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Abstract: Accurate quantification of gross primary production (GPP) at regional and 

global scales is essential for carbon budgets and climate change studies. Five models, the 

vegetation photosynthesis model (VPM), the temperature and greenness model (TG), the 

alpine vegetation model (AVM), the greenness and radiation model (GR), and the MOD17 

algorithm, were tested and calibrated at eight sites in China during 2003–2005. Results 

indicate that the first four models provide more reliable GPP estimation than MOD17 

products/algorithm, although MODIS GPP products show better performance in 

grasslands, croplands, and mixed forest (MF). VPM and AVM produce better estimates in 

forest sites (R2 = 0.68 and 0.67, respectively); AVM and TG models show satisfactory GPP 

estimates for grasslands (R2 = 0.91 and 0.9, respectively). In general, the VPM model is the 

most suitable model for GPP estimation for all kinds of land cover types in China, with R2 

higher than 0.34 and root mean square error (RMSE) lower than 48.79%. The relationships 

between eddy CO2 flux and model parameters (Enhanced Vegetation Index (EVI), 

photosynthetically active radiation (PAR), land surface temperature (LST), air temperature, 

and Land Surface Water Index (LSWI)) are further analyzed to investigate the model’s 
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application to various land cover types, which will be of great importance for studying the 

effects of climatic factors on ecosystem performances. 

Keywords: gross primary production (GPP); MODIS; eddy covariance; model 

comparison; ChinaFLUX; land cover types 

 

1. Introduction 

Gross primary production (GPP), defined as the total amount of carbon dioxide fixed by plants in 

photosynthesis, is the first step in the input of atmospheric CO2 to terrestrial ecosystems [1–3]. GPP is 

a key component of the carbon biogeochemical cycle that links atmospheric CO2 and terrestrial 

ecosystems. Therefore, accurate and synoptic GPP quantification at regional and global scales can 

improve our understanding about the mechanisms of carbon budgets and global climate change. 

The eddy covariance (EC) technique measures net CO2 exchange, which can provide valuable 

information for developing and validating GPP models at ecosystem scale [4,5]. Satellite remote 

sensing can provide continuous, repetitive, and consistent observations of dynamic changes in 

terrestrial ecosystem structure and function over large areas; it has become a more and more important 

tool for monitoring land surface properties. A number of remote sensing-based GPP models have been 

proposed, including the MOD17 algorithm [6], the vegetation photosynthesis model (VPM) [7], the 

temperature and greenness (TG) model [8], the physiological principles for predicting growth  

(3-PG) [9] model, the eddy covariance light use efficiency model (EC-LUE) [10], the vegetation index 

(VI) model [11], the alpine vegetation model (AVM) [12], and the greenness and radiation model 

(GR) [13,14], etc. These GPP models can be generally classified into two categories. The first category 

includes models that employ the maximum light use efficiency (LUE)—VPM, MOD17, and  

EC-LUE—which require many ground meteorological observations (and LOOKUP tables based on 

vegetation types) as input variables. The demand of these variables is a bottleneck for the model 

application. The second category of GPP models, such as TG, VI, and GR, are those entirely based on 

the relationships between remote sensing data and key factors affecting photosynthesis. Though the 

second category of models reduces or avoids dependence on ground meteorological observations, the 

ecological meaning of the model parameters is not so clear; model results may not be as good as with 

the first category. Substantial variations and uncertainties exist in the GPP estimations from different 

models. Therefore, it is essential to analyze the dependence of GPP models on climate variables and 

compare the model performances in different eco-regions with diverse canopy structures and 

climate characteristics. 

Though there are lots of studies focusing on GPP estimations in China using different models—for 

example, Li et al. [15] estimated GPP in the Tibetan Plateau using MODIS images and climate data; 

Li et al. [12] estimated GPP of alpine grasslands using AVM model; and Gao et al. [5] reported a 

MODIS-based Photosynthetic Capacity Model to estimate GPP in Northern China and the Tibetan  

Plateau—there are very few studies focusing on comparing and evaluating these models in different 

land cover types in China. The most suitable GPP models should be chosen and calibrated for 

application in different ecosystems. 
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In this paper, five GPP models, i.e., the VPM, TG, AVM, GR, and MODIS GPP algorithm 

(MOD_ALG), will be tested and calibrated at five land cover types (eight sites) in China using MODIS 

image, climate variables, and CO2 flux measurements during 2003–2005. The objectives of this study 

are: (1) to calibrate different GPP models in different eco-regions in China; (2) to apply the ground 

flux measured data and MOD17 to give a full evaluation of different GPP models; and (3) to compare 

the model accuracies and examine the parameters (key control factors) and sensitivities during 

photosynthesis. These analyses will improve quantification of the temporal changes in GPP in typical 

ecosystems in China. 

