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Abstract: Climate change has led to an increase in global temperature and frequent intense
precipitation, resulting in a rise in severe and intense urban flooding worldwide. This
growing threat is exacerbated by rapid urbanization, impervious surface expansion, and
overwhelmed drainage systems, particularly in urban regions. As urban flooding becomes
more catastrophic and causes significant environmental and property damage, there is an
urgent need to understand and address urban flood susceptibility to mitigate future damage.
This review aims to evaluate remote sensing datasets and key parameters influencing
urban flood susceptibility and provide a comprehensive overview of the flood causative
factors utilized in urban flood susceptibility mapping. This review also highlights the
evolution of traditional, data-driven, big data, GISs (geographic information systems), and
machine learning approaches and discusses the advantages and limitations of different
urban flood mapping approaches. By evaluating the challenges associated with current
flood mapping practices, this paper offers insights into future directions for improving
urban flood management strategies. Understanding urban flood mapping approaches
and identifying a foundation for developing more effective and resilient urban flood
management practices will be beneficial for mitigating future urban flood damage.

Keywords: urban flooding; flood susceptibility mapping; GIS; remote sensing; machine
learning

1. Introduction
Flooding is one of the most catastrophic natural disasters worldwide, and it causes

widespread damage to property and livelihoods [1]. Recent findings indicate that climate
change notably contributes to flooding events by altering the intensity and frequency of
rainfall patterns and decreasing the soil infiltration capacity [2,3]. Owing to global warming,
the frequency and magnitude of extreme flood events are projected to increase, resulting
in more substantial impacts on people and the economy than any other environmental
disaster [4]. Research findings have also indicated that nearly 30% of losses from annual
natural disasters are related to flooding [5]. A total of 2.23 million km square areas flooded
around the world from 2000 to 2018 [6], and approximately 20–30 million people annually
are affected by flooding [7]. According to a study finding, approximately two billion
people will reside in flood-susceptible zones due to global warming and extreme weather
events [8].
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Urban flooding is one of the most expensive natural disasters on Earth due to climate
change, altered rainfall events, rapid urbanization, and population growth [9–13]. Over
the past few decades, land use and land cover patterns have undergone dramatic changes,
such as a reduction in green spaces and a loss of wetlands, along with the expansion of
built-up areas [14,15]. Settlement and built-up areas have led to an increase in impervi-
ous surfaces, which has led to increased surface runoff and strain on drainage systems
during heavy rainfall [16–18]. Extensive population growth in urban regions has resulted
in the exacerbation of urban flooding events and has emerged as a critical challenge on
a global scale [16,19–22]. According to previous research, more than half of the world’s
population lives in urban regions [23,24], and areas with large populations experience
urban heat island effects and relatively high aerosol loads, which lead to notable increases
in precipitation [25,26], contributing to increased flood risk. By 2050, 65% of the world’s
population is expected to migrate to urban areas, resulting in an increase in commercial and
economic growth [27]. The consequences of urban flooding are devastating, encompassing
loss of life, infrastructure and property damage, economic setbacks, health risks, and envi-
ronmental contamination in different regions worldwide [28–32]. This rapid urbanization
also heightens the risk of urban flooding, making it crucial to better understand urban
flood susceptibility mechanisms to support efforts in mitigating flood damage.

Flood susceptibility is commonly defined in the literature as the probability of a
particular area experiencing flooding, influenced by environmental, topographic, and
climatic factors [33]. Mapping flood susceptibility has increased in recent years, especially
in urban regions due to the above mentioned climatic, and anthropogenic factors [34,35].
Flood susceptibility mapping is one of the most effective strategies for flood prevention
and mitigation, as it identifies the most vulnerable areas and determines the likelihood of
flooding [36,37]. It requires the integration of multiple data sources, including topographic,
hydrologic, and meteorological data, and the selection of appropriate methodologies [38,39].
Identifying the appropriate method and the suitable resolution of the datasets and set of
parameters ensures that these data sources are effectively integrated [40]. In addition,
the accuracy and reliability of these maps require a thorough understanding of datasets,
parameters, and methods [41–43].

Several studies have advanced flood susceptibility mapping by utilizing various flood
causative factors and approaches [44]. For example, artificial neural networks and adaptive
neuro-fuzzy inference systems (AN-FISs) have been applied to analyze factors such as ele-
vation, slope, rainfall, land use, and proximity to rivers [45]. Other approaches, such as the
analytic network process and weighted linear combinations, integrate factors including veg-
etation index, soil type, and lithology [46]. Recent reviews in flood susceptibility mapping
research provide valuable information on the parameters and methods that shape current
approaches [2]. Studies revealed a variety of flood susceptibility mapping (FSM) methods,
with nearly 160 distinct approaches identified and parameter usage varying widely—from
as few as five to over twenty in a single study [2]. Commonly used FSM approaches include
multicriteria decision-making (MCDM), physical-based hydrological models, statistical
techniques, advanced machine learning, and soft computing methods [2,47].

Despite these advancements, challeneges in optimizing model selection, parameter
choices, and validation methodologies for FSM persist [48]. The field has witnessed a
marked transition from traditional judgment-based approaches to data-driven techniques,
reflecting an increasing reliance on big data and machine learning to enhance accuracy and
predictive capabilities [2,49]. This evolution in FSM demonstrates the growing sophistica-
tion of available tools and methods while also highlighting the ongoing need to balance
complexity with practical applicability. Additionally, while past studies have laid a strong
foundation for understanding FSM, they often overlook the unique complexities of urban
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environments. Unlike conventional settings, urban areas present distinctive challenges
due to their varied features, unique drivers, and specific data requirements [50]. Directly
applying traditional flood susceptibility mapping methods in urban areas introduces un-
certainties in dataset selection, parameterization, and methodology. This gap raises critical
questions about which approaches, parameters, and spatial datasets are most suitable for
urban FSM. Addressing this need is essential, as urban flood susceptibility is shaped by
unique geographical factors and requires careful consideration of method applicability and
spatiotemporal resolution.

In recent years, there has been a dramatic increase in urban flood events globally,
driven by climate change, rapid urbanization, and aging infrastructure [51–53]. While dif-
ferent studies have examined urban FSM, the literature remains fragmented across different
methodological approaches, geographical contexts, and disciplinary perspectives. The
unique contribution of this work is that it consolidates findings from diverse methodologi-
cal approaches, compares the effectiveness of different assessment techniques, identifies
consensuses and contradictions in the current understanding, and bridges gaps between
academic research and practical applications. In addition, such studies can inform policy
and practice, guide urban planning and zoning decisions, improve flood risk assessment
methods, enhance emergency response strategies, and support infrastructure investment
decisions. Therefore, the objective of this work is to provide a thorough and in-depth
overview of urban FSM approaches, ranging from traditional methods to advanced ma-
chine learning and big data analytics, as well as to assess the effectiveness, advantages, and
limitations of these diverse methodologies, which can provide valuable information for
future urban FSM on a global scale. Additionally, this paper aims to evaluate commonly
used remotely sensed datasets along with their suitability in different urban contexts and
critically synthesize various flood causative parameters and how the same parameters may
have varying effects depending on local geographic and environmental conditions. The
global scope of this review is to provide a valuable understanding of and critical insight
into the complexities involved in urban flood mapping, making it applicable to diverse
urban contexts. Given the growing threats of urban flooding to life and infrastructure, this
synthesis of current knowledge and methodological understanding aims to support more
effective urban flood management practices and guide future research directions.

2. Materials and Methods
This study focuses on evaluating remotely sensed data and the various methods and

parameters employed in urban FSM. The primary objective of this study is to provide a
comprehensive analysis of how urban flood susceptibility is mapped and assessed across
different regions. To achieve this goal, a detailed and extensive literature review was
conducted, and inclusion criteria were carefully established to ensure the focused retrieval
of relevant studies. The inclusion criteria were as follows:

• Articles must be peer reviewed;
• The study focus has to be urban flood susceptibility;
• Full-text articles must be available in English.

This review followed a step-by-step procedure, starting with a widespread literature
search using specific keywords, followed by abstract screening to confirm the relevance
of the research objectives. A targeted search strategy utilizing specific keywords related
to urban FSM, such as “urban*”, “urban flooding”, “flood susceptibility”, and “urban
flood susceptibility”, was implemented. An extensive literature search was conducted
thoroughly via Google Scholar and the Web of Science core collection, and papers were
identified. After that, a thorough abstract screening was also conducted to ensure the
relevance of the study focus. We obtained 540 papers via keyword search. After the abstract



Remote Sens. 2025, 17, 524 4 of 37

screening, 300 papers that did not necessarily focus on flood susceptibility in urban regions
were excluded. Furthermore, full-text screening was conducted, and 120 papers were
excluded because these articles did not necessarily fit our inclusion criteria. On the basis
of these criteria, this review included 120 articles that focused on urban FSM and were
published from 2012 to September 2024, ensuring that the review incorporated all the recent
and relevant studies.

