the highest deforestation rate in
Colombia [45]. From 2002 to 2022, Guaviare has lost 301 kha of humid primary forest,
corresponding to a 6.1% reduction [46]. SA is near the western boundary of Guaviare (cen-
ter coordinate: 1◦56′N, 73◦28′W), where small-scale rainforest deforestation has occurred
since 2018.
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ern segment of the Greater Khingan Mountains. Vegetation types in Genhe are mainly conif-
erous forests such as Larix gmelinii and Pinus sylvestris var. mongolica, which account for 
more than 76% of the total forest area [47]. The climate is characterized by short summer and 
extremely cold and long winter with the snowfall period from late September to early May of 
the following year, which leads to a short vegetation growing season [48]. The center coordi-
nate of SB is (51°12′N, 121°49′E). In 2003, a catastrophic fire event happened in this area, caus-
ing severe damage and loss to the ecosystem and economy. 

The third area (denoted by SC) is located in the Mañihuales watershed, Aysén Region, 
Chilean Patagonia. In the western part of Aysén Region, it is mountainous and densely for-
ested, while in the east, the terrain is flat, and the vegetation type is mainly grassland. Primary 
forests cover 47% of the Mañihuales watershed, and 67% of these forests are nothofagus pu-
milio deciduous broadleaf forest [39,49]. The center coordinate of SC is (45°9′S, 71°50′W). A 
large-scale forest defoliation event caused by an Ormiscodes amphimone outbreak occurred in 
this area during the 2015 to 2016 growing seasons [39]. This kind of insect is considered detri-
mental to tree growth and can cause crown dieback if defoliation is severe [50]. 
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Mongolia, China, is a frigid coniferous forest area with a catastrophic fire event in 2003. SC (red
pentagon), located in Aysén Region, Chilean Patagonia, is a deciduous broad-leaf forest area with a
large-scale forest defoliation event caused by an Ormiscodes amphimone outbreak during the 2015 to
2016 growing season. Optical images in the bottom row are from Google historical records in the year
in which the vegetation anomaly occurred.

The second area (denoted by SB) is located in Genhe, Inner Mongolia, China, in the
northern segment of the Greater Khingan Mountains. Vegetation types in Genhe are mainly
coniferous forests such as Larix gmelinii and Pinus sylvestris var. mongolica, which account
for more than 76% of the total forest area [47]. The climate is characterized by short summer
and extremely cold and long winter with the snowfall period from late September to early
May of the following year, which leads to a short vegetation growing season [48]. The
center coordinate of SB is (51◦12′N, 121◦49′E). In 2003, a catastrophic fire event happened
in this area, causing severe damage and loss to the ecosystem and economy.

The third area (denoted by SC) is located in the Mañihuales watershed, Aysén Region,
Chilean Patagonia. In the western part of Aysén Region, it is mountainous and densely
forested, while in the east, the terrain is flat, and the vegetation type is mainly grassland.
Primary forests cover 47% of the Mañihuales watershed, and 67% of these forests are
nothofagus pumilio deciduous broadleaf forest [39,49]. The center coordinate of SC is
(45◦9′S, 71◦50′W). A large-scale forest defoliation event caused by an Ormiscodes amphimone
outbreak occurred in this area during the 2015 to 2016 growing seasons [39]. This kind of
insect is considered detrimental to tree growth and can cause crown dieback if defoliation
is severe [50].

2.2. Landsat Surface Reflectance Product

Landsat archive can simultaneously provide global records with relatively high spatial
resolution (30 m) and sufficient time series of more than 40 years compared to MODIS and
Sentinel-2 [51], making it suitable for mining temporal information and detecting prevalent
finer change patches. Thus, it is often regarded as the best free data source for vegetation
monitoring [52,53]. The Landsat surface reflectance product has six common spectral bands
including Blue, Green, Red, Near-Infrared (NIR) and two Shortwave Infrared bands (SWIR1,
SWIR2). Meanwhile, it also provides the reflectance quality assessment band (QA band)
which contains information on cloud and shadow. QA band can be applied to roughly
screen and mask cloud, shadow and snow pixels. The current version of the Landsat
surface reflectance product is Collection 2. The Collection 2 surface reflectance product was
released in early 2021. Compared to Collection 1 surface reflectance product, the Collection
2 surface reflectance product has substantial enhancements in terms of geometric accuracy,
radiometric calibration, and so on. In this study, the Collection 2 surface reflectance product
generated from Landsat 4-5 TM, Landsat 7 ETM+, and Landsat 8 OLI was used.

3. Methodology
UFVAD is designed to be a universal framework to detect different vegetation anoma-

lies robustly from Landsat observations. Figure 2 shows the flowchart of UFVAD, which
consists of two major processes: creating the universal measure of undisturbed vegetation
and detecting vegetation anomaly in NRT. Landsat observations over the BELMANIP sites
were selected as a reference dataset to calculate vegetation characteristic parameters. After
being composited into monthly intervals and eliminated the cloud-contaminated pixels,
the vegetation characteristic parameters were further normalized to remove the differences
in growth among various vegetation types. Then, the KDE theory was used to create
the measure of undisturbed vegetation based on the normalized vegetation characteristic
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parameters. When a newly collected Landsat image is available, vegetation anomaly is
identified in NRT according to this universal measure.
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3.1. Creating the Universal Measure of Undisturbed Vegetation
3.1.1. Selection of Reference Data and Vegetation Characteristic Parameters

Vegetation’s phenology is diverse in regions with different climates and terrain con-
ditions. In order to create the universal measure of undisturbed vegetation, the reference
data should be globally representative of surface types and conditions. The Benchmark
Land Multisite Analysis and intercomparison of Products (BELMANIP) network contains
402 sites. These sites provide a good sampling of biome types and conditions throughout
the world [54] and are widely used for global LAI product intercomparison [55]. In this
study, Landsat surface reflectance data from 1985 to 2022 over the BELMANIP sites were
selected as reference data.

