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Abstract: In an effort to minimize complex urban microclimatic variability within  
high-resolution (H-Res) airborne thermal infrared (TIR) flight-lines, we describe the 
Thermal Urban Road Normalization (TURN) algorithm, which is based on the idea of 
pseudo invariant features. By assuming a homogeneous road temperature within a TIR 
scene, we hypothesize that any variation observed in road temperature is the effect of local 
microclimatic variability. To model microclimatic variability, we define a road-object class 
(Road), compute the within-Road temperature variability, sample it at different spatial 
intervals (i.e., 10, 20, 50, and 100 m) then interpolate samples over each flight-line to 
create an object-weighted variable temperature field (a TURN-surface). The optimal TURN-
surface is then subtracted from the original TIR image, essentially creating a microclimate-
free scene. Results at different sampling intervals are assessed based on their: (i) ability to 
visually and statistically reduce overall scene variability and (ii) computation speed. TURN 
is evaluated on three non-adjacent TABI-1800 flight-lines (~182 km2) that were acquired 
in 2012 at night over The City of Calgary, Alberta, Canada. TURN also meets a recent 
GEOBIA (Geospatial Object Based Image Analysis) challenge by incorporating existing 
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GIS vector objects within the GEOBIA workflow, rather than relying exclusively on 
segmentation methods. 

Keywords: Thermal Urban Road Normalization (TURN); surface temperature; temporal 
variation; microclimatic variability; thermal infrared imagery; geographic objects; TABI 1800 

 

1. Introduction 

Thermal infrared (TIR) remote sensing entails the acquisition, processing and analysis of remote 
sensing data acquired in the thermal infrared region (3–14 µm) of electromagnetic spectrum [1]. 
Currently, non-military TIR satellite sensors have moderate to low spatial resolution capabilities (e.g., 90 
m ASTER, to 1.0 km NOAA-AVHRR). Consequently, studies using these data are typically limited to 
qualitative heat island analyses, rural-urban temperature comparisons and forest fire detection [2–7]. 
However, the availability of high-spatial resolution (H-Res) TIR airborne imagery (e.g.,  
ATLAS—Atmospheric Laboratory of Applications and Science: 10 m, TIMS—Thermal Infrared 
Multispectral Scanner: 2 m, and TABI—Thermal Airborne Broadband Imager: 0.5 m) have made it 
possible to perform micro-scale thermal mapping of urban areas [8–15]. Unfortunately, as the spatial 
resolution increases, the radiometric calibration of these images becomes ever more complex. This is 
increasingly apparent when:  

(i) estimating true kinetic temperature from sensor observed radiant temperature [8];  
(ii) identifying atmospheric attenuation [16];  
(iii) attempting to understand and mitigate the influence of microclimatic variability [17].  

A microclimate is a local atmospheric zone where local climate differs from its surroundings. It may refer 
to areas as small as a few square meters (for example: a garden bed) or as large as many square kilometers 
(for example: a grassland). Microclimatic variability represents the climatic differences in the local 
environment, typically defined at fine spatial, temporal and thermal resolutions [17]. Thermal resolution is 
defined as the smallest temperature difference that a TIR sensor is able to measure. Wind, precipitation and 
humidity are key microclimate components that influence thermal remote sensing. For example:  

(i) surface winds increase convective heat loss from ground objects and help the ground surface to 
cool down [18];  

(ii) precipitation forces earth objects to achieve a uniform temperature state [19], and  
(iii) increased humidity makes ground targets cooler [17].  

As a result, objects composed of similar materials but placed in different microclimatic conditions 
typically exhibit different temperatures. When sensing an urban surface, additional challenges are 
posed by the composite and heterogeneous nature of the surface itself, as well as the surrounding 
environment [20]. For example, as a part of the Heat Energy Assessment Technology (HEAT) project, 
Hay et al. [14] explicitly noted the varying effects of microclimate on TIR imagery as well as the need 
to normalize for them when comparing urban rooftop temperatures. 