The methodology involved screening detailed information from selected studies,
focusing on remote sensing data, flood influencing parameters, and methods employed in
urban FSM worldwide. The analysis examined various flood causative factors and their
importance, considering how they vary across diverse urban contexts, and identified future
research directions. The step-by-step literature selection flowchart is given in Figure 1.
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An analysis of publication trends revealed a steady increase in urban FSM research
since 2016, reflecting the growing recognition of flood risks in expanding urban environ-
ments under climate change [54]. This research growth is illustrated in Figure 2.
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3. Data Used for Urban FSM
In recent years, the use of satellite-based remote sensing (RS) data has significantly

advanced flood susceptibility mapping and assessment [55,56]. The availability of high-
resolution datasets from missions such as Landsat, Sentinel [57], and Shuttle Radar Topog-
raphy Mission (SRTM) has improved flood mapping by providing topographical, land
cover, and surface water information. Accurate flood mapping and risk assessment rely
heavily on digital elevation models (DEMs), which are used to determine flood depth
by comparing terrain elevation with water levels [58]. Many studies utilize 30 m resolu-
tion DEMs (Table 1) due to their effective balance between spatial coverage and detail
for large-scale flood mapping [59]. Some studies utilize Sentinel-1 SAR data (10 m) to
extract flood zones for their atmospheric correction (spatial filtering) and cloud penetrating
quality [60,61], as atmospheric correction helps reduce the noise of the raw Sentinel-1 SAR
imagery [62,63]. This resolution is generally sufficient for identifying flood-prone areas and
assessing potential impacts on a broad scale [64]. However, the selection of an appropriate
spatial scale is critical, particularly in flat terrains and monsoon-prone regions [65]. In such
areas, even minor errors in DEM data can lead to significant inaccuracies in estimating
flood extent [66]. Thus, the precision of DEMs becomes crucial in these contexts to avoid
misleading estimates of flood extent. Given these challenges, high-resolution data have
become vital for reliable flood susceptibility mapping. Notable remotely sensed data that
offer fine-scaled topographic estimates with reasonable accuracy include SAR (Synthetic
Aperture Radar) images and LiDAR (Light Detecting and Ranging) sensor data, which are
applicable to various urban (sparse vegetation) landforms and have the ability to detect
flood depths [67,68]. While high-resolution DEMs offer improved detail and accuracy,
factors such as cost, computational demand and accessibility can limit their availability
and use [69]. Therefore, balancing the need for detailed and accurate data with practical
considerations of cost (financial and computational) and accessibility remains a key aspect
of DEM selection for flood susceptibility mapping.

Accurate flood mapping relies not only on detailed topographic data but also on
precise precipitation measurements [70,71]. Remotely sensed precipitation data, derived
from satellite observations, offer gridded rainfall and snow estimates, which are essential
in areas with sparse gauges and remote locations [72]. Studies have most commonly uti-
lized these precipitation products to estimate the spatial variability in the magnitude of
precipitation [73] and, in some cases, to estimate the frequency and intensity of extreme
rainfall events, thereby quantifying return periods relevant for flood mapping [60]. Long-
term and uninterrupted records of satellite-derived precipitation data help quantify the
likelihood of various flood risks across both space and time. Despite these advantages,
satellite-derived precipitation data must be carefully integrated with ground-based ob-
servations to address potential biases [74]. High-resolution, low-latency, and long-term
precipitation records, such as those provided by Climate Hazard Infrared Precipitation
with Stations (CHIRPS), integrate gauge and satellite data to deliver more accurate and
timely information [75]. This integrated approach allows researchers to contextualize
recent extremes within a historical framework [75] and offers the ability to analyze the
return periods of extreme precipitation events at various spatial scales, which are pivotal
in flood susceptibility mapping and preparedness. This capability enhances the accuracy
and relevance of flood susceptibility maps, thereby supporting more targeted and effective
interventions in high-risk areas.

Land cover and land use data further enhance urban flood mapping. Land cover
describes physical surface characteristics, whereas land use refers to the purpose of the
land [76]. Remotely sensed datasets provide continuous information on both aspects that
have been used to map flood susceptibility in numerous studies (Table 1). Satellite-driven
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data through image classification are typically grouped into spectral classes on the basis of
reflectance across multiple spectral bands, which are then assigned a specific land cover
class. These classes, either pixel- or object-based [77,78], are then used to detect changes
in land cover that may exacerbate flood risk, such as urban expansion or deforestation.
In urban environments, where flood susceptibility is often highest, land cover data from
sensors such as Sentinel–1 SAR- and Landsat-derived indices such as the normalized
difference built-up index (NDBI) have been used to identify impervious surfaces that
reduce infiltration and increase runoff. This is particularly relevant for areas where rapid
urbanization alters natural hydrology, which contributes to increased flood susceptibility.
Global land use and land cover datasets, such as those derived from Sentinel–2 (fine spatial
resolution), Landsat 8 (moderate spatial resolution), and MODIS (coarse spatial resolution)
data, have frequently been utilized to create spatially explicit flood maps that capture the
impacts of various land cover types on flood risk. The range of spatial scales from these
datasets offers the ability to detect land cover changes in rapidly urbanizing regions, as
well as to perform large-scale flood risk assessments.

A summary of the varieties of remote sensing datasets that inform analyses of land use,
precipitation, topography, and soil properties is presented in Table 1. This table outlines
key remote sensing datasets utilized in the literature and details the respective resolutions
and platforms or organizations from which the data were sourced.

Table 1. Summary of the remote sensing data used in the reviewed literature.

Variable Dataset (Resolution Used) Source/Provider/Platform

Land Use/Land Cover

Sentinel-2 (10 m) [23,60,79,80]
MODIS (500 m) [9,81]
Sentinel-1 [82]
Landsat-8 OLI/TIRS (30 m) [40,83–98]
GLOBELAND30 (30 m) [61,99–102]
Land30 (30 m) [103]
SinoLC-1, 2023 (1 m) [104]

ESRI Sentinel-2 land use/land cover
downloader [23]
Sentinel Scientific Hub [80]
Coper–icus-ESA [82]
Earthexplorer.gov [85]
United States Geological Survey (USGS) [83]
National Geomatics Center of China [99]
GLOBE, Earth Science Data System [103]
https://zenodo.org/records/8214871 (accessed
on 30 January 2025) [104]

Precipitation

CGIS UR Rainfall * [23],
Climate Hazard Infrared Precipitation with
Station (CHIRPS) (0.05-degree) [105]
Tropical Rainforest Measuring Mission
(TRMM)—(0.25-degree) [79]

The Centre for Geographic Information Systems
and Remote Sensing—CGIS-UR) [23]
US Geological Survey Earth Resources
Observation and Science Center [105],
NASA [79]

Normalized Difference
Vegetation Index (NDVI) Landsat 8 (30 m) [60,61,86,99,104,106–108] Google Earth Engine (GEE) [99]

Normalized Difference
Built-up Index (NDBI)

Landsat TM/ETM (30 m) [93,109–111]
Landsat 8 [104,105] United States Geological Survey (USGS) [109]

https://zenodo.org/records/8214871
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Table 1. Cont.

Variable Dataset (Resolution Used) Source/Provider/Platform

Topography (DEM, DTM,
DSM)

DTM * (1 m) [112,113]
DEM * (10 m) [23,114]
DEM * (5 m) [107]
DEM * (30 m) [115]
SRTM DEM (30 m)
[60,61,82–85,88,90–92,94,99,101–103,116–121]
SRTM DEM (90 m) [122,123]
Open topography DEM (30 m) [80]
LiDAR DTM (1 m) [124,125]
Cartosat DEM (30 m) [126]
ASTER GDEM (30 m)
[40,79,81,93,96,98,100,109–111,127]
Light Detecting and Ranging (LiDAR) (5 m)
[128,129]
Advanced Land Observing Satellite Phased
Array Type L-band Synthetic Aperture Radar
(ALOS PALSAR) (12.5 m) [128]
ASTER DEM (27 m) [87]
Topographical curves [36]

Authorative Topographic-Cartographic
Information System (ATKIS) [112]
Centre for Geographic Information System and
remote sensing at the University of Rwanda [23]
National Center of Geographic Information of
Burundi [114]
Department of Irrigation and Drainage (DID)
Malaysia [107], The National Earth Observation
Data Center (NODA) [113]
Earthexplorer.gov [85]
Global FABDEM (Forest and Buildings removed
Copernicus DEM) [115]
Open topography data archive [80]
National Geospatial Intelligence Agency (NGA)
[116] Earth Explorer USGS [79,82,87,99]
Instituto de Planejamento Urbano de
Florianópolis (IPUF) [36]

Soil properties (moisture,
texture, type, depth, class)

Soil texture layer [23]
Soil Moisture Active Passive (SMAP)
satellite [130]
SoilGrids (250 m) [81]

Rwanda Soil Information Service Project
(RwaSIS) [23]
NASA [130]
ISRIC World Soil Information [81]

Urban flooding
area/sprawl area/flood
inventory map

Sentinel 1 SAR (10 m) [61,131], landsat global
dataset of human builtup and settlement
e–tent—HBASE (30 m) [81]
Landsat estimated global surface water
(30 m) [60]
IKONOS (1 m) [28]

GEE [61],
Socio Economic Data and Application Center
(SEDAC), Global Land survery derived Landsat
imagery [81]
ESA/Copernicus Global Surface Water Explorer
(GSWE) [60]

* Dataset sourced from national institutions.