There is a wide variety of characteristic parameters derived from satellite observations
to characterize vegetation conditions. In this study, NDVI and the normalized burn ratio
(NBR) are selected to describe vegetation conditions from greenness and moisture perspec-
tives. NDVI is a greenness index. It is highly correlated with parameters such as green
biomass and absorbed radiation by photosynthetically active plant canopies [56] and is
widely used in vegetation monitoring. NDVI is calculated using Formula (1):

NDVI =
ρNIR − ρRed
ρNIR + ρRed

(1)

where ρNIR and ρRed are the surface reflectance of NIR and Red bands.
NBR is a moisture index. It is primarily sensitive to moisture content of leaves and

soils, as well as char and ash [57]. In addition to being commonly used in burn severity
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estimation, NBR can also be applied in other anomaly cases [22]. NBR is calculated using
Formula (2):

NBR =
ρNIR − ρSWIR2
ρNIR + ρSWIR2

(2)

where ρNIR and ρSWIR2 are the surface reflectance of NIR and SWIR2 bands.
In this study, the NDVI and NBR values were calculated from the reference data to

create the universal measure of undisturbed vegetation.

3.1.2. Elimination of Cloud-Contaminated Pixels

Generally, cloud contamination is considered noise for vegetation anomaly detection.
To minimize cloud and atmospheric contamination in the NDVI and NBR data over the
BELMANIP sites, the NDVI and NBR data were composited into monthly intervals. In this
study, the maximum value composite (MVC) method was used to composite the NDVI
and NBR data. According to QA band of the Landsat surface reflectance data, an initial
screening process was applied to determine whether the NDVI and NBR values were valid.
The NDVI and NBR values were assumed to be invalid if the QA values indicated cloud or
cloud shadow. In this study, only valid NDVI and NBR values were used for compositing.
The NDVI and NBR data in a month were formed into monthly composite images. If the
number of valid NDVI and NBR values over a monthly compositing period was two or
more, the MVC method was used, which selects the NDVI and NBR values with the highest
NDVI values in a month. If only one valid NDVI and NBR value was available over the
composite period, these NDVI and NBR values were automatically selected to represent
the period. If all NDVI and NBR values during a monthly period were invalid, the NDVI
and NBR values with the highest NDVI were selected.

However, some composite NDVI and NBR values may still be affected by clouds
which usually appear as negatively biased noises, for instance, abrupt drops in the time
series of the NDVI [58]. Therefore, further processing is needed to remove the NDVI and
NBR values contaminated by clouds.

Generally, the NDVI and NBR time series exhibit different seasonal changes, which
make it difficult to identify the NDVI and NBR values contaminated by clouds accurately.
In this study, linear functions were applied to fit the composite NDVI values from the
same month of all years to detect the cloud-contaminated NDVI and NBR values. Let
(ti, ndvii), i = 1, · · · , m be a series of NDVI values for a pixel, where ti is time, and ndvii

is the NDVI values. Let wi be a weight corresponding to the NDVI value ndvii. The weight
can be seen as a reliability measure of the NDVI value when estimate the linear model.
A linear function, f (t) = at + b, was fitted to all n NDVI values using the least squares
method, i.e., minimizing Formula (3):

J(a, b) =
m

∑
i=1

wi(ndvii − f (ti))
2 (3)

Then, the coefficients, a and b, of the linear function can be calculated from
Formulas (4) and (5):

a =
∑ windvii∑ witi

2 −∑ windviiti∑ witi

∑ wi∑ witi
2 − (∑ witi)

2 (4)

b =
∑ windvii∑ witi −∑ windviiti∑ wi

(∑ witi)
2 −∑ witi

2∑ wi
(5)

Figure 3 is an example of detecting cloud-contaminated NDVI and NBR values by
fitting time series NDVI values with a linear function. It consists of two iterations. The first
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iteration is to find cloud-contaminated candidates. The initial weights are set equally for all
NDVI values (all equal to one) to fit the time series NDVI values. The NDVI values below
the linear function of the first fit are considered as the cloud-contaminated candidates,
and their weights are updated to 0.1. The second iteration is to determine the cloud-
contaminated NDVI values from these candidates. According to the updated weights,
the linear function is applied to fit the NDVI values again. This two-iteration procedure
leads to a straight line adapted to the upper envelope of the time series NDVI values. The
fitted linear function is used to calculate NDVI values of the upper envelope, denoted by
ndvi_envi, i = 1, · · · , m. We assume that the cloud-contaminated NDVI values should
satisfy the following condition:

ndvi_envi − ndvii > ndvienvi ∗ δ (6)

where δ is a threshold and is set to 0.25 in this study after several experiments, which
can better determine the cloud-contaminated NDVI values. Then, referring to the cloud-
contaminated NDVI values, the cloud-contaminated NBR values were determined. In
our study, the cloud-contaminated NDVI and NBR values were removed, and only the
NDVI and NBR values with high quality were reserved to further remove seasonal and
inter-annual variations in growth among different vegetation types.
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Figure 3. An example of detecting cloud-contaminated NDVI and NBR values in July from 1986
to 2022 at a broadleaf forest site. The highest possible cloud-contaminated NDVI and NBR values
appear as abrupt drops in the time series, which can be determined after performing weighted linear
fitting in two iterations.