A number of studies have attempted to address the impact of microclimate on TIR remote sensing. 
Friedl and Davis [21] used TIR data from the NS001 Thematic Mapper Simulator (TMS) and  
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helicopter-based multi-band radiometer measurements, in association with concurrent measurements of 
land surface energy balance components and in situ surface temperature measurements to identify sources 
of variation in radiometric surface temperature on mixed vegetation. They concluded that the amount of 
moisture significantly alters the radiant surface temperature, thus it needs to be accounted for, to accurately 
estimate land surface energy fluxes. Lagourade et al. [22] used a TIR camera (INFRAMETRICS Model 
7601) placed aboard a small aircraft to conduct a thermal forest canopy survey and found that wind speed 
strongly influenced the remote measurement of surface brightness temperature—a measure of thermal 
radiation travelling upward from the earth’s surface. As a result, they only collected data under low wind 
conditions. Similarly, Crippen et al. [23] found that when filling voids in SRTM digital elevation models 
(using a night-time ASTER thermal dataset), that microclimatic effects were one of the major sources of 
error in their TIR imagery, and that an abrupt deviation in surface temperature could be found even within 
a 100-meter distance. This is notable, as the TIR spatial resolution of ASTER is 90 m, thus they were 
referring to an abrupt temperature variation over a single pixel. 

Several researchers have attempted to develop methods to mitigate the influence of microclimatic 
on TIR imagery [20,21]. However, there are a number of limitations to these. In particular: 

(i) they primarily focus on a single microclimatic component, like wind speed, or humidity—thus, 
they are unable to mitigate the integrated impact of microclimate components as a whole;  

(ii) they are developed for homogeneous vegetated, or sea surfaces—thus they are unable to handle 
the complexity of heterogeneous urban surfaces, and  

(iii) they are developed for moderate, to low resolution imagery, which do not account for fine 
details, especially those found in H-Res urban imagery.  

In an effort to overcome these limitations, the objective of this paper is to develop an automated 
GEOBIA method to mitigate the integrated influence of local microclimatic variability within an  
H-Res airborne thermal infrared scene. The geospatial object-based image analysis (GEOBIA) 
paradigm allows a user to integrate a broad spectrum of different object features such as size, shape, 
tone, pattern, association, and texture into the analysis process [24]. With the advancement of digital 
cartography and GIS technology, semi-automated and automated methods of geo-object-based image 
analysis are becoming an important component in the remote sensing image analyst’s tool kit, which 
places the emphasis on geographic objects rather than planets, or cells [25]. 

To provide a GEOBIA solution to mitigate the microclimatic impact on TIR imagery, we introduce 
a unique method referred to as Thermal Urban Road Normalization (TURN) and test it on three  
non-adjacent TABI-1800 flight-lines. A TURN normalized flight-line is expected to display more 
consistent temperatures within the flight-line so that similar objects can be better classified, compared 
and assessed. In order to fully evaluate TURN, the proceeding sections describe the study area and 
dataset (Section 2), followed by a detailed explanation of how TURN is developed (Section 3) and 
applied (Section 4). This is proceeded by the results and a discussion of the operational considerations 
and lessons learned (Section 5).  

2. Study Area and Dataset 

Our study area consists of three non-adjacent H-Res TIR flight-lines (Figure 1) that were extracted 
for analysis from a full City of Calgary TABI-1800 (Thermal Airborne Broadband Imager) dataset  
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(~825 km2) composed of 43 flight-lines (~600 GB). These three flight-lines were acquired during the 
night (between 00:00 and 04:30) on 13 May 2012 and cover a heterogeneous urban area of ~182 km2 
at a 50 cm spatial resolution. During their acquisition, the ambient night-time temperature ranged from 
8 to 13 °C and winds ranged from 5 to 13 km/hr., gusting to 20 km. Local weather data were accessed 
from 26 reporting sites available from the Weather Underground (http://www.wunderground.com - last 
accessed 6 June 2014). 

Figure 1. A map of The City of Calgary showing the location of the three flight-lines 
evaluated in this study. 

 