4. Parameters Used for Urban FSM
To evaluate urban flood susceptibility, it is important to understand the relationships

between flood causative parameters and flood events [2,132,133]. Different studies have
shown that urban flood susceptibility is a complex phenomenon because it depends on
topographical, hydrological, and geographical contributing factors [10,108]. The selection
of parameters for urban FSM is challenging as there are no specific guidelines for parameter
selection [39,134]. Rather, the selection of flood causative factors often depends on the
physical and natural characteristics of the study area, the availability of datasets, and the
granularity of the desired outcome [135,136]. These parameters can be used to determine
existing conditions, compare various circumstances in different locations, and provide
future recommendations for understanding trends or future impacts [48,137]. In addition,
parameters play important roles in the accuracy and reliability of urban FSM as they contain
important information regarding the physical characteristics of the study area [138,139]. For
example, topography and slope are essential for evaluating water accumulation and runoff
dynamics, land use patterns highlight the spread of impervious surfaces, and geological
features provide insights into water absorption and retention capacities during heavy
rainfall [2]. Each influencing parameter offers unique and valuable information that can
help with accurate and detailed flood susceptibility mapping in urban regions. Therefore,
selecting the appropriate parameter that accurately represents the flooding scenario is
crucial in urban FSM [140].
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Researchers have used a range of flood causative parameters to map urban flood sus-
ceptibility around the world. We divided the parameters into two different groups, namely
primary and derivative parameters. The primary flood causative parameters, along with
their commonly used synonyms, are summarized in Figure 3 and include the following: el-
evation (altitude or drop raster), land use and land cover, rainfall (precipitation), proximity
to rivers, channels, drainage systems, or streams, soil properties (group, texture, permeabil-
ity, or hydraulic conductivity), geology (lithology or hydrolithology), distance from roads
or streets, proximity to stormwater drainage systems, sewers, or hydrographic networks,
groundwater level or depth, locations of drainage pump stations or stormwater outfalls,
proximity to dry drainage areas or depressions, wetland degradation, presence of rainwater
retention devices, swampy areas, and infrastructure density (e.g., roads, buildings, bus
stops). Below is a detailed summary of these key parameters.
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Elevation/altitude/drop raster: Elevation is a critical factor in flood susceptibility, as
it governs the flow of water. Areas at higher elevations typically experience rapid water
movement, which reduces absorption time and increases the risk of flooding downstream.
Conversely, lower elevations are more prone to water accumulation and flooding [141–143].
Elevation data, often derived from digital elevation models (DEMs), plays an integral role
in flood modeling by defining topography and guiding water flow analysis [144–147]. Drop
raster, representing altitude or elevation on a grid-cell basis, further aid in understanding
flow direction and flood patterns [148,149]. Proper drainage planning is essential for
settlements across various elevations to mitigate flood risks [150–152].

Land use and land cover: Land use land cover is one of the most important flood
conditioning factors affecting urban flood susceptibility [153,154]. Land use land cover
processes caused by both manmade and natural factors have significant effects on flooding.
Built-up and settlement areas are positively associated with urban flooding. Impervious
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surface areas are responsible for surface runoff and lead to flooding. Additionally, if the
land is closer to the water body, those areas have a high potential for flooding [155,156].
On the other hand, vegetated areas have a negative correlation with flood susceptibility
because soil has a greater absorption capacity than urban areas. Vegetated and green
agricultural areas improve the infiltration rate of water into the soil during intense rain
events, thereby mitigating the risk of flooding. Therefore, urban areas closer to agricultural
land are less prone to flooding.

Rainfall/precipitation: Rainfall characteristics, including intensity, duration, and
volume, are fundamental drivers of urban flooding [148,150,154,157]. Heavy rainfall over
short durations saturates soil quickly, while prolonged events on impervious surfaces
exacerbate runoff [158,159]. When stormwater drainage systems reach capacity, streets
and infrastructure become inundated, leading to widespread flooding [160–162]. Effective
urban flood management requires detailed analysis of rainfall patterns and stormwater
system capacities.

Distance from river/channel/drainage/stream: Proximity to rivers, channels, and
drainage networks is a key determinant of flood risk. Areas near water bodies, such as
lakes, rivers, and canals, are more susceptible to inundation during heavy rainfall events,
particularly when these systems exceed their capacity [121,157,163,164]. Settlements closer
to water bodies are at greater risk due to overflow and runoff, underscoring the importance
of maintaining buffer zones in urban planning [144,146,165,166].

Soil group/texture/permeability/hydraulic conductivity: Soil hydrology determines
the surface runoff scenario, and it is an important parameter for determining flood
occurrence [141,167,168]. It occurs when the soil is either saturated or exceeds its capacity
to absorb water in the ground and overflow [117,146,162]. Some soils for example, sandy
soils have relatively high infiltration rates and can absorb water quickly resulting in rela-
tively low surface runoff and less flooding [23,84,126,169]. Conversely, some soils such as
clay soils have lower infiltration rates resulting in more surface runoff and higher flooding
risk [170]. Urban expansion leads to the expansion of impervious surfaces, and surface
runoff is positively correlated with this process [166,171]. The impermeable surface areas
are positively correlated with flooding. In urban areas, impervious surfaces behave as
active runoff sources and can be flooded with a short amount of rainfall [172]. Erosivity
plays a crucial role in flood mechanisms. High erosivity results in rainfall with a greater
potential to dislodge soil particles [18]. In urban regions, more sediment enters drainage
systems and waterways, clogging stormwater systems and exacerbating flood risk [173].

Geology/lithology/hydrolithology: Geology/lithology plays a crucial role in urban
flood mapping [151,174]. If the surface is permeable and contains more pore spaces, rain-
water can directly pass through the porous surface to the ground [142,152]. Impermeable
surface areas are less capable of water infiltration and more prone to flooding [161,167,168].
Urban areas covered with impervious surfaces have very low permeability during heavy
rainfall, which results in flooding [146,156].

Distance from roads/streets: Distance from roads plays a vital role in flood
occurrence [105,112,175]. Roads and streets are cemented, and concrete materials and
impervious surfaces are responsible for surface runoff [83,160]. Impervious surfaces create
obstacles for water to percolate through the soil. The greater the impervious surface area is,
the greater the risk of flooding [129,176,177]. Urban areas contain streets, sidewalks, and
major roads, which are responsible for water accumulation during heavy rainfall [88,93].

Distance to stormwater drainage systems/sewers/hydrographic networks: Settle-
ments and built-up areas near well-maintained stormwater drainage channels/sewers
mitigate urban flood risk by quickly releasing rainwater [79,122,178]. Built-up areas far
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from stormwater drainage areas experience faster water accumulation and greater surface
runoff and urban flooding [129,173].

Groundwater level/depth: The greater the groundwater table is, the less space there
is for water absorption [117]. This means that the soil is already saturated with water.
Therefore, when it rains, it does not have a greater capacity to absorb water [148]. This
results in greater surface runoff during heavy rainfall, which contributes to urban flooding.

Drainage pump stations/stormwater outfalls: In urban areas, drainage pump sta-
tions/stormwater outfalls play an important role in managing excessive rainwater by
passing through directly to the ground [103]. Drainage pump stations contain pumps/lines
that can transport large volumes of stormwater in times of heavy rainfall in urban ar-
eas. The greater the number of stormwater outlets, the lower the chances for water
accumulation [179]. Sometimes, urban areas are largely crowded with buildings, roads, and
sidewalks and less permeable surfaces, and drainage pump stations help release rainwater
to the ground and reduce the risk of flooding.

Distance to dry drainage/depression: Dry drainage/depression mostly works as a
natural water reservoir during heavy rainfall events [125]. Urban areas located near dry
drainage areas have lower chances of heavy runoff. A short distance from dry drainage
areas leads to rapid and efficient drainage that helps mitigate the risk of urban flooding
by removing excess water. Settlements and built-up areas closer to depressions, such as
any low-lying area, may experience rapid flooding to a greater extent than those farther
away [104].

Wetland degradation: In urban regions, wetlands work as natural reservoirs, absorb-
ing excessive amounts of water during heavy rainfall [86]. Therefore, wetland degradation
has significant effects on flooding by reducing the natural absorption capacity, and exacer-
bating surface runoff and flood risk. Satellite imagery and aerial photography can be used
to incorporate wetland data in urban FSM.

Rainwater retention devices: Urban areas are covered with impervious surfaces such
as concrete, asphalt, and bricks that block rainwater from passing through the ground and
accelerating surface runoff. Rainwater retention devices allow rainwater to slowly infiltrate
the ground and mitigate urban flooding [60]. This helps reduce surface runoff, delays peak
flow, and controls localized flooding.

Presence of swampy areas: Swampy areas work as reservoirs and can store large
volumes of water during heavy rainfall events in urban region [84]. These areas are capable
of absorbing excessive water during heavy downpours. Therefore, they help reduce
surface runoff and the risk of flooding in adjacent urban areas. Vegetation indices such as
normalized difference vegetation indices or soil survey data can be used to incorporate the
presence of swampy areas in urban FSM.

Infrastructure density (road/building/bus stop): Infrastructures such as roads, build-
ings, and bus stops reduce the capacity of the soil to absorb rainwater, which intensifies
surface runoff [129]. Therefore, areas closer to settlements and infrastructures are highly
susceptible to urban flooding. Infrastructure density data can be gathered from land use
land cover data and the normalized difference built-up index for urban FSM analysis.