2. Data and Methods 

2.1. Study Sites and Flux Measurements 

The carbon flux observed data (net ecosystem exchange (NEE) and ecosystem respiration (Re)) and 

meteorological data (air temperature and photosynthetically active radiation (PAR)) for 2003–2005 

were downloaded from the ChinaFLUX website [4,16]. The measured GPP (gC/m2/d) was then given 

by subtracting Re from NEE as: GPP = NEE − Re. The daily data were integrated based on the filled 

half-hourly values [4,16]. More information about original observed half-hour values can be found at 

Yu et al. [4] and Gao et al. [5]. Finally, eight-day flux observed data from calculations of daily data 

were used for calibrating and validating GPP models. In this study, eight sites in five different land 

cover types were used: croplands (YuCheng (YC) in Shandong province), grasslands (XiLinGuoLe 

(XLGL) in Inner Mongolia autonomous region, HaiBei (HB) in Qinghai province, and DangXiong 

(DX) in Tibet autonomous region), mixed forests (ChangBaiShan (CBS) in Jilin province), evergreen 

needleleaf forests (QianYanZhou (QYZ) in Jiangxi province), and evergreen broadleaf forests 

(DingHuShan (DHS) in Guangdong province and XiShuangBanNa (XSBN) in Yunnan province). A 

brief description of these sites is presented in Table 1 and Figure 1. All effective measurements were 

divided into two groups: one for model calibration, including 70% of all the data (randomly chosen), 

and the remainder for validation. 

Table 1. A brief description of eight flux sites in this study.  

Sites ID Lat(°N) Lon(°E) Data Range Land Cover 

CBS 42.40 128.10 2003–2005 MF 

DHS 23.17 112.53 2003–2005 EBF 

QYZ 26.75 115.67 2003–2005 ENF 

XSBN 21.90 101.27 2003–2005 EBF 

YC 36.95 116.6 2003–2005 Croplands 

HB 37.62 101.32 2003–2005 Grasslands 

XLGL 43.63 116.70 2003–2004 Grasslands 

DX 30.83 91.12 2003–2004 Grasslands 

  



Remote Sens. 2014, 6 10218 

 

 

Figure 1. Spatial distributions of eight flux sites in this study. EBF: evergreen broadleaf 

forests; ENF: evergreen needleleaf forests; MF: mixed forests. 

 

2.2. MODIS Data 

In order to test and validate GPP models at the flux sites, MODIS products (collection 5, including 

eight-day surface reflectance MOD09A1, eight-day MOD17, and eight-day land surface temperature 

(LST) product) in the period of 2003–2005 were downloaded [17]. MOD17 values were calculated 

using the following algorithm: 

GPP	= εmax	×	fሺTminሻ × fሺVPDሻ × FPAR × SWrad × 0.45 (1)

where εmax is the maximum LUE obtained from LOOKUP table on the basis of vegetation type [17]. 

The attenuation scalars fሺTminሻ  and fሺVPDሻ  are simple linear regression functions of daily 

minimum temperature (Tmin) and vapor pressure deficit (VPD), and values of Tmin, VPD and SWrad 

were obtained from the Date Assimilation Office (DAO) dataset [6,17]. MOD09A1 (500 m spatial 

resolution) was calculated from MODIS level 1B, which provides seven spectral bands: red (620–670 nm), 

NIR1 (841–876 nm), blue (459–479 nm), green (545–565 nm), NIR2 (1230–1250 nm),  

SWIR1 (1628–1652 nm), and SWIR2 (2105–2155 nm) [18]. Based on MOD09A1, we computed the 

Land Surface Water Index (LSWI) [19] and Enhanced Vegetation Index (EVI) [20], respectively. 

LSWI = 
NIR1 – SWIR1

NIR1 + SWIR1
 (2)

EVI = 
NIR1 – red

NIR1 + 6 × red – 7.5 × blue + 1
 (3)

The S-G filter was used to smooth the noise of remote sensing data induced by cloudy and 

atmospheric contaminations [21]. Based on latitude and longitude information of eight flux sites, 

MOD17, LST, EVI, and LSWI at eight-day composites were finally extracted from 3 × 3 km (3 × 3 
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pixels for 1 km spatial resolution data and 6 × 6 pixels for 500 m spatial resolution data) around the 

center of flux towers [11,22,23].  