3.1.3. Normalization of NDVI and NBR Values

In order to reduce the impact of seasonal changes on the detection of vegetation
anomalies and to ensure the universality and robustness of the anomaly detection algorithm,
the high-quality NDVI and NBR values are normalized to remove seasonal and inter-annual
variations in growth among different vegetation types.

The normalization of NDVI values were used as an example. For each site, the time
series of high-quality NDVI values from the same month of all years is fitted by a linear
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function, and the NDVI values calculated by the linear function at time ti is denoted by
ndvi_esti. Then, the high-quality NDVI values ndvii at time ti is normalized by subtracting
ndvi_esti from ndvii, resulting in what we refer to as the normalized NDVI values, ∆ndvii.

∆ndvii = ndvii − ndvi_esti (7)

Similarly, the high-quality NBR value nbri at time ti was normalized to obtain the
normalized NBR value, ∆nbri, by utilizing the same method.

The normalized NDVI and NBR values range from −1 to +1 regardless of the vegeta-
tion type. Figure 4 shows the time series of the NDVI and NBR values with high quality and
their normalized NDVI and NBR values at the Walker Branch, South Hill, and Turco sites.
The biome types of these sites are broadleaf forest, needleleaf forest and shrub, respectively.
The time series of the NDVI and NBR values at the Walker Branch and South Hill sites
show obvious seasonal variations. Compared to the Walker Branch and South Hill sites,
the phenological cycles at the Turco site are relatively less obvious. Although the NDVI
and NBR values at the three sites show different amplitudes and phenological cycles, the
normalized NDVI and NBR values are all within the same range.
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The above methods were used to normalize the high-quality NDVI and NBR values of
each month over the BELMANIP sites, and all the normalized NDVI and NBR values were
used in Section 3.1.4 to create the universal measure of undisturbed vegetation.

3.1.4. Probability Calculation Based on Kernel Density Estimation

The measure of undisturbed vegetation in this study is essentially the distribution of
the normalized NDVI and NBR values of each month over the BELMANIP sites, which can
describe the undisturbed vegetation condition. The distribution of the normalized NDVI
and NBR values is completely characterized by its probability density function. Therefore,
an estimation of the probability density function yields estimates for different distribution
characteristics. In this study, the KDE is used to estimate the probability density function.

Let x ∈ RN be a vector containing N parameters. For n samples X1, X2, . . . , Xn in RN ,
the estimation of the probability density function f (x) can be defined as follows:

f̂ (x) =
1

nhN

n

∑
i=1

K(
||x− Xi||

h
) (8)

where h is the bandwidth determined by Scott’s rule [59], K represents the kernel function,
and ||x− Xi|| represents the distance between x and Xi in the RN space.

In this study, vector x includes the parameters ∆ndvi and ∆nbr, so the size of N is
equal to 2. The KDE was performed on a 500 × 500 grid with Gaussian kernel function to
estimate the probability density function of the normalized NDVI and NBR values of each
month over the BELMANIP sites.

According to [60], the continuous probability density function f (x) satisfies the fol-
lowing equations at a given probability 1− α:

L( f (x); cα) =
{

x ∈ RN : f (x) ≥ cα

}
(9)

∫
L( f (x);cα)

f (x)dx = P[x ∈ L( f (x); cα)] = P[ f (x) ≥ cα] ≥ 1− α α ∈ (0, 1) (10)

where cα can be regarded as a density level which indicates the region L( f ; cα) intending
to contain at least 1− α accumulated probability. If we know f (x), cα is precisely the lower
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α-quantile of f (x). Therefore, the region L( f ; cα) corresponding to 1− α accumulated
probability can also be obtained by f (x). Since this is not the case, f (x) was replaced
with the estimation of f̂ (x), and the estimated ĉα can be approximated efficiently as the
lower α quantile of sample f̂ (X1), f̂ (X2), . . . , f̂ (Xn) [60]. For example, if the accumulated
probability is 95%, then α is 5% and ĉα is the 5th percentile of f̂ (X1), f̂ (X2), . . . , f̂ (Xn), so
the region L( f̂ ; ĉα) corresponding to 95% probability can also be obtained. Different ĉα

values yield a range of accumulated probabilities; thus, finally, the measure of undisturbed
vegetation can be expressed by accumulative probabilities to show the distribution of
undisturbed vegetation.