The derivative parameters include slope/terrain slope, topographic wetness index,
drainage density, curvature/profile curvature/plan curvature, aspect, normalized differ-
ence vegetation index, stream power index, flow accumulation, terrain ruggedness index,
normalized difference built-up index, runoff, slope length factor, modified Fournier index,
convergence index, coefficient of compactness, sediment transport index/susceptibility to
production of sediment, concentration time, peak flood discharge, and Gravelius coefficient.
The derivative parameters are listed in Figure 4. A summary of derivative parameters is
described below.
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Slope/terrain slope: Slope plays an important role in mapping urban flood suscepti-
bility and researchers have used this parameter to map urban flood susceptibility [175,179].
It is proportional to surface runoff and influences flooding. Slope affects the infiltration rate
and speed of surface runoff [157,163,178,180,181]. It is measured by the angle between the
terrain and horizontal data, and gravity influences the generation of surface runoff and its
speed [159,173,176,182,183]. Slope in urban regions have a direct impact on flood dynamics
by influencing water flow and accumulation patterns [158,177,184,185].

• Flat areas: In flat regions, water tends to accumulate over time, which leads to
prolonged flooding. Therefore, gentle slopes and flat areas are more susceptible
to flooding [160–162]. A slope of 0–5% is considered a flat region.

• Gentle slope: In gentle slope areas, water flows more slowly than steep slopes. How-
ever, water may accumulate more easily because of ponding and inadequate drainage
systems [171,174,186]. A slope of 5–15% is considered gentle slope.

• Steep slope: Steep slopes increase the surface runoff process and reduce the available
time for the soil to absorb water [187–189]. Water travels downhill rapidly, which
reduces the infiltration rate. Urban regions at the bottom of steep slopes are highly
susceptible to urban flooding because they receive high volumes of water in a short
period of time [166,167,169,190]. More than 15% slope is considered steep slope.

Topographic wetness index: The topographic wetness index (TWI) is a geomorpho-
metric factor used to evaluate runoff in flood susceptibility mapping [106,121,152]. It
determines the water-saturated areas and the spatial distribution of water on the surface
and underground [168,183]. It is a key parameter for understanding the spatial distribu-
tion of water on the surface and underground [142,146,176]. It can be calculated via the
following equation:

TWI = Ln (As/tan β) (1)

Here, As represents the upslope contributing area and tan β represents the slope at that
point. High TWI values represent favorable areas for water accumulation and susceptibility
to flooding.

Drainage density: Drainage density influences surface runoff and affects urban
flooding [105,118,191]. A higher drainage density leads to shorter concentration times
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and a greater risk of flooding [118,141,145,162,187]. Conversely, a lower drainage density
leads to a lower probability of flooding [151,154,167,189].

Curvature/profile curvature/plan curvature: Curvatures play an important role in
identifying areas that are prone to water accumulation as well as urban flooding [86,162].
Curvature affects the direction and velocity of surface runoff [152,184,186]. Profile curvature
refers to the downward direction of the slope and the probability of flooding is greater
on concave terrain [107,176]. The profile curvature affects the speed and concentration of
water flow [99,182]. Plan curvature refers to the horizontal curvature perpendicular to the
direction of the maximum slope. Negative curvature refers to concavity, positive curvature
refers to convexity, and zero curvature refers to plane [141,143]. Negative curvatures are
more prone to surface runoff and flooding [99].

Aspect: Soil humidity and flow direction are influenced by aspect [141]. Therefore,
aspect is considered an important parameter for urban flood occurrence [184]. Aspect
affects the direction of water flow in any landscape, [114,119,124,160]. For example, slopes
facing certain directions influence water movement either slowly or rapidly when other
factors, such as topography, soil hydrology, and land use are considered [19,83,91,176].

Normalized difference vegetation index: The normalized difference vegetation index
(NDVI) affects the infiltration rate and surface runoff [106,144,188]. The NDVI is used to
understand vegetation density and health [95,108,185]. Healthy vegetation is able to absorb
rainwater, help reduce runoff and mitigate urban flooding [97,131,159]. Higher NDVI
values indicate dense vegetation, which helps increase water infiltration and decreases
flooding [160,170,174].

Stream power index: The stream power index (SPI) is positively correlated with flood
susceptibility [79,142]. It represents the erosive capacity of water movement [83,97,102].
The SPI determines the flow strength and corrosive effect of water [11,154]. Higher SPI
values indicate greater erosive power and are more susceptible to urban flooding [144,174].

Flow accumulation: Flow accumulation refers to a large volume of water flowing
toward a specific area [169,186]. Urban areas are covered with many impervious surfaces,
which can result in greater water pooling and increased risk of flooding [115,149,154].

Terrain ruggedness index: The terrain ruggedness index (TRI) determines the rugged-
ness or smoothness of a landscape [83,173]. The TRI is positively correlated with flooding
risk [102,171]. A rugged terrain with a relatively high TRI indicates varied elevations and
slope angles, which can create complex and multiple flow channels for surface runoff and
increase flood risk [154,180]. Smoother terrain with a low TRI indicates less varied elevation
differences and slower runoff, which helps mitigate flood risk [19].

Normalized difference built-up index: The normalized difference built-up index
(NDBI) helps to identify the extent of impervious surface areas such as concrete, asphalt
and buildings. Impervious surface areas work as obstacles to stormwater infiltration,
leading to increased surface runoff and urban flooding [191]. By analyzing the NDBI, urban
planners can identify areas with high runoff potential [110,192]. Settlements and built-up
areas with high NDBI values are more likely to experience significant runoff, which can
overwhelm drainage systems and contribute to urban flooding [109,111,147].

Runoff: Surface runoff is a crucial factor in urban FSM [81,129]. In urban areas,
impervious surfaces such as buildings, roads, sidewalks, and pavements prevent water
from infiltrating the ground. Surface runoff influences the severity and magnitude of urban
flooding [87,146].

Slope length factor: The slope length factor affects the volume, speed, and erosive
potential of surface runoff [99]. A longer slope allows more surface area for water accu-
mulation during heavy rainfall [184]. This results in greater surface runoff and greater
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potential for flooding. Runoff from longer slope lengths can cause heavy flooding in urban
regions [10].

Sediment transport index: The sediment transport index (STI) refers to sediment
movement in a landscape [168]. A higher STI results in greater sediment transport and
greater erosion during heavy rainfall [102,107]. As a result, more sediment can be trans-
ported into rivers and streams, increasing flood risk. A lower STI indicates lower sediment
transport and less soil erosion which helps to reduce flood risk in urban areas [60]. Sediment
production and transport can alter urban drainage systems. High sediment production
results in the accumulation of sediment in storm drains, canals, and other drainage in-
frastructures near urban regions. When drainage systems become clogged, their ability
to release stormwater away from urban regions is compromised, leading to increased
surface runoff and flooding [60]. Hydrological models such as the stormwater management
model (SWMM) or the Hydrologic Engineering Center’s Hydrologic Modeling System
(HEC-HMS) can be utilized to simulate sediment transport.

Convergence index: The convergence index is positively correlated with
flooding [180]. A higher convergence index leads to greater water accumulation and
rapid surface runoff [80]. Areas with divergent flows are less likely to experience water
accumulation. Therefore, lower surface runoff leads to lower flooding risk [182]. The
convergence index can be calculated by combining flow accumulation with the slope or
curvature of the terrain and can be employed in urban FSM.

Modified fournier index: The modified Fournier index refers to the evaluation of the
erosive potential of rainfall [121]. It represents the ratio between the average monthly and
average annual rainfall. It is used to determine the effects of extreme rainfall events on soil
erosivity [11,180].

Coefficient of compactness: The coefficient of compactness affects the extent of
impervious surfaces in an area [164]. Areas with higher coefficients of compactness lead to
a greater distribution of impervious surfaces such as roads, bridges, pavements, buildings,
and compact areas [60]. Areas that have higher compactness coefficients are more prone to
rapid runoff and urban flooding.

Concentration time: Concentration time refers to the time it takes for water to travel
from the farthest point to a specific point in a watershed [81]. In urban areas, a shorter
concentration time can lead to a greater risk of water accumulation and severe flooding.

Peak flood discharge: Drainage systems in urban areas depend on how efficiently
excessive rainwater can be discharged [81]. They are usually designed to absorb typical
rainfall events. High peak discharge can sometimes exceed capacity and lead to rapid
water accumulation and urban flooding. The peak flood discharge can be calculated by
multiplying the runoff coefficient, rainfall intensity and drainage area of the watershed for
urban FSM.

Gravelius coefficient: The Gravelius coefficient refers to the shape of a drainage
basin. A low Gravelius coefficient indicates a basin with a more circular shape where
the runoff concentration time is shorter. This results in higher discharge in a fleeting
period and increases the flooding risk [87]. A higher Gravelius coefficient indicates a basin
with an elongated shape where the runoff concentration time is longer. It allows time for
slow discharge and reduces the risk of immediate flooding. The Gravelius coefficient can
be calculated by measuring the perimeter and area of a polygon and can be utilized in
urban FSM.