2.3. Model Descriptions 

2.3.1. The AVM 

The AVM model developed by Li et al. [12] is based on the EVI and air temperature. An important 

finding is that daily variance of GPP in alpine meadows during the growing season can be expressed in 

terms of EVI and air temperature. AVM has only been tested in alpine grasslands and the model 

calibration in the other ecosystems is still unknown. The AVM is expressed as: 

GPP	=	m × EVIscaled × Tscaled (4)

where m is a conversion coefficient with the unit of gC/m2/eight-day, and EVIscaled is given by: 

EVIscaled = EVI – EVIbase (5)

where EVIbase is set to be 0.15 [12]. When EVI is less than EVIbase, EVIscaled is set as 0. Tscaled is the air 

temperature stress factor: 

Tscaled	=	(Ta –Tmin)/(Tmax –Tmin) (6)

where Ta is the mean air temperature for each eight-day period; Tmin and Tmax are the biological 

minimum and maximum temperature during the growing season, respectively (Table 2). If Ta is less 

than Tmin, Tscaled is set as 0. 

2.3.2. The GR Model 

The GR model introduced by Gitelson et al. [13] has shown high potential for estimating GPP in 

croplands. Wu et al. [24] calibrates this model and successfully applies it to forest ecosystems. The GR 

model can be scaled up using a remote sensing vegetation index as a proxy for the total 

chlorophyll content: 

GPP = m × VI × PAR (7)

In this study, m is an empirical coefficient with the unit of gC/MJ/eight-day, and VI is EVI. The 

incoming PAR is acquired from the meteorological observations. 

2.3.3. The TG Model 

The TG model, developed by Sims et al. [8], estimates vegetation GPP using MODIS, LST, and 

EVI products. An important merit of this model is the independence of climate variables. GPP is 

estimated as a product of the scaled EVI and scaled LST: 

GPP = m × EVIscaled × LSTscaled (8)

here, m is a scalar with the unit of gC/m2/eight-day, and EVIscaled has a function similar to that of the 

AVM, but EVIbase is set to be 0.1 [8,11]. 



Remote Sens. 2014, 6 10220 

 

 

The LSTscaled is based on the determination of optimum temperature for GPP. GPP presents a 

maximum value for the LSTscaled of 1.0 when LST is equal to 30 °C and a minimum value of 0 when 

LST declines to 0 °C or increases to 50 ºC. 

LSTscaled	=	min[ ൬LST

30
൰ ; (2.5 – 0.05 × LST)] (9)

2.3.4. The VPM 

The VPM assumes that leaves and plant canopies are composed of photosynthetically active 

vegetation (PAV, mostly chloroplast) and non-photosynthetic vegetation (NPV, mostly senescent 

foliage, branches, and stems) [7]. Based on the conceptual partitioning of PAV and NPV within the 

canopies, the VPM was built as follows: 

GPP	= ε × FPAR × PAR, (10)

where FPAR is the fraction of PAR absorbed by the plant canopy, the product of FPAR and PAR is the 

PAR absorbed by the plant canopy (APAR), and ε is the LUE.  

The VPM acquires biome-specific εmax from the literature or from the relationship between NEE 

and incident PAR; the temperature and water stress are chosen to down-regulate εmax. Thus, in the 

VPM, ε is described as: 

ε	=	εmax	×	Tscaled × Wscaled × Pscaled, (11)

where εmax is the maximum LUE; and Tscaled, Wscaled, and Pscaled are the down-regulation scalars for the 

efficiency of temperature, water, and leaf phenology on the εmax, respectively.  

Tscaled	=	 ሺTa – Tminሻ × (Ta – Tmax)ሺTa	–	Tminሻ × (Ta – Tmax) – (Ta – Topt)
2 (12)

here, Ta is the mean temperature for each of the eight days; Tmin, Tmax, and Topt are the minimum, 

maximum, and optimal air temperature for photosynthetic activities, respectively. If Ta falls below 

Tmin, Tscaled is set as 0. In this study, the values of Tmin, Tmax, and Topt can be seen in Table 2. 

Wscaled =
1 + LSWI

1 + LSWImax
 (13)

here, LSWImax is the maximum LSWI within the growing season. 

Calculation of FPAR depends upon a linear relationship with EVI. It is also a challenging variable 

in the VPM. 

FPAR = α × EVI (14)

generally, the coefficient α is set to be 1.0 [7]. 