Regions within different probabilities describe different degrees of undisturbed veg-
etation state. In this study, we calculated several estimated density levels ĉα under the
accumulated probabilities of 95%, 90%, 75%, and 50% for each month, which are shown as
irregular circles in Figure 5. For each month, the distribution of undisturbed vegetation
in the space of normalized NDVI and NBR values appears as an irregular inclined ellipse.
From May to September, the distributions of normalized NDVI and NBR values are more
compact in the short-axis direction, while, for the remaining months the distributions, they
are relatively scattered, with larger areas and more irregular boundaries in regions corre-
sponding to 95%, 90%, and 75% probabilities. It is necessary to make a monthly reference
to the measure of undisturbed vegetation when detecting anomalies in near real time.

Remote Sens. 2025, 17, x FOR PEER REVIEW 12 of 27 
 

 

 

Figure 5. The measure of undisturbed vegetation for each month based on the normalized NDVI 
and NBR values. Irregular circles indicate the �̂�ఈ  under the accumulated probability of 95%, 90%, 
75%, and 50%, respectively. 

3.2. NRT Vegetation Anomaly Detection 

NRT anomaly detection is executed at the pixel scale. When a new Landsat image is 
available, the surface reflectance data contaminated by the clouds were firstly removed 
according to the QA band of the Landsat image. Then, the NDVI and NBR values are 
calculated from the cloud-free surface reflectance data. Since the universal measure of un-
disturbed vegetation is created by the normalized NDVI and NBR values, the NDVI and 
NBR values from the new Landsat image should also be normalized to remove the differ-
ences in vegetation growth. The method described in Section 3.1.3 is used to obtain a new 
vector 𝑋 containing the normalized NDVI and NBR values. 

For each pixel, we input this vector 𝑋 into the corresponding KDE model for the 
same month, and each pixel shares the same anomaly criterion. Whether the vegetation is 
anomalous is determined by Formula (11): 𝑓መ(𝑋) < �̂�ఈ (11)

In this study, �̂�ఈ was set as the estimated density level corresponding to 95% proba-
bility threshold. We assumed that regions with density values under �̂�ఈ belongs to the 
lowest representation of undisturbed vegetation. Therefore, the new normalized observa-
tion in this region is flagged as anomalous. Near-real-time detection is moving forward 
by continuously collecting the new available images and repeating the above processing 
steps. 

Figure 6 shows an example of NRT detection when UFVAD was applied on an image 
on 26 May 2003 in SB. Burned pixels (black points within red circles) are identified as 
anomalous under the �̂�ఈ density level corresponding to the 95% threshold. 

Figure 5. The measure of undisturbed vegetation for each month based on the normalized NDVI and
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3.2. NRT Vegetation Anomaly Detection

NRT anomaly detection is executed at the pixel scale. When a new Landsat image is
available, the surface reflectance data contaminated by the clouds were firstly removed
according to the QA band of the Landsat image. Then, the NDVI and NBR values are
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calculated from the cloud-free surface reflectance data. Since the universal measure of
undisturbed vegetation is created by the normalized NDVI and NBR values, the NDVI
and NBR values from the new Landsat image should also be normalized to remove the
differences in vegetation growth. The method described in Section 3.1.3 is used to obtain a
new vector X containing the normalized NDVI and NBR values.

For each pixel, we input this vector X into the corresponding KDE model for the
same month, and each pixel shares the same anomaly criterion. Whether the vegetation is
anomalous is determined by Formula (11):

f̂ (X) < ĉα (11)

In this study, ĉα was set as the estimated density level corresponding to 95% probability
threshold. We assumed that regions with density values under ĉα belongs to the lowest
representation of undisturbed vegetation. Therefore, the new normalized observation
in this region is flagged as anomalous. Near-real-time detection is moving forward by
continuously collecting the new available images and repeating the above processing steps.

Figure 6 shows an example of NRT detection when UFVAD was applied on an image
on 26 May 2003 in SB. Burned pixels (black points within red circles) are identified as
anomalous under the ĉα density level corresponding to the 95% threshold.
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Figure 6. An example of vegetation anomaly detection using UFVAD. The normalized NDVI and
NBR values (named NDVI _norm, NBR_norm) come from several pixels of the Landsat image
on 26 May 2003 in SB. The red circles show the normalized NDVI and NBR values outside the
accumulated probability of 95%. The vegetation at these pixels is flagged as anomalies if we set ĉα as
density value corresponding to 95% probability threshold.

3.3. Accuracy Assessment
3.3.1. Sampling Design

The anomaly detection accuracy of UFVAD was assessed over the three study areas.
The assessment method is based on samples selected through stratified random sampling. A
5-pixel buffer around each anomaly area was applied to better describe the omission errors
occurring in spatial proximity [61]. Thus, three strata were created: anomaly, non-anomaly
within the buffer (NAWB), and non-anomaly outside the buffer (NAOB) (Table 1).
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Table 1. The mapped area and the number of samples of each stratum.

Study
Site

Image Area [Pixels] Sample Units
NAOB NAWB Anomaly NAOB NAWB Anomaly Total

SA

2018/01/29 23,182 287 460 387 149 238 774
2018/02/22 24,451 654 770 454 209 246 909
2018/03/26 24,142 788 945 455 207 248 910
2018/12/31 24,888 622 365 453 285 167 905

SB
2003/05/26 410,829 262,393 748,247 266 170 436 872
2003/06/11 445,815 308,065 776,289 298 206 505 1009
2003/08/14 698,671 193,683 542,982 337 93 430 860

SC
2016/01/08 1,367,892 79,658 22,861 431 311 119 861
2016/02/02 1,152,224 205,214 157,471 466 268 197 931
2016/03/05 1,152,793 182,123 176,868 462 245 216 923

According to [62,63], the optimal sample size s was estimated as follows:

s ≈
(

∑ Wi
√

Ui(1−Ui)

S(Ô)

)2

(12)

where Wi is the mapped proportion of area of stratum i, S(Ô) is the standard error of
the estimated overall accuracy that we would like to achieve, and Ui is conjectural user’s
accuracy of stratum i. In this study, S(Ô) was set to 0.01, the conjectural user accuracies
will be 0.9 for NAOB, 0.88 for NAWB, and 0.88 for anomaly.