5. Methods Used in Urban Flood Susceptibility Mapping
Researchers have proposed various methods for urban FSM, and these methods

differ from one another in terms of data availability, expert opinions, and ease of
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application [193,194]. While the literature highlights diverse techniques, certain meth-
ods tend to be more effective in urban FSM depending on the regional context and specific
study requirements [195,196]. For example, in areas where historical flood data are scarce,
machine learning models are likely not a suitable option, as large datasets are needed to
train the model [73,104]. Physically based hydrological models consider detailed data and
significant computational resources, whereas statistical methods and soft computing tech-
niques offer more straightforward implementations with varying accuracy and precision
depending on various flood conditioning factors being analyzed. Therefore, the choice
of method often depends on the characteristics of the study area, specific objectives, data
availability, and accuracy required for urban FSM. Despite this effectiveness, there is no
widespread consensus among scientists that these frequently used methods are superior
to others. Each method has its strengths and limitations, making the selection highly
context-dependent. Different approaches that have been used in urban FSM are listed in
Figure 5.
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5.1. Frequently Used Methods in Urban FSM

The most frequently used approaches include the analytic hierarchy process
(AHP) [90,152,188], frequency ratio (FR) [162,167,197,198], logistic regression (LR) [161,199],
weights of evidence (WoE) [143,200], Shannon’s entropy (SE) [18], certainty factor (CF), mul-
ticriteria decision analysis (MCDA) [85,116,141,160,201], and fuzzy logic AHP [101,162,185–
187,189,200,202,203]. In addition to these approaches, researchers have also most frequently
utilized various physically based hydrological models, statistical methods, weighted over-
lays, and different soft computing approaches [183,204,205]. Researchers have also uti-
lized a combination of 2-3 approaches to understand and evaluate the level of urban
flood susceptibility [206]. In urban FSM, pairwise comparison matrix methods such as
the AHP have often been used [60,118,171] and are highly preferred for more accurate
urban FSM [13]. The AHP was developed by Saaty [207] and has been widely used for
addressing complex environmental problems [171]. The AHP and modified AHP [125] are
useful for identifying logical consistencies, building a single evaluation index by collecting
information from different indicators [36,173,208]. They are highly flexible, easy to use,
and widely employed in flood susceptibility parameters by researchers [84,85,108]. One
of the major advantages of AHP is that it can integrate both qualitative and quantitative
factors into the decision-making process [127]. This approach is also applicable from
an individual and collective perspective and is suitable for local and regional suscepti-
bility studies [60]. The AHP is considered a simple, cost-effective, and understandable
approach for facilitating urban FSM and a powerful technique to support multicriteria
decision-making [23,80,117,126]. Urban FSM involves the use of different flood condi-
tioning factors, and GISs (geographic information systems) and RS (remote sensing) are
considered effective tools for dataset extraction [88,166,173]. Researchers have also widely
used geographic information systems (GISs) for determining flood conditioning factors in
urban FSM datasets [169,172,209–211]. Over the years, GISs have been widely applied in
hazard preparedness and decision-making processes [38,113,170,212]. Weighted overlay
and weighted sum are also effective tools in GIS for urban FSM [13,23,114,126,127] where
they combine various flood causative factors, assign different weights to each variable
on the basis of their relative importance, and overlay or sum them to produce a flood
susceptibility map. One of the major advantages of a weighted overlay is that it allows for
and integrates both qualitative and quantitative variables in a single layer [23]. Researchers
have frequently combined the AHP and weighted overlay method to map urban flood
susceptibility [126,127,131]. Multicriteria decision analysis (MCDA) approaches are widely
used in urban FSM [87,144] and provide a robust collection of technical procedures for
designing, and evaluating alternative decision-making methods [213]. MCDA is a widely
used method that helps researchers make effective decisions according to problems and
factors. However, MCDA methods mostly rely on expert opinion to evaluate multiple
criteria and provide subjective results [151].

The assessment of urban FSM involves univariate or multivariate models, includ-
ing hydrological, statistical, and machine learning approaches [89,214]. Machine learn-
ing methods have demonstrated higher percentage of accuracy in effectively predicting
urban flood-susceptible regions [215]. These methods such as fuzzy logic, genetic al-
gorithms, and artificial neural networks are tolerant of ambiguity, fuzziness, and par-
tial accuracy [87,95,150,174]. These approaches complement each other, instead of com-
peting with each other, and can be utilized together to solve complex environmental
problems [216,217]. The most frequently used machine learning methods include un-
supervised clustering algorithms and supervised classification algorithms [182,218,219].
The supervised classification algorithm automatically evaluates and learns the associa-
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tions between conditioning factors and associated labels and identifies flood-susceptible
areas [220,221].

Studies prefer support vector machines, random forests, and artificial neural net-
works in urban FSM over other approaches because of their higher accuracy and certain
advantages [21,153,222–225]. Support vector machines are among the most popular super-
vised learning algorithms and have received widespread attention because of their excellent
performance in urban FSM [103,109,111]. Support vector machines generally require fewer
training samples to achieve good performance compared to artificial neural network and
different studies reported accuracy between 82–96%.

Random forest (RF) is a machine learning tool based on multiple decision trees and is
capable of solving classification and regression problems [124,145,156]. RF trains random
samples of data independently to derive weak models, and the average predictions from
these weak models produce more accurate results [73,83,100,226]. RF avoids overfitting
and can handle missing values during training [223].

Artificial neural networks are deep learning methods composed of an input layer, one
or more hidden layers and an output layer [153,154]. A multilayered neural network is also
a deep learning approach with multiple ANN input and output layers that can capture
intricate patterns and are effective for urban FSM [130,148,227]. One of the advantages of
this approach includes learning complex patterns by analyzing diverse data. Multilayer
perception is also a type of artificial neural network approach that is effective at capturing
complex relationship between multiple flood related parameters; however, careful tuning
is needed to avoid overfitting spatial datasets [61]. Researchers have also utilized Shannon
entropy (SE) to understand the correlation between flood contributing factors and flood
events [40]. Researchers have utilized the gray wolf optimizer and bat optimizer to analyze
urban FSM [181]; these optimizers utilize animal behavior to solve complex urban flooding
problems. In [228], an autoregressive integrated moving average (ARIMA) approach
was utilized to analyze the urban FSM in Anambra, Nigeria [228]. This approach is
helpful in analyzing and predicting hydrological data such as rainfall and river discharge
data for assessing future urban flood susceptibility. Researchers have also utilized urban
deployment models with cellular automata via SLEUTH software. This approach aims to
model and predict urban growth. SLEUTH stands for slope, land use, exclusion (building
prohibition areas), urbanization, transportation, and hill shade, which are key factors in the
model [127].

5.2. Methods by Sample Size

Urban FSM has evolved over time from traditional expert opinions to statistical,
soft computing, big data, and machine learning methods [229,230]. The complex char-
acteristics of urban flooding have led researchers to utilize machine learning heuristic
approaches [92], as these approaches are capable of solving uncertain and complex real-life
problems [231–233]. In addition, these methods have also demonstrated excellent perfor-
mance in urban FSM [99,105,110,112,119]. However, these supervised model performances
are largely determined by the sample size used for training. As the sample size for training
increases, the model performance improves proportionally [234].

Researchers utilize historical flood data to train these machine learning models as these
methods depend exclusively on sample size and input data. For example, support vector
machines (SVMs) and convolutional neural networks (CNNs) are popular for classification
in urban FSM, and this approach has frequently been used in spatial image processing fields
and different prediction problems because of its feature extraction ability and excellent
learning capacity [112,191]. Both SVMs and CNNs demonstrate better performance in
urban FSM and the differences between their performances are minor [103]. CNNs do not
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require manual feature extraction; rather, they use algebra to identify patterns to increase
computational demand [157]. Frequency ratio approaches are also popular methods for
urban FSM; however, large datasets are required to train such models [142,146,155]. In
some urban regions, historical flood points are difficult to acquire and FR is not a good
option for these areas.

5.3. Methods by Weighting

In urban FSM, the weighting of flood conditioning factors is crucial, and different
methods can be utilized to assign weights to these factors [108,211,235,236]. Weights play an
important role in urban FSM for evaluating results as they quantify the relative importance
of different factors. The most common methods for developing weights are the analytical
hierarchy process (AHP) [160], the entropy method (EM), and the maximal information
coefficient (MIC). One of the limitations of using AHP is its high subjectivity, as it utilizes
expert opinion and knowledge [237,238]. Conversely, the entropy method relies solely on
objective data while considering the relationships among indicators [99]. The weighting
utilized by the MIC can be sensitive depending on the distribution of the data. Unevenly
distributed data can heavily affect the weights and the final outcome. Fuzzy logic can
also be utilized to assign weights in urban FSM and it allows for more precise weighting
compared with traditional binary classification. The fuzzy gamma operator is also an
effective approach in urban FSM where flood causative factors can be assigned values
between 0 and 1 [79].