Pscaled =
1 + LSWI

2
 (15)

during bud burst to leaf full expansion; Pscaled	=	1, after full leaf expansion. 
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Table 2. Models’ temperature parameters in different land cover types. Tmin, Tmax, and Topt 

are the biological minimum temperature, maximum temperature, and optimal temperature 

during the growing season. 

Tmin (°C) [8] Tmax (°C) [8] Topt (°C) [25]

CBS 0.0 50.0 20.7 
DHS 0.0 50.0 23.4 
QYZ 0.0 50.0 22.4 

XSBN 0.0 50.0 23.4 
YC 0.0 50.0 24.8 
HB 0.0 50.0 15.4 

XLGL 0.0 50.0 15.4 
DX 0.0 50.0 15.4 

2.4. Analyses 

Statistic indices, including coefficient of determination (R2), root mean square error (RMSE) as a 

percentage of the mean value (RMSE(%)), and bias (the difference between simulations and 

observations), were employed to evaluate the model performances. 

RMSE	= 
100

Xഥobs
	× ඨ1

n
× ൫Xsim_i – Xobs_i൯2

n

i=1

 (16)

here, തܺ௦ is the average of the observed values; Xsim_i and Xobs_i are the ith simulated and observed 

values, respectively; and n is the total number of samples. 

3. Results 

3.1. MOD17 Validations  

In this study, we first compared the MOD17 with the measured GPP (GPP_EC) (Figure 2). The R2 

equals 0.58 and RMSE equals 67.19% for the overall data between the GPP_EC and MOD17. For the 

five land cover types, MOD17 for grasslands generally shows a better correlation with GPP_EC, with 

R2 being 0.90. MOD17 for croplands and MF also show relative high correlations with the measured 

fluxes (R2 are 0.8 and 0.76, respectively); however, low correlations have also been found for ENF and 

EBF (R2 are 0.44 and 0.21, respectively). These differences may be due to the fact that the MOD17 

algorithm generally has a good performance when the measured GPP value is relatively small 

(GPP_EC < 40gC/m2/eight-day or lower). With increasing GPP_EC values, MOD17 gets more 

dispersive, especially in ENF and EBF. Although a previous study indicated that the MODIS algorithm 

was poor at estimating GPP in MF or open scrubland [26], our results show that MODIS-GPP 

performed better in MF but worse in EBF and ENF. 
  



Remote Sens. 2014, 6 10222 

 

 

Figure 2. Relationship between the flux measured GPP (GPP_EC, X-axis) and results of 

MOD17 (Y-axis) for five different land cover types. The dashed line indicates 1:1 line. The 

red solid line indicates a linear trend for all types.  

 

3.2. Calibration and Validation for Each Model 

Table 3 shows the statistic summaries for the results of AVM, GR, TG VPM, and MOD_ALG at 

the periods of calibration and validation. Each model performs well at most sites in the period of 

calibration, indicating that these models have potential to capture the physical process of GPP 

variations. For AVM, R2 values range from 0.29 (EBF) to 0.97 (MF) during the model calibration; 

RMSE varies from 25.98% in MF to 67.78% for croplands. It was discovered that AVM slightly 

underestimates GPP_EC for each land cover type from −0.64 gC/m2/eight-day (grasslands) to 

−16.78 gC/m2/eight-day (EBF). At the same time, R2 values vary from 0.26 in EBF to 0.83 in 

grasslands; RMSE varies from 46.31% in ENF to 114.92% in grasslands for GR model. The GR model 

also slightly overestimates GPP_EC in MF, croplands and grasslands, and underestimates GPP_EC in 

evergreen forests. A similar phenomenon has also been found at AmeriFlux sites [27]. For the TG 

model, R2 values range from 0.36 in EBF to 0.94 in MF; RMSE ranges from 25.58% in MF to 59.69% 

in croplands. The TG model generally underestimates GPP_EC, except in grasslands. For VPM, R2 

values range from 0.36 in EBF to 0.89 in grasslands; RMSE ranges from 41.23% in MF to 59.80% in 

grasslands. The VPM underestimates GPP_EC in most land cover types except for grasslands. For 

MOD_ALG, R2 values vary from 0.17 in EBF to 0.89 in grasslands; RMSE varies from 51.81% in 

croplands to 77.42% in EBF. MOD_ALG usually underestimates GPP_EC, except in grasslands and 

croplands. Parameters of the amount of carbon fixed in photosynthesis (m) or LUE (εmax) in different 

models for each land cover type are shown in Table 4. In MOD17 LOOKUP table [17], the εmax of MF, 

ENF, and grasslands (5.44 gC/MJ/eight-day, 8.06 gC/MJ/eight-day, and 5.44 gC/MJ/eight-day, 

respectively) are close to values of MOD_ALG, but the εmax of croplands (5.44 gC/MJ/eight-day) is 
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lower than the value of MOD_ALG, and the εmax of EBF (9.27 gC/MJ/eight-day) is lower than the value 

of MOD_ALG. The large variation of εmax in EBF and croplands suggest that more calibrations of LUE 

are necessary. 