The TABI-1800 is a recent (circa 2012) airborne thermal infrared sensor with a swath width of 1800 
pixels in the 3.7–4.8 µm spectral region, a thermal resolution of 0.05 °C, and the ability to collect up to 
175 km2 per hour at 1.0 m spatial resolution [26]. This is three to five times faster than most other 
airborne TIR sensors [14]. In this study, since data were collected at a 50 cm spatial resolution, a nominal 
swath of 900 m was acquired per flight-line. All flight-lines were orthorectified by the service provider 
(ITRES Research LTD) using a 10 m digital elevation model (DEM), and the reported geometric 
accuracy of the dataset was ±1 m. The City of Calgary also provided an RGB-NIR (Red, Green, Blue, 
Near Infra-red) orthorectified airphoto-mosaic (acquired in 2012, at a 25 cm spatial resolution, geometric 
accuracy ± 25 cm) and a GIS Road dataset (geometric accuracy ± 25 cm)—composed of polylines that 
represented road centers. Based ease of use, the TABI data were resampled to 1.0 m using bilinear 
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interpolation. Similarly, the City ortho-mosaic was resampled to a 1.0 m spatial resolution using  
cubic-convolution (CC). This was based on visual results and the fact that CC models a 4 × 4 area around 
the central pixel; which corresponds nicely to resampling the scene from 25 cm to 1.0 m. 

3. Methods  

Caveat: In the proceeding section, we describe TURN (the method) applied only to a single  
flight-line of TABI-1800 data. Once this entire process has been described, we then repeat the method 
(Sections 3.2–3.6) on the remaining two non-adjacent flight-lines and present the results of all three 
flight-lines in the Results and Discussion sections. This is to minimize repetition in the Methods 
section and to illustrate that TURN can be applied to independently collected H-Res TABI-1800  
flight-lines of different data-volumes and acquisition times. 

3.1. Pseudo Invariant Features and Mode Road Temperature  

To develop the Thermal Urban Road Normalization (TURN) method, road objects (Roads) are 
considered as pseudo invariant features [27]. This is because: (i) roads are relatively well distributed 
over modern urban environments, (ii) their primary construction materials are generally the same for 
different major road types within a given city, thus providing consistent thermal properties [28], and 
(iii) previous research has revealed a strong correlation between night-time air temperature and road 
surface temperature [29,30], from which we assume that the road temperature can be used to model 
urban microclimatic variability in terms of energy flux. 

As the TIR imagery were acquired late at night, any variation from the (mode) Road temperature 
within a flight-line is considered the result of local microclimatic variability. Based on these conditions, 
the TURN method consists of extracting an object Road class from a TIR flight-line, calculating its 
deviation (see Section 3.5 for details), and interpolating it over the entire TIR flight-line to create a 
temperature variability surface. This surface can then be used to minimize the impact of microclimate 
variability on other object classes present in the TIR flight-line. We note that object/shape-based 
interpolation techniques are also commonly used in medical imaging to fill voids in an image [31–33]. 
Building on these ideas we use similar techniques to create a continuous, smooth microclimatic 
variability map. The flowchart in Figure 2 briefly outlines this methodology which is further described 
in detail in the proceeding sections (3.2–3.6). 

3.2. Road Extraction  

A global road class (Road) is extracted from the TIR flight-line based on The City GIS Road data. 
These data represent the road center-lines of four different road types: (i) primary, (ii) secondary,  
(iii) access, and (iv) back-alleys. In this study, only primary and secondary roads are considered. This 
is because in Calgary, they are typically composed of asphalt. Back-alleys and access roads are omitted 
as they are typically covered by trees, and are composed of numerous mixed materials (e.g., gravel, 
clay, brick, asphalt, cement and others), many of which have difficult-to-define thermal characteristics.  

To extract the Road class, we first apply a 3 × 3 median filter to the TIR image to reduce noise and 
simplify the scene. We then create a 1.5 m buffer on each side of the GIS Road center (Figure 3A) to 
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produce a 3.0 m wide Road mask (Figure 3B). A 3.0 m section along the road center was chosen based 
on (i) a minimum Calgary road width (~10 m) and (ii) the ability to avoid sampling vehicles parked 
along the sides of the road (~2.5–3.5 m). The Road mask is then combined with the TIR image to extract 
the central portions of the corresponding roads. A visual inspection reveals that portions of many roads 
are covered by trees (Figure 3C). To eliminate these, a vegetation mask (Figure 3D) is created by 
calculating an NDVI (from the 1.0 m RGB-NIR ortho-photo), then quickly manually thresholding it 
based on visual inspection. Once defined, this vegetation mask is then dilated by 1.0 m to compensate for 
possible geometric error between the RGB-NIR and the TIR image. This dilated vegetation mask is then 
applied to the 3.0 m Road class to eliminate overhanging vegetation (Figure 3E). 