5.4. Methods Based on Problem Type and Output Goals

The urban FSM output can vary depending on data availability and model selection.
Bivariate statistical models are also effective in urban FSM, and they calculate the probability
of flooding on the basis of each factor independently [28,91,143]. For example, logistic
regression (LR) is a statistical approach for binary classification, and researchers have
used LR for urban FSM [86,93,110,155]. This method is able to predict the likelihood
of flooding in different regions on the basis of various flood conditioning factors. The
outcome yields a probability score that indicates the likelihood of a particular area being
susceptible to flooding or not. Similarly, the naïve Bayes classifier (NBS) is a probabilistic
classification algorithm that relies on the Bayes theorem [92]. NBSs are particularly useful
for analyzing complex datasets for urban FSM and predicting the likelihood of flooding in
different urban regions [147]. Positive and background learning with constraints (PBLC) is
a machine learning approach that helps distinguish between flood-prone areas and non-
flood-prone areas in urban FSM [99]. On the other hand, Gaussian mixture model (GMM)
clustering is a statistical tool that can be employed to understand urban FSM [179]. This
model analyzes spatial data related to rainfall, elevation, land use, and drainage systems.
By grouping areas with similar characteristics, the Gaussian mixture model can help
identify flood susceptibility zones that are at greater risk. A decision tree is an ML model
that can effectively solve classification and regression problems and can handle complex
datasets [73]. Researchers have also used decision trees in urban FSM, and the benefits of
decision trees include the fact that this approach can handle complex multidimensional
datasets and is able to identify homogenous clusters with various susceptibility levels.
K-means clustering is an effective approach for urban FSM, as it is also able to identify
clusters of highly flood-susceptible zones on the basis of topographic and hydrologic
data [179,182]. Similarly, kernel density has also demonstrated excellent performance in
identifying flooding hotspots, particularly in dense urban settings [163].



Remote Sens. 2025, 17, 524 18 of 37

5.5. Modeling Techniques for Regions with Sparse Data Availability

Physically based hydrological models are used robustly in urban FSM. Physically
based hydrological models such as the SWAT (Soil and Water Assessment Tool) model
can simulate hydrological processes such as rainfall–runoff, evapotranspiration, and chan-
nel flow. Studies also utilized MODFLOW (modular three-dimensional finite-difference
ground-water flow model) to integrate surface and subsurface hydrology for mapping flood
susceptibility. One-dimensional HEC-RAS models and two-dimensional TELEMAC-2D
and RMA2 models are often used by researchers [116]. These models are effective in provid-
ing detailed simulations of flood scenarios and capturing the complexity of precipitation,
infiltration, and surface runoff in urban regions. However, fieldwork and computational
resources are required for data collection. In addition, in some regions, the scarcity of
flood inventory data is a major problem when mapping urban flood susceptibility. Urban
flood-prone areas are often dispersed where hydrological monitoring stations are scarce
and high spatial resolution data may be missing [239]. These scenarios pose challenges in
mapping urban flood susceptibility in those regions. Researchers have employed graph
attention networks (GATs) to overcome this problem [191]. GATs utilize nodes and edges
to represent spatial units and relative spatial relationships only via basic flood conditioning
factors [191]. A graph attention network is a type of neural network algorithm and one
of the advantages of this approach is that it can model complex spatial relationships and
interactions among various geographic, topographic, and environmental factors [191]. In
addition, researchers have coupled the physically based variable parameter Muskingum
stage-routing (VPMS) module with the popular storm water management model (SWMM)
to analyze urban pluvial flooding in urban and peri-urban areas where hydrological data
and discharge information are limited [82,240]. Researchers have also utilized the transfer
learning approach in urban FSM; in this approach, one task is reused as the starting point
for a model on a second, related task [175]. Transfer learning can be a powerful machine
learning tool in urban FSM in regions with similar topographic characteristics, especially
where data availability is limited. This approach helps improve the deep learning model by
transferring knowledge from a pretrained model that has already been trained on a large
dataset in terms of urban FSM [175].

5.6. Methods Used to Improve Model Performance

Different heuristic approaches have been proposed by researchers to analyze urban
flood susceptibility, and among these, soft computing approaches are designed with nu-
merical intelligence that can modify the analysis environment and learn to produce better
outcomes. For example, researchers have utilized boosted regression trees (BRTs), which
combine multiple decision trees to improve model performance and accuracy [89,148]. BRTs
are useful for urban FSM because they can effectively integrate remote sensing and GIS
data to increase the mapping precision [184]. The evidential belief function, known as the
Dempster–Shafer theory, is particularly useful in handling the uncertainty and imprecision
of urban flooding problems [10,79]. Support vector classifiers (SVCs) can handle nonlinear
data efficiently and demonstrate high accuracy in urban FSM [61].

Researchers have also utilized the adaptive boosting (AdaBoost) classifier for urban
FSM in different regions [159]. The AdaBoost classifier is an ensemble ML model that
combines various weak learners into a strong learner and focuses on fixing the mistakes
of predecessors [73,241]. Extreme gradient boosting (XGBoost) is also a powerful gra-
dient boosting tree algorithm for urban FSM and is capable of integrating structured
data [61,105,177]. This approach is suitable for solving classification problems and analyz-
ing complex interactions among various flood causative factors [177]. Gradient boosting
is also an effective tool for urban FSM [97] and it builds a simple decision tree model for
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initial predictions and calculates the residuals of the prediction [242]. For every prediction,
it builds a new decision tree while improving the accuracy of the previous model and the
final model is the combination of all the predictions.

6. Discussion
6.1. Urban FSM vs. Non-Urban FSM

While FSM has been extensively studied across diverse landscapes, the unique chal-
lenges presented by urban environments necessitate a more nuanced approach compared
to non-urban areas. Urban landscapes are characterized by impervious surfaces, dense
infrastructure—such as roads and buildings—and dynamic anthropogenic factors, all of
which exacerbate surface runoff and reduce drainage capacity during heavy rainfall events.
These factors, combined with rapid urbanization, population growth, and the urban heat
island effect, significantly contribute to the heightened flood risk in these regions.

In the context of the Anthropocene, where human activities increasingly shape the
planet’s environmental processes, urban areas reflect a convergence of natural and an-
thropogenic influences. The complexity of flood susceptibility in these regions is further
heightened by alteration of natural hydrological cycles, with human interventions such
as altered drainage systems, land reclamation, and intensive infrastructure development
complicating flood prediction and mitigation. The anthropogenic footprint in urban envi-
ronments demands that FSM approaches account not only for natural factors but also the
dynamic and ever-evolving urban landscapes and infrastructures. In contrast, non-urban
areas are typically governed by more predictable and stable hydrological processes. These
regions often retain natural landscapes, and flood-prone routes are relatively consistent,
making FSM in non-urban environments less complex and more stable for analysis.

Thus, urban FSM is of paramount importance in the Anthropocene due to an increased
contribution of human-induced factors, necessitating the consideration of various scenarios
that reflect both the natural environment and the built infrastructure. In comparison,
non-urban FSM tends to rely on more traditional, stable modeling approaches that focus
primarily on natural hydrological variables. Given these inherent complexities, urban FSM
is more critical in informing flood resilience strategies, demanding a tailored approach that
accounts for the multifaceted urban dynamics influencing flood susceptibility.

6.2. Remote Sensing (RS) Data Resolution and Suitability

In context of data availability for urban FSM, researchers have often faced challenges
in obtaining data with appropriate granularity and quality from various repositories.
However, recent advancements in satellite data have provided a promising solutions [243].
Improvements in the resolution, accuracy, and availability of satellite data have enabled the
development of more robust modeling approaches [244]. This progress allows for improved
calibration and validation through the integration of remote sensing derived flood extents
and hydrological parameters. As a result, ongoing research continues to leverage remote
sensing to advance flood susceptibility mapping, with a particular focus on optimizing
data processing and model integration.

Satellite-based remote sensing data have significantly advanced urban FSM by provid-
ing high spatial and temporal resolution datasets such as LIDAR, Sentinel, Landsat, and
SRTM [124,125]. However, the integration of RS data faces certain challenges, which must
be carefully addressed for effective urban FSM in different regions worldwide. Studies
often utilize 30-meter resolution SRTM DEMs and GLOBE DEMs to balance granularity
and spatial coverage [80]; however, this may be insufficient for highly urbanized, dense
vegetation and flat terrain areas. Sometimes, minor inaccuracies in elevation data may
results in significant errors in urban FSM [125]. High-resolution DEMs such as LIDAR, SAR,
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and Sentinel offer increased precision with an in-depth and detailed overview of spatial
coverage but face constraints related to availability, cost, and computational demand [124].
Therefore, the selection of DEMs often depends on the extent of the study area, precision
criteria, and suitability of computational expertise.

For data-scarce regions, studies have integrated satellite-derived remote sensing rain-
fall data for urban FSMs. However, this may contain biases and correction is needed to
improve accuracy in urban FSM. To solve this issue, remote sensing data such as CHIRPS
rainfall data can be incorporated with ground-based observational data and social media
data in urban FSM [61]. Differences in spatial and temporal resolutions among datasets
may create inconsistencies in urban FSM analysis. For example, fine-resolution topo-
graphic data may not align with coarse-resolution precipitation/land use land cover data.
Therefore, integrating topographic, precipitation, and other flood-influencing datasets at
comparable spatial and temporal scales is essential in urban FSM analysis. For land use
land cover datasets, MODIS data with a resolution of 500 m are suitable for broad regional
assessments [81]; however, they lack detailed coverage of the urban environment, whereas
Sentinel-2 data with a resolution of 2 m offer greater granularity and details of smaller
features [23]. For some regions, these high-resolution datasets present challenges in terms
of computational demand, storage constraints, and potentially high costs. Therefore, some
studies gather more information about the landscape of the study area and utilize Landsat
8, TM/ETM, and OLI data to calculate the normalized difference vegetation index (NDVI)
and normalized difference built-up index (NDBI) to evaluate vegetation coverage and
spread of impervious surface areas for urban FSM [105,107,109].