Sample units were distributed equally between the largest stratum and the remaining
two strata. Then, for the remaining two strata, the distribution of samples was proportional
to the area of each stratum. This may avoid under sample in small areas and, at the same
time, considered the difference among strata [63]. In Table 1, the number of sample units of
each strata can be found.

3.3.2. Sample Interpretation and Accuracy Calculation

The manual interpretation of the anomaly and non-anomaly sample units was usually
performed using data sources with higher spatial quality to obtain the ground truth. For
deforestation cases in SA, we interpreted each validation sample using Sentinel-2A images
near the detection dates. However, for wildfires in SB and insect outbreak in SC, we
depended on the Landsat imagery itself due to the lack of available Sentinel data with high
spatial resolution.

Using the sample-count-based confusion matrix, we calculated accuracy evaluation
indexes: the user’s accuracy (UA), the producer’s accuracy (PA), the overall accuracy (OA),
and the Kappa coefficient for each detection map [64].

4. Results
UFVAD was used to detect vegetation anomalies in NRT manner over the three study

areas to evaluate the performance of UFVAD.

4.1. SA

In SA, the anomaly maps detected on four dates in 2018 (Figure 7B) all show a
high degree of consistency with the deforestation cases (visually purple patches on false-
color maps) shown in the corresponding Landsat images (Figure 7A). The deforestation
here is almost clear-cutting. The forest cleared patches are characterized as relatively
regular and small with a similar spectrally visual interpretation to bare land, making them
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distinctly different from the surrounding stable forests. There is a continuous expansion of
deforestation among the four detection dates. The new deforested areas were generally
adjacent to the old ones. From 29 January to 22 February, three clear-cutting patches first
appeared in the south, and meanwhile a smaller patch in the upper middle of the study
area was precisely captured by UFVAD, which expanded on 26 March (Figure 7(B2,B3).
By 31 December (Figure 7(A4,B4)), some of the patches identified as anomalous had
re-expressed vegetation characteristics (light green on the false-color map). Secondary
succession occurred here, and shallow herbaceous began to grow. They are no longer
labeled as vegetation anomalies of concern by UFVAD.
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Figure 7. The anomaly detection maps for deforestation events in SA using UFVAD from high quality
Landsat images. The first row ((A) A1–A4) is false-color composite (R: SWIR1; G: NIR; B: Red). The
second row ((B) B1–B4) is the corresponding vegetation anomaly detected by UFVAD using the
false-color composite as base maps. The legend ‘No data’ represents masked atmospheric noise pixels
or masked non-vegetation pixels.

The accuracy of the deforestation anomaly detected by UFVAD in SA is given in
Table 2. The OA of clear-cutting identification for the four detection dates was greater than
95%, with Kappa coefficients greater than 0.94. The UA and PA were close to 100% for the
NAOB stratum and in the 89% to 96% range for the NAWB and anomaly strata. According
to the confusion matrix, the identification errors were mainly concentrated between the
NAWB and the anomaly strata.

Table 2. The confusion matrix and accuracy of the deforestation anomaly detected by UFVAD in SA.

Strata NAOB NAWB Anomaly OA (kappa) UA PA

SA 29 Jan 2018 97.3 (0.96)
NAOB 384 0 0 99.2 100.0
NAWB 0 141 10 94.6 93.4

Anomaly 3 8 228 95.8 95.4
SA 22 Feb 2018 96.9 (0.95)

NAOB 454 0 0 100.0 100.0
NAWB 0 192 11 91.9 94.6

Anomaly 0 17 235 95.5 93.3



Remote Sens. 2025, 17, 520 15 of 25

Table 2. Cont.

Strata NAOB NAWB Anomaly OA (kappa) UA PA

SA 26 Mar 2018
NAOB 455 0 0 95.9 (0.93) 100.0 100.0
NAWB 0 192 22 92.8 91.1

Anomaly 0 15 226 89.7 93.8
SA 31 Dec 2018 96.0 (0.94)

NAOB 453 0 0 100.0 100.0
NAWB 0 266 17 93.3 94.0

Anomaly 0 19 150 89.8 88.8

4.2. SB

Figure 8 shows the anomaly maps for a fire event detected by UFVAD from Landsat
images in SB. The Landsat image of 26 May 2003 is the first high-quality data acquired
after the wildfire. In contrast to the clear-cutting in SA, the severely burned area appears
dark red on the false-color image (Figure 8(A1)). The forest tree slash is evident in the NIR
and SWIR bands, which can be captured by the NBR index. The fire event is distributed in
the oblique lower half of SB, occupying more than 50% of the whole area. The anomaly
map detected by UFVAD is generally consistent with the burned area (Figure 8(B1)).
Surrounding the forest tree slash, some canopies were not completely disturbed (shown
as dark gray-green on Figure 8(A1)), where moisture stress may be more evident relative
to the greenness loss. This phenomenon was also detected as an anomaly by UFVAD.
According to Figure 8(A2,A3,B2,B3), there was no further expansion or new occurrence of
the fire event from 11 June to 14 August, but the canopies that were not completely burnt
regrew to an undisturbed condition during the growing season, so they were no longer
labeled as anomalous. However, there are also some detection noises in areas that are
actually non-anomalous.