In the process of model validation, the above five GPP models also perform well in most land cover 

types. R2 values are generally larger than those in model calibration, except in ENF and EBF; for 

example, R2 values are higher than 0.79 and 0.94 in MF and grasslands, respectively; R2 between 

measured and estimated GPP in croplands ranges from 0.76 for AVM to 0.91 for VPM. Interestingly, 

although GR, TG, and MOD_ALG do not show good performance in the model calibration for 

croplands, all three models show better results in the model validation. However, the validation 

performance in ENF is poorer than that in calibration. Extreme values existing in the periods of 

calibration and validation may explain the discrepancy. From the above analysis, we can conclude that 

the five models above can be used for GPP estimations in different ecosystems in China.  

Table 3. Model performances at the periods of calibration and validation. Unit of bias: 

gC/m2/eight-day. 

MF Croplands ENF EBF Grasslands 

Model Bias RMSE% R2 Bias RMSE% R2 Bias RMSE% R2 Bias RMSE% R2 Bias RMSE% R2 

Calibration 

AVM −5.28  25.98  0.97  −9.89  67.78  0.64  −16.14 48.91  0.72 −16.78  58.55  0.29  −0.64  55.22  0.90  

GR 7.70 51.72 0.82 13.13 61.31 0.77 −14.64 46.31 0.69 −16.55 58.90 0.26 6.50 114.92 0.83 

TG −1.76 25.58 0.94 −2.30 57.56 0.70 −12.98 43.66 0.65 −7.47 46.42 0.36 1.22 59.69 0.89 

VPM −5.30  41.23  0.87  −1.06  45.48  0.81  −16.29 48.52  0.75 −14.23  53.40  0.36  1.19  59.80  0.89  

MOD_ALG −6.46 58.43 0.73 3.98 51.81 0.76 −18.32 57.87 0.51 −27.33 77.42 0.17 1.30 58.57 0.89 

 Validation 

AVM −10.48  39.15  0.99  −9.62  56.77  0.76  −11.60 42.47  0.60 −13.68  46.81  0.20  1.07  36.40  0.96  

GR 3.53 37.51 0.89 8.29 42.74 0.88 −9.00 40.08 0.53 −10.92 41.83 0.27 7.40 76.40 0.94 

TG −7.55 36.49 0.95 −4.22 43.89 0.83 −6.83 33.68 0.61 −3.88 33.86 0.28 3.03 39.98 0.96 

VPM −8.97  40.16  0.94  −4.35  34.15  0.91  −11.51 42.94  0.60 −8.24  36.49  0.38  2.86  42.11  0.96  

MOD_ALG −9.99 57.16 0.79 0.60 40.12 0.85 −15.94 54.96 0.43 −21.78 61.34 0.19 2.21 40.92 0.94 

Table 4. Parameters of light use efficiency (LUE) (ߝ௫_VPM and ߝ௫_MOD_ALG) and 

the amount of carbon fixed in photosynthesis (m_GR, m_AVM, and m_TG) in different 

models for each land cover type.  

Land Cover Types 
m_AVM 

(gC/m2/Eight-Day) 

m_GR 

(gC/MJ/Eight-Day) 

m_TG 

(gC/m2/Eight-Day) 

ઽܠ܉ܕ_VPM 

(gC/MJ/Eight-Day) 

ઽܠ܉ܕ_MOD_ALG 

(gC/MJ/Eight-Day) 

MF 255.34 11.39 123.90 11.11 9.32 

Croplands 325.65 20.85 171.92 23.74 17.66 

ENF 130.29 7.37 74.24 8.08 7.41 

EBF 130.16 7.65 87.57 9.59 5.03 

Grasslands 222.39 6.82 87.02 8.83 6.95 
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3.3. Comparison among Results from Different Models 

3.3.1. Forest Sites 

In this study, AVM, GR, TG, and VPM generally provide better estimates than 

MOD17/MOD_ALG in different ecosystems, and the VPM and TG models produce the highest 

estimating accuracy (Table 5). Higher R2 values at MF for both models suggest that a combination of 

EVI and temperature can better capture the temporal change of GPP_EC, and the TG model produces 

lower RMSE and bias. Similar results have been reported by Wu et al. [11] for EBF sites: they used air 

temperature as a proxy of LST in the TG model and found that correlations were significantly 

improved. Because meteorological variables are not often available at the required temporal/spatial 

resolution, a TG model entirely based on remote sensing data shows great potential for estimating GPP 

at a regional or global scale. Meanwhile, the lower R2 values for all models in EBF suggest that this 

linear regression relationship may not be suitable for EBF sites. 