Environmental pollutants, such as aerosols, particulate matter, and smog, can signifi-
cantly impact the quality of remote sensing data, often leading to inaccuracies in reflectance
values. These pollutants can also alter the spectral signatures of surface features, making it
difficult to differentiate between various land cover types. Optical sensors face additional
challenges from clouds, particularly thick or persistent ones, which can obstruct data col-
lection over large areas, especially in regions with frequent or seasonal cloud cover. To
address these issues and enhance the accuracy, reliability, and usability of remote sensing
data, several post-processing techniques are applied. Atmospheric distortions caused by
pollutants can be corrected using methods like dark object subtraction. Georeferencing
ensures satellite images are aligned with a standardized coordinate system, facilitating ac-
curate mapping. Furthermore, techniques such as majority filtering and spatial smoothing
are employed to minimize minor classification errors and create a more uniform spatial
distribution of classified pixels.

6.3. Frequently Used Parameters by Region and Contribution to Urban FSM

Various sets of parameters and approaches have been used to map urban flood suscep-
tibility in the literature. The wide-ranging set of parameters in susceptibility mapping offers
researchers a robust perspective for evaluating the level of urban flood susceptibility. Un-
derstanding the strength and effectiveness of parameters is also important for researchers
for more accurate susceptibility analysis. Research on urban flood susceptibility generally
involves the use of 10-15 different parameters, such as slope, elevation, land use land cover,
rainfall, distance from roads, distance from rivers, topographic wetness index (TWI), soil,
geology, etc. The selection of parameters typically depends on the topography, hydrology,
and climatic and meteorological characteristics of the study area and the suitability of
available datasets. The most frequently used parameters in urban FSM are listed in Figure 6.
While some researchers have noted that rainfall, soil, and land use land cover are the most
useful parameters for urban FSM [157], some researchers have shown that land use land
cover and altitude are the most effective parameters [80].
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If urban regions are located closer to mountainous areas or contain elevation differ-
ences, elevation, relative elevation, or slope gradient can be very effective parameters for
urban FSM in those regions [145]. Tianhe and Panyu are two different districts of Guang-
dong Province, China. Tianhe city has high elevation in the northern part and low elevation
in the southern part. Owing to this high elevation difference, elevation plays a crucial
role in urban FSM in this area. Thus, in [104], researchers utilized slope, relative elevation,
and standard deviation of elevation with other flood-conditioning factors in urban flood
susceptibility analysis in this area. In contrast, slope is not the most effective parameter for
urban FSM in flat regions [245]. If an urban region contains major water bodies, drainage
density/distance to river can be a very effective parameter for urban FSM [60,73,116].
Therefore, the “distance from river/water bodies” or “drainage/channel/river density” is
considered an important parameter in mapping urban flood susceptibility in these regions.

Rainfall is one of the most prominent drivers of urban flooding and its intensity,
duration, frequency, and spatial distribution play important roles in urban FSM in various
geographic regions [246]. Urban FSM in high-latitude regions should consider seasonal
rainfall and its interaction with snowfall and melting patterns [247,248]. On the other
hand, urban FSM in mountainous regions should account for spatial rainfall variability and
rainfall intensity [145,249]. In addition, urban FSM in coastal regions must account for the
frequency of intense rainfall alongside the tide level and rainfall intensity [250,251]. The
effectiveness of land use land cover in urban FSMs is universally important, as it provides
essential information for identifying critical areas for intervention [252]. However, it needs
to be supplemented with region-specific factors such as soil type, drainage density, and
geology to ensure robust urban FSM analysis [253].

Researchers have used more than 30 parameters in urban FSM analysis in different
regions. Among the studies we have included in our review, 88% of them incorporate slope
in urban FSM analysis, followed by elevation (74%), land use land cover (63%), rainfall
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(57%), distance from water body (53%), soil properties (43%), TWI (40%), geology (29%),
drainage density (28%), curvature (23%), aspect (20%), normalized difference vegetation
index (18%), stream power index (17%), and distance from roads (17%). This preference rate
also aligns with other studies [2]. The frequency and significance of these indicators stems
from its direct and indirect influence on the hydrological, geological, and anthropogenic
factors governing urban flood dynamics.

6.4. Urban FSM Model Performances

The approaches researchers have used for urban FSM are very different from one
another on the basis of their expert opinions and ease of application. These approaches
have their own strengths and weaknesses and can produce various uncertainties in urban
FSM. Therefore, the approaches selected for urban FSM represent the spatially continuous
and cumulative nature of the influence of parameters on the flood susceptibility mechanism.
In addition, the selection of an appropriate methodology also depends on the spatial scale
and availability of large/historical datasets, computational resources, and specific objective
and accuracy requirements. For example, to implement machine learning models such as
support vector machines, random forests, and artificial neural networks, large datasets
are needed to train the models [153,199,254]. The most frequently used methods and their
advantages and limitations in urban FSM are listed in Table 2. Although no single method
is universally superior for urban FSM, combining different approaches can significantly
enhance the accuracy and reliability of flood susceptibility assessments.

Researchers have utilized 2–3 different machine learning models to map urban flood
susceptibility and compare and validate the results for better accuracy [61,73,103,104,255].
These integrative approaches help improve the precision of urban FSM and support
the development of more robust and effective urban flood management and mitigation
strategies [256,257]. Urban flooding is the outcome of multiple factors, including changes
in land use land cover, deforestation, overwhelming drainage capacity, and climate change
effects [258]. Therefore, the associations between flood occurrence and flood-conditioning
factors are complex and nonlinear [259]. Researchers have reported that flood events
usually have a nonlinear structure because of their complex mechanism [2,142,199,260,261].
These nonlinear flood characteristics have prompted researchers to move from traditional
methods to advanced soft computing methods which offer higher accuracy in urban FSM [2].
When the predictors and target variables are nonlinear and complex, ML models surpass
statistical models in terms of accuracy [73].

Researchers have compared various model performances in urban FSM and high-
lighted that decision tree based machine learning (ML) models perform better compared to
frequency ratio models, where the random forest model is considered one of the best ML
models, with an accuracy of 85% [73]. This finding is also consistent with various natural
hazard susceptibility analyses [262–264]. Studies have utilized support vector machines
and highlighted their robustness in handling nonlinear data, which reflects a consistent ac-
curacy of approximately 85% to 87% depending on the urban landscape [142,181]. In [103],
the authors incorporated both a support vector machine (SVM) and convolutional neural
network (CNN) and reported that the CNN performed slightly better than the SVM model.
The authors of [105] also highlighted that random forest and extreme gradient boosting (XG-
Boost) demonstrate better performance in urban FSM, achieving a model accuracy greater
than 80%. Some studies have used artificial neural networks (ANNs) and highlighted that
ANNs are very sensitive to noise and may overestimate highly flood-susceptible areas [105].
In [18], the authors utilized logistic regression (LR), frequency ratio (FR), Shannon’s entropy
(SE), and certainty factor (CF) to map urban flood susceptibility, and the LR performed
better than the other models and the prediction rate was 75.4%. The authors of [169] also



Remote Sens. 2025, 17, 524 23 of 37

reported similar results, and the LR prediction rate was 76%. Studies frequently use the
analytical hierarchy process (AHP), which is based on individual judgment and expert
opinions, to rank the parameters [23]. As there is a great chance of developing unreliability
while applying the AHP, researchers utilize a consistency ratio (CR) to validate the ranking
and the CR is considered acceptable if it is less than 0.1 [23,60]. In [79], the authors utilized
evidential belief function (EBF) and fuzzy gamma operator (FGO). FGO performed better
than EBF and the model accuracies were 71% and 69%, respectively.

In urban FSM, there is a qualitative difference between traditional and deep learning
training samples [265,266]. Traditional methods such as analytical hierarchy process (AHP)
and logistic regression depend on low-dimensional and structured datasets [117], whereas
deep learning models require multidimensional and large datasets, which allows them to
capture more complex interactions [83,267]. Deep learning models are capable of detecting
nonlinear relationships and accommodating greater variability in flood causative parame-
ters while training the datasets [220,268]. This helps to capture fine-grained spatial patterns
and temporal dynamics in urban flood susceptibility. Owing to their ability to leverage and
learn high-dimensional and complex datasets, deep learning models have shown higher ac-
curacy in urban FSM particularly in densely populated urban areas [142,269]. On the other
hand, traditional methods are effective in handling small and structured data; however,
they often struggle to capture flood dynamics in complex urban landscapes and where flood
causative parameters are interconnected. Therefore, traditional approaches pose quality
challenges related to the training samples used in urban flood mapping approaches [171].

Table 2. Frequently used methods to map urban flood susceptibility and their advantages and
limitations.

No. Methods Advantages Limitations Accuracy Remarks

1 Analytical
hierarchy process

Simple and cost-effective approach. It
does not require complex mathematical
models and sophisticated
computational resource [118].
Allows for the assignment of various
weights on flood causative factors based
on their importance [60].

Time-consuming for large datasets.
Sensitive to weight changes.
Limited control in real-time data.
High subjectivity as it relies on
expert opinions.