The confusion matrix and accuracy of the fire anomaly detection in SB are shown in
Table 3. The OA and Kappa coefficients for the three detection dates were 89.1% (0.82),
96.9% (0.95), and 94.7% (0.9), respectively. For the detection anomaly maps on 26 May and
11 June, the UA for the anomaly stratum (87.4% on 26 May and 87.7% on 11 June) and the
PA for the NAOB stratum (84.5% on 26 May and 84.6% on 11 June) are relatively lower.
This indicates an overestimation of the anomaly and a lower estimation of NAOB. There
are some omission errors on 26 May and 14 August. From the confusion matrix, samples
identified as NAWB were actually anomalous, resulting in lower UA for NAWB. In general,
the detection anomaly maps by UFVAD in SB are reliable.

Table 3. The confusion matrix and accuracy of the fire anomaly detected by UFVAD in the SB.

Strata NAOB NAWB Anomaly OA (kappa) UA PA

SB 26 May 2003 89.1(0.82)
NAOB 251 0 46 94.4 84.5
NAWB 0 145 9 85.3 94.2

Anomaly 15 25 381 87.4 90.5
SB 11 Jun 2003 96.9 (0.95)

NAOB 291 0 53 97.7 84.6
NAWB 0 191 9 93.2 95.5

Anomaly 7 14 443 87.7 95.5
SB 14 Aug 2003

NAOB 328 0 14 94.7 (0.9) 97.3 95.9
NAWB 0 69 4 74.2 94.5

Anomaly 9 24 412 95.8 92.6
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Figure 8. The anomaly detection maps by UFVAD from Landsat images for a fire event in SB. The
first row ((A) A1–A3) is false-color composite (R: SWIR1; G: NIR; B: Red). The second row ((B) B1–B3)
is the corresponding anomaly maps detected by UFVAD using the false-color composite as base maps.
Non-vegetation pixels are masked according to the classification of a high-quality image during
the historical period. The legend ‘No data’ represents masked atmospheric noise pixels or masked
non-vegetation pixels.

4.3. SC

Figure 9 shows the anomaly maps detected by UFVAD from Landsat images for
O. amphimone insect outbreak in SC in 2016. Three detection maps in Figure 9(B1–B3)
show the process from early insect erosion to outbreak and diffusion. UFVAD can detect
the vegetation anomaly caused by the insect accurately, as visually compared with the
corresponding Landsat images Figure 9(A1–A3). On 8 January, vegetation anomaly caused
by the insect was only recognized in two major local areas. But one month later, an
outbreak led to severe defoliation and vegetation anomaly were finally detected in most of
the southwest, northwest, and northeast areas (shown in Figure 9(B1,B2)). In the detection
anomaly map on 5 March near the end of summer, disturbances were further spread on the
old basis in the northeast region (Figure 9(B3)). In addition to insect outbreak anomaly, there
are also other small-scale grassland degradation cases in the central and southeast of SC.

Table 4 demonstrates that the OA is greater than 90% for all three detection dates, with
Kappa coefficients of 0.87, 0.93, and 0.93, which indicates the overall good performance in
insect erosion detection by UFVAD. On 8 January, the UA and PA of the anomaly stratum
are relatively lower, especially for the PA, which is only 66.9%. Identification errors are due
to the underestimation of anomalies and the overestimation of non-anomalies. According
to the confusion matrix, a large proportion of the anomaly samples are identified as NAOB
and NAWB. In general, the PA for the two non-anomaly strata yields good results (greater
than 95%), but the UA for NAWB is relatively lower than the PA. This indicates omission
errors near the anomaly boundary.
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Figure 9. The anomaly maps detected by UFVAD from Landsat images for O. amphimone insect
outbreak in SC. The first row ((A) A1–A3) is false-color composite (R: SWIR1; G: NIR; B: Red). The
second row ((B) B1–B3) is the corresponding anomaly maps detected by UFVAD using the false-color
composite as base maps. Non-vegetation pixels are masked according to the classification of a high-
quality image during the historical period. The legend ‘No data’ represents masked atmospheric
noise pixels or masked non-vegetation pixels.

Table 4. The confusion matrix and accuracy of the insect anomaly detected by UFVAD in the SC.

Strata NAOB NAWB Anomaly OA (kappa) UA PA

SC 8 Jan 2016 91.9 (0.87)
NAOB 411 0 19 95.4 95.6
NAWB 0 283 3 91.0 99.0

Anomaly 20 28 97 81.5 66.9
SC 2 Feb 2016 95.6 (0.93)

NAOB 456 0 5 97.9 98.9
NAWB 0 243 1 90.7 99.6

Anomaly 10 25 191 97.0 84.5
SC 5 Mar 2016

NAOB 448 0 2 95.9 (0.93) 97.0 99.6
NAWB 0 223 0 91.0 100.0

Anomaly 14 22 214 99.1 85.6

5. Discussion
5.1. The Robustness of UFVAD in Detecting Different Vegetation Anomalies

The anomaly maps detected by UFVAD over the three study areas showed good
performance with some variation among them, which verified the potential of UFVAD to
detect various vegetation anomalies with robustness, at least in forest cases.