Apart from EVI and temperature, water stress is another important environmental factor influencing 

the actual LUE under unfavorable conditions for ENF. AVM brings a good GPP estimation (R2 = 0.67), 

and VPM produces a better estimation at ENF with R2 of 0.68, which may be due to water stress. GR 

and TG models provide lower values of RMSE and bias, but R2 (0.61) is obviously lower than those 

for AVM and VPM. 

3.3.2. Nonforest Sites 

Air temperature is not usually a limitation factor in temperate croplands for GPP estimations, so R2 

values for AVM and TG models are lower than those for VPM, GR, and MOD_ALG. VPM gives the 

best performance (R2 = 0.84 and RMSE = 42.24%), indicating that water may be another important 

influencing factor. 

AVM and TG models show satisfactory GPP estimates for grasslands (R2 = 0.91 and 0.9, 

respectively); RMSE values from both models are lower than MOD17/MOD_ALG. Li et al. [12] 

reported that AVM may be the optimum model to reflect GPP estimates when compared with the other 

four models in grasslands. The GR model generally overestimates GPP values due to the lack of 

EVIbased; VPM shows large uncertainty at higher GPP values. Therefore, EVI and temperature are 

more sensitive factors in GPP estimation in grasslands. 

Table 5. Performance of AVM, GR, TG, VPM, MOD17, and MOD_ALG models over the 

study period. Unit of bias: gC/m2/eight-day. 

MF Croplands ENF EBF Grasslands 

Model Bias RMSE% R2 Bias RMSE% R2 Bias RMSE% R2 Bias RMSE% R2 Bias RMSE% R2 

AVM −7.01 31.83 0.96 −9.80 64.52 0.68 −14.63 46.96 0.67 −15.75 55.18 0.27 −0.39 51.42 0.91 

GR 6.31 46.77 0.84 11.51 56.13 0.80 −12.76 44.43 0.61 −14.67 54.18 0.25 6.63 107.15 0.85 

TG −3.69 30.37 0.93 −2.94 53.64 0.74 −10.93 40.76 0.61 −6.27 42.92 0.34 1.48 55.72 0.90 

VPM −6.52 40.89 0.89 −2.16 42.24 0.84 −14.70 46.82 0.68 −12.24 48.79 0.34 1.43 56.25 0.90 

MOD17 −8.41 59.23 0.76 −4.83 80.87 0.80 −11.89 48.64 0.44 −10.07 53.48 0.21 −1.70 72.91 0.90 

MOD_ALG −7.64 58.04 0.75 2.85 48.43 0.79 −17.53 56.97 0.48 −25.48 72.82 0.16 1.43 55.02 0.90 
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3.4. Seasonal Variations of GPP for Each Site 

Figure 3 shows the seasonal variations of measured and estimated GPP using different models at 

eight sites in China during the study period. It is clear that GPP values generally increase from winter 

to summer; the averages of measured GPP in summer are 15.91, 75.89, 36.61, 55.95, 85.3, 66.09, 

38.88 and 8.7 gC/m2/eight-day for the XLGL, CBS, DHS, QYZ, XSBN, YC, HB, and DX sites, 

respectively. Different models play different roles in GPP estimation at each site (Figure 3); for 

example, all models (AVM, GR, TG, VPM, MOD17, and MOD_ALG) generally underestimated GPP 

values at XSBN during 2003–2005, while GR and TG models overestimated GPP values at the DX site. 

Large differences and uncertainties exist in the model performances at different sites in China, which 

will be discussed in detail in the next sections. 

Figure 3. Seasonal variations of measured and estimated GPP for each site during the study 

period (2004–2005 for XLGL and DX; 2003–2005 for CBS, DHS, QYZ, XSBN, YC, 

and HB). 

 

4. Discussion 

In this paper, five models (AVM, GR, TG VPM, and MOD_ALG) are used for GPP estimation at 

different land cover types in China. The first four models provided better results than the 

MOD17/MOD_ALG; different models also showed different GPP results at different land cover types. 

In order to further analyze the model performances at various land cover types, the correlations 

between measured eddy CO2 flux data and main model parameters (EVI, PAR, LST, air temperature, 

and LSWI) are investigated in this section. 