Model accuracy based
on AUC is 84–87.3%
[84,88]

2 Support vector
machine

Useful in working complex and
nonlinear datasets [109].
Can handle both binary (flooded vs.
non-flooded) and
multi-class classification.

Requires historical/large flood
datasets to train the model.

Model accuracy based
on AUC is
82–96.2% [105,199,270]

3 Artificial neural
network

Very effective in capturing complex and
nonlinear datasets [191].

Computationally intensive and
prone to overfitting with
limited data.

Model accuracy based
on AUC is 83% [105]

4 Random forest
Can handle missing data without
significant loss in performance, which is
useful in urban flood mapping [105].

In areas with minimal historical
flood records, RF might not
perform effectively.

Model accuracy based
on AUC is 85–96%
[73,105,112]

5 Weighted overlay

Simple and easy to implement.
Weights can be adjusted based on expert
opinion, local knowledge, and empirical
data, making it feasible to adjust the
model to specific urban conditions [23].
This approach is effective for analyzing
large areas because it can combine
multiple layers of spatial data into one
output layer [126].

Weights remain constant for entire
study area.
Use can be challenging in urban
environments where the influence
of flood causative factors may vary
in different locations.
Mostly relies on expert opinions.

Model accuracy based
on AUC is 87.5% [80]
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Table 2. Cont.

No. Methods Advantages Limitations Accuracy Remarks

6 Logistic
regression

Compared to complex ML models,
logistic regression can work effectively
on smaller dataset [110].
Urban flood mapping often deals with
two classes (flood-prone areas and
non-flood-prone areas); LR is suitable
for these classification problems.

If the dataset is too small, it can
overfit the model. Model assumes
linear relationship with variables.

Model accuracy based
on AUC is
92–93% [199,270]

7 Frequency ratio
Can be less effective when working with
high-dimensional data with many flood
causative factors [18].

FR is not a good fit if historical
flood data are unavailable.

Model accuracy based
on AUC is
72–89.5% [73,270]

8 Extreme
gradient boosting

Popular due to high prediction
accuracy [105].
Can handle large numbers of datasets
without significant degradation in
performance. Less sensitive to
missing data.

Risk of overfitting training data.
Model accuracy based
on AUC is
84–87% [73,105]

9 Multi-criteria
decision analysis

Provides a structured framework for
integration of multiple flood
causative factors.

Mostly relies on expert opinions,
which can create a bias [116].

Model accuracy is
92% [271]

10
Convolutional
neural
network

Can handle complex (spatial, temporal,
and textual) datasets, making it suitable
for urban FSM [103].
Automatically learns hierarchical
features from the input data, which
makes it useful for urban FSM.

Model performance heavily
depends on quality of input
data [104].

Model accuracy based
on AUC is 87% [112]

11 Fuzzy technique

Can be easily integrated with GISs,
allowing for spatial representation and
detailed analysis of flood
susceptibility [189].
Does not require large datasets
for training.

Cannot capture spatial correlation
between neighboring areas [87].

Model accuracy based
on AUC is 91.6% [272]

12 Gradient boosting
Allows for fine-tuning hyperparameters
to optimize performance for specific
flood mapping tasks [107].

Can be very sensitive to noisy
data [73].

Model accuracy based
on AUC is 83% [73]

6.5. Urban FSM Model Validation

Accurately mapping urban flood-susceptible zones and model validation are crucial
tasks in urban FSM. In one study, researchers utilized a range of validation approaches to
evaluate the performance of machine learning (ML) and other models in urban FSM. The
researchers employed multiple DT-based ML models, namely, DT, adaptive boosting (Ad-
aBoost), gradient boosting (GdBoost), extreme gradient boosting (XGBoost), and random
forest (RF) models for urban FSM, as well as various validation techniques, including the
confusion matrix, K-fold cross validation, overall accuracy, precision recall, AUC curve, and
F-1 score, to select the best-performing decision tree-based machine learning models [73].
The AUC value is highest for the RF model (0.85), followed by AdaBoost (0.74), GdBoost
(0.83), and XGBoost (0.84). The researchers utilized the K-fold cross validation method to
validate training samples, and this method is useful, particularly when the sample size is
small [273]. K-fold cross validation revealed that RF achieved the highest mean score of
0.80, followed by XGBoost (0.77), GdBoost (0.75), and AdaBoost (0.73) [73].

Another study utilized random forest, naïve Bayes, and extreme gradient boosting for
urban FSM and employed the kappa index, mean absolute error, RMSE (root mean square
error), and Pearson’s correlation coefficients to validate the efficiency of machine learning
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model performances in urban FSM [274]. Among them, the highest-performing model was
random forest (84.7%), followed by the XGB model (83.1%) and the naïve Bayes model
(82.1%). Another study validated urban FSM generated by the AHP (analytical hierarchy
process) approach using the AUC (area under the curve) and achieved AUC values of 0.84
or 84%, which represent very good accuracy [84]. This finding also aligns with other urban
FSM studies too [275,276]. Another urban FSM study which employed AHP reported AUC
values greater than 0.90, which represents excellent accuracy [277]. Different studies have
employed sets of various validation approaches to evaluate model performances; however,
no single validation method is universally superior. While diverse validation metrics
provide valuable insights into model performance, their application should be tailored
to the specific dataset and context. Employing multiple validation methods enhances
confidence in the results and ensures robust decision-making in urban FSM.

6.6. Urban FSM Challenges

There are several limitations in the current state of urban FSM, particularly in regions
where data availability is limited.

Scarcity of hydrological/meteorological data: Data scarcity and complex urban mech-
anisms are two major obstacles in urban FSM [145]. Sometimes, the lack of data on
hydro-meteorological and hydraulic characteristics makes it challenging to understand
urban flood mechanisms. In some regions, historical flood data, up-to-date meteorological
data, and drainage system data are not easily accessible, which hinders the development of
reliable flood susceptibility models in these regions.

Availability of high-resolution RS data: One notable challenge is the lack of available
high spatial and temporal resolution data, which is crucial for more accurate urban FSM.
For example, it is difficult to obtain very high-resolution spatiotemporal rainfall data and
detailed sewer drainage lines in developing nations. Integrating data from multiple sensors
and using global datasets may solve this issue.

Integration of diverse datasets: Another challenge lies in integrating diverse data
sources, such as ground survey data, social media data in urban FSM analysis. These
data sources vary in scale, format, and quality and pose challenges in combining them in
urban FSMs. While social media and real-time data have emerged as valuable resources
for urban flood mapping, their integration into current urban FSM remains underutilized.
Standardizing the data formats and projections while performing data preprocessing can
reduce this problem in urban FSM analysis. The incorporation of these data sources could
significantly increase the precision and accuracy of urban flood susceptibility assessments
by providing timely and localized information that traditional data sources may not capture.
The development of standardized approaches for integrating these heterogeneous data
sources will ensure more reliable and comprehensive urban flood susceptibility assessments.
Future research should focus on effectively integrating these dynamic data sources to
improve urban flood mapping approaches.

Model accuracy: Urban FSM analysis output may introduce accuracy issues due to
the complexity of urban landscapes, diverse data sources, and varying model assumptions.
Integrating multiple models and comparing model performances will help identify the
discrepancies and increase the accuracy.

7. Conclusions
Urban FSM is an effective risk reduction strategy for hazard management, particularly

as urbanization and climate change intensify flood risks globally. This paper provides an
in-depth overview of urban FSM approaches, focusing on the effectiveness, strengths, and
limitations of traditional, data-driven, and advanced big data approaches. It explores the
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suitability of remote sensing datasets and flood causative parameters and their relationships
with flood events in various regions. Our comprehensive analysis revealed three major
challenges in urban FSM implementation: (1) the complexity of built-up environments
that create unique flood dynamics, (2) the limited availability of high-resolution data in
many urban areas, and (3) the need for better integration of multiple data sources to
capture diverse flooding mechanisms. Additionally, our study also serves as a resource
for researchers, urban planners, and policymakers, helping them better understand urban
flood susceptibility mapping and enhance resilience through informed decision-making.

The novelty of this work lies in its emphasis on selecting flood susceptibility parame-
ters based on the landscape and hydrological characteristics of each study area, as well as
the fusion of cutting-edge multidisciplinary approaches to enhance mapping accuracy and
precision. It provides a comprehensive overview regarding the suitability of remote sensing
datasets for urban FSM in varying geographic and topographic characteristics in urban
contexts. This work provides valuable insights for improving future urban FSM research,
such as (1) developing standardized protocols for urban flood parameter selection based
on local contexts, (2) establishing open access platforms for high-resolution urban data
sharing, and (3) creating frameworks for integrating multiple data sources and modeling
approaches. These steps will enable urban planners and policymakers to better implement
FSM for enhanced flood resilience across diverse urban settings.

Future research should explore holistic approaches that integrate both local and re-
gional flood causative factors to increase the accuracy and reliability of urban FSM. The
combination of machine learning techniques with hydrological models also offers signifi-
cant potential, particularly in scenarios with limited data availability. The incorporation of
flood data from local communities, such as geotagged photos and real-time flood reports,
can aid official flood mapping and improve the precision and accuracy of future flood
susceptibility mapping. Moreover, future research should also incorporate various climate
change and land use land cover projection scenarios into urban FSM for resilient urban
planning strategies and mitigating potential losses.
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