Figure 2. This Methodology flow chart describes the main steps for normalizing a thermal 
flight-line using the TURN method. The italic numbers in brackets indicate the sections 
where further details are provided. 
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Figure 3. An example of the Road extraction technique. (A) The GIS Road layer (red).  
(B) The 1.5 m buffer created on both sides of the Road center (i.e., Road mask in white).  
(C) The TIR image showing dark tones as cool objects and bright tones as hot objects. 
Vegetation is delineated with black polygons (for illustration only) and the Road center as 
a red line. (D) The dilated vegetation mask created from an NDVI image where black areas 
represent vegetation. (E) A ‘vegetation-free’ 3.0 m wide TIR Road mask filled with 
thermal DNs. 

 

Next, a histogram of the extracted Road class (Figure 4A) is created to visually and statistically 
assess any remaining road temperature noise. Here noise refers to pixels that are not representative of 
the Road class. From Figure 4, we see that the histogram has a bimodal distribution. When linked to 
the corresponding thermal flight-line, we are able to determine that the left distribution is primarily 
representative of gravel roads, road construction, and vehicles, which we denote as noise (Figure 4B). 
In an effort to automate the process of reducing this noise, we examined many different combinations 
of mean (µ) and standard deviation (σ) (derived from each flight-line) to determine an optimum range 
of noise DNs. Analysis revealed that a range of (µ − 2σ) to (µ + 3σ) best represents the Road class with 
minimum noise. Therefore, the DNs beyond this range (the noise) were masked out, and the remaining 
road pixels were used for further processing. We note that this noise minimizing technique was 
evaluated on all three flight-lines separately and was observed to work well on each of them. As a 
result, we are confident that this noise removing technique is sufficiently robust to be automated—at 
least for this full-city dataset. 

3.3. Multi-Interval Sampling  

Of all the Road pixels defined in Section 3.2, 0.5% of each flight-line (totaling ~1800–2400 pixels, 
depending on the size of the flight-line) are randomly selected and saved as a test dataset for accuracy 
assessment (Figure 5A–C). The remaining Road pixels (99.5%) are used for analysis.  
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Figure 4. (A) Histogram of flight-line 1 showing a bimodal distribution, where the left 
distribution represents noise (i.e., road construction, vehicles, etc.) and the right distribution 
represents the Road class. (B) A portion of the raw TIR image displaying roads, rooftops, 
trees, grass, parked vehicles, back alleys, etc. Dark areas are cool, bright areas are warm.  

 

At a 1.0 m spatial resolution, a 3.0 m wide section of the Road mask (Figure 5A) distributed over 
each flight-line contains many spatially adjacent and spectrally similar pixels, making spatial 
interpolation challenging. Furthermore, due to the varying size, shape and orientation of Road objects, 
it is not possible to determine an optimal sample interval using statistical autocorrelation. To simplify 
this interpolation problem, we divide the entire flight-line into X*X m grid cells (X = 10, 20, 50, and 
100 m) and select one representative Road pixel from each cell, which we define as the median value 
of all sampled Road pixels within each grid cell. The median is selected rather than mode, as it is 
possible that all samples within a grid cell are unique. We also retain each median Road DN at its 
actual sampled location, rather than arbitrarily placing it at the center of an X*X cell—as the cell 
center may be located far from the road. These Road samples (Figure 5C) are then used for further 
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processing. In this paper, we evaluate this sampling technique at four (X) different sampling intervals 
(10, 20, 50, and 100 m) to determine the optimum sampling strategy (see Section 3.4 for details). 

Figure 5. An example of Road training and test samples. (A) An example of a 3.0 meter 
wide Road mask. (B) A sample of the 0.5% test pixels derived from the road shown in (A). 
(C) An example of the selected training pixels (one sample per 10 m * 10 m grid) 
extracted from the road in (A). (B) and (C) confirm that Road training and test samples are 
independent of each other. 