4.1. Impact of EVI and PAR on Photosynthesis 

A typical difference among the GPP models is the use of EVI. For example, EVI (a measure of 

canopy greenness) is selected as a proxy of fraction of photosynthetically active radiation (FPAR) in 



Remote Sens. 2014, 6 10226 

 

 

the VPM and GR models for calculating photosynthetically active radiation absorbed (APAR) by the 

vegetation canopy. However, EVI is directly used as an indicator of greenness and canopy 

photosynthetic capacity [28,29], such as in the AVM and TG models. 

We observe there is a good correlation between EVI and measured GPP; for example, the 

correlation coefficient (r) values are 0.82, 0.91, and 0.95 (P < 0.01) for croplands, grasslands, and MF, 

respectively, so EVI can be used for estimating GPP at grasslands and MF sites with high accuracy. 

However, r values between EVI and measured GPP at EBF and ENF are 0.41 and 0.55 (P < 0.01), 

respectively. Thus, more environmental factors (PAR, temperature, and water stress) should be 

considered as conditions for GPP estimation. On the other hand, the differences in r values for 

different land cover types suggest that EVI as a proxy of both LUE and FPAR is a good indicator for 

GPP estimation. 

There is a significant positive correlation between EVI and PAR for most land cover types except 

grasslands, indicating that PAR can be obtained from EVI for describing canopy photosynthetic 

capacity. At the same time, the variation in r value between PAR and measured GPP is higher than that 

between EVI and measured GPP at ENF sites, so a combination of PAR and EVI in the VPM model 

can produce a good estimation. As seen above, EVI can be a good indicator of GPP when there is a 

good correlation between EVI and GPP (r values > 0.9 for grasslands and MF), and PAR is more 

important when the correlation is not so good (ENF sites).  

4.2. Impact of LST and Air Temperature on Photosynthesis 

Previous studies indicated that temperature (an external stress factor) directly affects the vegetation 

phenology, which played a significant role in carbon accumulation. It is observed that there is a good 

correlation between LST and air temperature at each site with different land cover types (r > 0.8, 

P < 0.01). Most models used in this study (except GR) have considered the temperature effects, and the 

model performances indicate that temperature plays an important role in GPP estimations (Table 6). 

Meanwhile, it is discovered that using measured air temperature at the flux towers instead of LST can 

give a better GPP estimation for the TG model. Similar findings have also been reported by 

Wu et al. [11], as uncertainties in the satellite LST are excluded. Since MODIS LST provides a proxy 

of an average temperature across pixels, the TG model will be based entirely on remotely sensed 

variables without any ground meteorological input. According to the original TG model, LST is a 

useful measure of physiological activity in the top canopy leaves, which provide leaf cover great 

enough to avoid LST being significantly affected by soil surface temperature [8]. So the TG model 

shows a greater potential for GPP estimation in space. 

Meanwhile, both LST and air temperature show good correlations with PAR (r > 0.5) at various 

land cover types, especially croplands, grasslands, and ENF sites, where r values reach 0.7 , which 

indicates that temperature can provide the best estimation of PAR. Thus, the AVM and TG models can 

still produce satisfactory GPP estimates without considering the PAR in the model construction. 

4.3. Impact of Water Moisture on Photosynthesis 

As one of the external environmental factors, water stress has a significant impact on GPP 

estimations, especially during drought conditions. Our experiment shows that GPP is more sensitive to 
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water stress at croplands and ENF sites (r > 0.6，P < 0.01); the difference in r value between LSWI 

and GPP_EC is 0.77, higher than 0.73 (air temperature vs. GPP_EC) or 0.69 (PAR vs. GPP_EC), 

indicating that more water is required for croplands. 

Table 6. The correlation coefficient (r) values between various factors, including EVI, 

LST, LSWI, PAR, air temperature (Ta), and GPP_EC.  