In SA, the accuracy is relatively the highest compared to SB and SC. Pixels outside
the buffer are almost completely identified correctly (UA and PA for the NAOB strata are
almost 100%). In addition to the distinctive difference between clear-cutting and stable
forest, its homogeneous land cover and dense forest distribution also help improve its
accuracy because of the less mixed pixels. A few errors between NAWB and anomaly strata
mainly come from the boundary pixels within the buffer. Referring to the Sentinel-2A
images with higher spatial resolution, the edge of clear-cutting patch on Landsat images is
clearer on the Sentinel-2A images, which leads to the ambiguity in interpretation [65].
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In SB, the Landsat images on detection dates contain a small amount of clouds and
shadows. Atmospheric noises that are not sufficiently masked on the newly collected image
will still be involved in the NRT detection, being identified as anomalies even though they
are spurious. This is because they also show a negative bias in the vegetation index, which
results in their much lower negative normalized values than before [58]. Consequently,
they are likely to fall outside the 95% probability range. On the other hand, the land cover
in SB is more complex, with roads and the transition areas where scattered trees, shrubs,
grass lands and bare lands mixed [66,67]. Figure 10(A1,A2,B1,B2) show the major areas of
misdetection on 11 June 2003 in SB and the high-resolution images of two local regions.
In the vegetation-sparse transition areas, the inadequately masked non-vegetation pixels,
and the mixed pixels with bare land change irregularly and frequently in time series under
moisture variation [13,68]. As a result, the anomaly detection uncertainty is increased due
to those pixels’ low-reliability normalized values. Due to the factors above, the anomaly
was overestimated (lower PA), and most of them are spurious.
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Figure 10. The major areas of detection noises on 11 June 2003 in SB (A1,A2) and (B1,B2), and
the comparison of confirmed anomaly maps in 2003 with GLAD forest loss due to fire dataset (C).
Detection noise commonly occurred beside the masked bare land where sparse vegetation distributed
(shown in high resolution images (B1,B2), resulting in more mixed pixels varying easily due to the
effect of soil and background).

However, there are few methods to exclude these pseudo-anomalies just on the current
image. Typically, the detection results of three to six consecutive observations are used, as
pixels that appear anomalous in multiple continuous images are more likely to be genuine
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anomalies [26,40,65,69,70]. Since fire detection dates are exactly within the growing season
and the rest of 2003 is during the snowing season, we made an annual composite following
the rule that pixels with all three detection dates labeled as anomaly are considered as truly
anomalous. Meanwhile, the composite result was compared to an annual dataset, global
forest loss due to fire [71], to further confirm the robustness of the detection results in SB
(Figure 10C). The dataset originated from the Global 30 m forest cover loss map [72], and
the forest loss areas due to fire driver with median and high certainty in SB were extracted.
The composite anomaly map indeed excludes most spurious anomalies and yields a good
consistency of 85.07% with the dataset on 1500 random points. However, this approach
may result in a confirmation delay, particularly in humid tropical regions where there may
not be enough available data to confirm anomalies in a short time [13,29].

Of importance to the anomaly detection results is the ĉα value corresponding to a
probability threshold, which was set to 95% in our study. In SC, although some forests
were infested on 8 January, the erosion degree may not be enough to cause significant
defoliation [73,74]. Their normalized values tend to be consistent with those before. As a
result, these subtle erosion changes were easily identified as non-anomalies by UFVAD
under the 95% threshold, which led to the lowest PA (66.7%) for the anomaly stratum. The
relatively high omission errors for detecting subtle anomalies like early infection have been
reported in most threshold-dependent algorithms, and differentiated thresholds for distinct
anomalies are suggested [75]. Indeed, the probability threshold may lead to the over- or
underestimation of an anomaly. A higher threshold (extremely 100%) takes into account
the ‘complete’ anomalies, i.e., values that have never existed before [39], and may thus
result in an underestimation. However, a smaller threshold may help to better detect those
small disturbance events or earlier events that may be hidden in the natural fluctuations of
vegetation. Considering the deforestation, fire, and insect outbreak cases, 95% is a good
representation of the undisturbed vegetation condition and upper anomaly frontier in this
study. Users are allowed to make appropriate adjustments to the 95% threshold according
to their interests.

These factors above produce some errors in the anomaly detection results and affect
the accuracy of UFVAD, but, in general, UFVAD is robust to detect different vegetation
anomalies. In this study, we did not analyze the temporal accuracy but only focused on the
universality and robustness of UFVAD and whether it has the ability to achieve detection
as long as new images are available. This is because the temporal accuracy depends on the
quality of the new image and the temporal resolution of the satellite sensor. In principle,
anomaly detection could be achieved every eight days after 2013 using Landsat imagery
with the harmonization of the ETM+ and OLI sensors [76]. However, this requires that the
newly collected image is of high quality with a low cloud fraction, so that enough pixels can
be included in UFVAD without being masked; otherwise, the time to detect the anomaly for
each pixel will be prolonged. If we have high-quality data with a high observing frequency,
the temporal accuracy of UFVAD will naturally be higher. To improve the observation
frequency, multi-source data may be an option. For instance, harmonized Landsat and
Sentinel-2 data can reduce the revisit time to three days and increase the possibility of
obtaining clear observations [29]. Combining optical and SAR images can help to overcome
the limitations of cloudy and rainy weather and recover the true surface situation [70,77].