LST LSWI PAR Ta GPP_EC 

Croplands 

EVI 0.52 ** 0.81 ** 0.46 ** 0.67 ** 0.82 ** 

LST - 0.30 ** 0.25 ** 0.96 ** 0.64 ** 

LSWI - - 0.41 ** 0.45 ** 0.77 ** 

PAR - - - 0.75** 0.69 ** 

Ta - - - - 0.73 ** 

GPP_EC - - - - - 

EBF 

EVI 0.23 ** 0.50 ** 0.34 ** 0.28 ** 0.41 ** 

LST - 0.03 0.59 ** 0.81 ** 0.54 ** 

LSWI - - 0.21 * 0.20 ** 0.29 ** 

PAR - - - 0.52 ** 0.42 ** 

Ta - - - - 0.44 ** 

GPP_EC - - - - - 

ENF 

EVI 0.52 ** 0.41 ** 0.57 ** 0.57 ** 0.55 ** 

LST - 0.50 ** 0.77 ** 0.92 ** 0.80 ** 

LSWI - - 0.59 ** 0.57 ** 0.53 ** 

PAR - - - 0.83 ** 0.80 ** 

Ta - - - - 0.89 ** 

GPP_EC - - - - - 

Grasslands 

EVI 0.46 ** 0.09 0.10 0.69 ** 0.91 ** 

LST - −0.61 ** 0.66 ** 0.90 ** 0.44 ** 

LSWI - - −0.28 ** −0.39 ** 0.14 ** 

PAR - - - 0.55 ** 0.16 ** 

Ta - - - - 0.65** 

GPP_EC - - - - - 

MF 

EVI 0.74 ** 0.22 ** 0.57 ** 0.82 ** 0.95 ** 

LST - −0.28 ** 0.75 ** 0.97 ** 0.74 ** 

LSWI - - 0.03 −0.15 ** 0.30 ** 

PAR - - - 0.75 ** 0.63 ** 

Ta - - - - 0.83 ** 

GPP_EC - - - - - 

* represents P < 0.05 and ** represents P < 0.01. 

4.4. Uncertainties, Errors, and Accuracies 

Generally, GPP_EC values are higher than MOD17 (Figure 2), which is consistent with 

Sims et al. [22] and Wu et al. [11]. It is reported that one significant limitation of the MOD17 

algorithm is the improper characterization of LUE, so MOD17 is found to have underestimated peak 

values of GPP_EC [11,22,30]. In MOD17 and MOD_ALG, the same FPAR and different climate 
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factors were used for estimating GPP. Table 3 and Table 5 show that MOD17 presents a comparable 

performance with MOD_ALG [6]. Through comparing flux measured climatic data with DAO data, 

Turner et al. [31] indicated that climatic data usually displayed good agreement for VPD and minimum 

temperature, but a high bias for DAO PAR. Therefore, we suggest that the uncertainty of climatic 

factors has little impact on MOD17. However, FPAR, as a key forcing variable of remote sensing, has 

a large uncertainty owing to the data qualities, thus it may be an important reason for underestimated 

peak values of GPP_EC [31–34]. Additionally, FPAR is derived from MODIS NDVI, which is 

sensitive to canopy background variations and saturates in areas with dense tree canopy, especially in 

the growing season [35,36]. 

It is known that the above GPP models are highly dependent on each climatic factor, including 

minimum, maximum, and mean temperatures, water vapor, and PAR, which may majorly affect the 

model uncertainties, errors, and accuracies. In addition, remote sensing data is easily affected by 

cloudiness and aerosols; further work should be carried out to improve the data quality. 

5. Conclusions 

The eight-day GPP at eight sites with different land cover types in China during 2003–2005 was 

estimated from five models, namely the VPM, TG, AVM, GR, and MODIS GPP algorithm 

(MOD_ALG), using climate variables, flux observations, and MODIS images. The above five models 

were calibrated and validated in different ecosystems. The first four models generally provided better 

estimates than MOD17/MOD_ALG, which indicates that they have potential to capture the physical 

process of GPP variations in China. Different models resulted in different GPP estimations. As far as 

the TG model is concerned, R2 ranged from 0.34 in EBF to 0.93 in MF; RMSE varied from 30.37% in 

MF to 55.72% in grasslands. The model performances have been compared at five land cover types 

and VPM may be the most suitable model for GPP estimation in China, with R2 ranging from 0.34 in 

EBF to 0.90 in grasslands. 

Different statistic indices for the five land cover types show that there are shifts of importance 

among various factors that determine the GPP variations. The impacts of EVI, PAR, LST, air 

temperature, and LSWI on photosynthesis have been further investigated for improving the model 

accuracies; for example, there is a good correlation between EVI and GPP for croplands, grasslands, 

and MF (r = 0.82, 0.91, and 0.95, respectively), while r values were only 0.41 and 0.55 (P < 0.01), 

respectively, for EBF and ENF. Thus, environmental factors (PAR, temperature, and water stress) 

should be considered carefully for GPP estimations in different ecosystems. Further research is needed 

to improve the model accuracy by studying the interactions between ecosystem and climatic variables. 

Spatial and temporal variations of GPP at the national scale will also be investigated in future. 
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