5.2. Strength and Defects to UFVAD

The main advantage of UFVAD is its ability to create the universal measure suitable
for different pixels, vegetation types or regions. Unlike existing algorithms, UFVAD no
longer captures undisturbed condition and makes anomaly criteria, respectively, for each
under-detected pixel. This speeds up the detecting process. Compared to other approaches
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utilizing the KDE theory, we have improved the selection of reference vegetation and the
dimensionality of input parameters. Therefore, it is not necessary to consider the vegetation
type and seek its representative samples for KDE when detecting different areas of interest.

The universality of the measure of undisturbed vegetation is manifested in the fol-
lowing aspects. First, the data source for creating the measure is reliable and with high
quality. BELMANIP network contains typical biome types that are distributed globally,
making it highly representative for different vegetation types. When attempting to obtain
high-quality Landsat series, we assigned a lower weight to potential noise and a higher
weight to potential high-quality data in linear fitting. This approach is more accurate than
ordinary linear regression in filtering any remaining cloud noise and reducing errors in sub-
sequent normalization step. Despite the possibility of some remaining normalization noise,
the flexibility of the KDE ensures the accuracy of the universal measure of undisturbed
vegetation. Based on the universal measure, we can obtain the unified anomaly criterion.
Secondly, the universal measure is developed based on two-dimensional indices: NDVI
and NBR. They can adequately characterize vegetation conditions in terms of greenness
and moisture, which enables them to capture the multi-spectral expression of vegetation
anomalies. A fire-affected pixel in SB is used as an example (Figure 11); the normalized
NDVI in 2003 is around −0.1, while the normalized NBR is around −0.25. If only the single
NDVI is considered, this pixel will not be identified as anomaly unless the probability
threshold is lower. However, when combining the NBR and NDVI, the moisture anomaly
can be captured even though the greenness anomaly is not evident. All this makes UFVAD
a choice for NRT detection.
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Figure 11. An example of the anomaly detection of a pixel in SB on 26 May 2003. The normalized
NBR value clearly deviates from the undisturbed condition, while the normalized NDVI value is
insignificant. The density value of this pixel is smaller than that with 95% probability threshold
in the normalized NDVI and NBR space, while still larger than that with 95% threshold in single
normalized NDVI KDE space.

The limitation is that UFVAD still requires a part of the time series as a historical
baseline to calculate the normalization values. On the one hand, a large memory space
is needed to host massive historical image stacks when detecting in larger areas. On the
other hand, the quality and length of the time series may affect the normalization values.
The normalization accuracy may decline with more noise and shorter time series [26]. In
addition, UFVAD has not yet resolved the pseudo-anomalies in the current image, even
though they may account for a relatively small proportion.
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5.3. Improvements and Future Plans

In the future, more research is needed to assess the performance of UFVAD in other
vegetation anomaly contexts such as hurricanes and grassland plagues or to extend UFVAD
to water environment anomaly detection [78,79] and impervious cover anomaly detec-
tion [80]. Additionally, a comprehensive study on which index or band combinations
work best is also significant [30]. The use of NDVI and NBR in UFVAD has shown good
performance. One note is that other index or band combinations representing different
vegetation conditions can also be used in UFVAD, for example, other greenness indices
such as EVI, DVI, and SR; other moisture indices, such as NDMI and NBR2; and other
indices that include both visible and shortwave infrared bands, such as DSWI. In the
future, a comparison of the performances of different index or band combinations could
significantly contribute to the literature.

There are three possible orientations to improve UFVAD: (1) adding an anomaly con-
firming module to remove pseudo-anomalies from the current detected image; (2) exploring
multi-source data input, as harmonized optical and SAR data are worth trying to increase
observation frequency and overcome cloudy condition; and (3) adding an anomaly type
recognition module. In practical applications, while the anomaly location can be detected,
the specific anomaly type needs to be further explored.

6. Conclusions
In this study, a universal framework (UFVAD) is developed to detect various veg-

etation anomalies from Landsat data in NRT. The main innovations of UFVAD are that
(a) it creatively introduces the network of BELMANIP and normalized the seasonal and
inter-annual differences in growth among vegetation of the same species or not using
high-quality observations; (b) it emphasizes multi-dimensional input and utilizes the com-
bination of NDVI and NBR to describe greenness and moisture conditions; (c) based on the
two-dimensional normalization results, universal measures are created using KDE, which
is the critical step and main purpose of UFVAD. Meanwhile, each pixel under detected
shares the same anomaly criterion.

We demonstrate its good performance in areas that are complementary in ecozones and
anomaly regimes, which has proved the potential to detect various vegetation anomalies
in any region with robustness. The characteristics of the areas of interest, the quality of
Landsat images such as residual atmospheric noises may affect its performance to some
extent. The above-mentioned future work and improvements are worth trying to further
examine and promote UFVAD in the future.
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