 

Figure 6. An example of selecting sample points from the image border, then cleaning 
these points to reduce oversampling. (A) A portion of the thermal flight-line (grayscale) 
showing the acquisition border (black) and Road center line (red). (B) A corresponding 
portion of the border line detected using edge detection. (C) Sample points (enlarged for 
illustration) taken along the border at a 10 m interval. (D) Road sample points (white) with 
the Road center (red). (E) Border samples combined with the Road samples. The blue 
square (lower center) represents a sample location to be cleaned. (F) Final sample points 
after cleaning. 
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3.4. Sample Optimization: Boarders and Oversampling  

Airborne data are seldom acquired in perfect straight lines. Consequently, the border of such data 
are often padded with zero values to ensure a rectangular shape of the output flight-line (Figure 6A). 
To tie the interpolated TURN-surface to this edge, its boundary is detected using a Laplacian edge 
detection filter (Figure 6B) and sample points are taken along its border at 10 m intervals (Figure 6C). 
In this section we describe sample optimization at 10 m intervals. Later, the same process is repeated 
for 20, 50, and 100 m intervals and the results are described in Section 4. For parsimony, the border 
samples are then assigned the values of the closest Road sample (Figure 6D) and are combined with 
the samples generated in step 3.3 (Figure 6E). Next, a cleaning filter is applied over all flight-line 
samples so that a maximum of one sample point exists within a 10*10 m window (Figure 6F). 
Cleaning is performed to avoid oversampling of points. The remaining sample points are then 
interpolated to create a (continuous) Road temperature variability surface (a TURN-surface) over the 
entire flight-line.  

3.5. Spatial Interpolation of Road Temperature Variations  

Our objective with these samples, is to interpolate Road temperature deviation as a smooth and 
continuous surface for each flight-line. Conceptually, this surface represents variation in land surface 
temperature within a flight-line due to the nonlinear interaction of local microclimatic components (i.e., 
wind, precipitation, and humidity). To create this surface, we first calculate the mode Road 
temperature from the Road class generated in step 3.2. From a statistical perspective, we consider the 
mode of Road temperature samples of a TIR flight-line as the most representative temperature of all 
Roads (rather than the average) as it occurs most frequently throughout the flight-line; thus it is the 
most ‘road-like’. We then collect TIR road training samples (steps 3.3–3.4), and then, for each sample 
we calculate the local mode deviation (Dij) using Equation (1). These mode deviation values are then 
interpolated over the entire flight-line using Inverse Distance Weighting (IDW) [33]. Specific 
interpolation parameters includes: (i) Maximum search radius = 100 m, (ii) Minimum number of 
closest points used for each local fit = 3, and (iii) Smoothing radius = 10 m ݆݅ܦ = (݆ܺ݅ − ܺ) (1)
Where,  
Dij = Mode deviation at pixel (i, j) 
Xij = Radiant temperature of pixel (i, j) 
X = Mode Road temperature for a given flight-line  

We note that prior to selecting IDW, seven different interpolation techniques were visually  
and statistically evaluated [34]. These included: (i) Splines [35], (ii) Nearest Neighborhood [36],  
(iii) Polynomial [37], (iv) Kriging [38], (v) Inverse Distance Weighted (IDW), (vi) Triangular 
Integrated Network (TIN) [39], and (vii) Radial Basis Function (RBF) [40]. Based on our visual and 
statistical assessment of the resulting surfaces, IDW produced the smoothest appearing surface based 
on locally varying values; which is consistent with the conceptual models of locally explicit, but 
regionally continuous microclimatic variability [29,30]. Therefore, we have used IDW interpolation 
for the remainder of this analysis.  



Remote Sens. 2014, 6 9445 
 

In this study, we consider the interpolated deviation surface to represent temperature differences in 
a flight-line resulting from local microclimatic variations. Conceptually, this surface can be used to 
normalize the effect of microclimate within the original thermal flight-line using Equation (2), where 
the interpolated variability map is simply subtracted from the thermal flight-line: ݆ܰ݅ = (݆ܺ݅ − (2) (݆݅ܦ

Where,  
Nij = Normalized radiant temperature of pixel (i, j) 
Dij = Mode deviation at pixel (i, j) 
Xij = Original radiant temperature of pixel (i, j) 

In reality, an emissivity correction (of the Road class, as well as all other land cover classes in the 
flight-line) might be performed prior to interpolation and normalization, similar to the emissivity 
modulation (EM) method described by Nicole [41]. Depending on the physical properties of an object, 
it emits only a portion of its absorbed energy. Emissivity expresses the ability of an object to emit 
radiant energy [42]. If not corrected for emissivity, TURN only provides a radiant thermal 
microclimate normalization of the scene—see Section 4.5.3 for details on EM and emissivity.  

3.6. Validation of the Method  

Once the original flight-lines are normalized for microclimatic variability using Road temperature 
deviation, an accuracy assessment is performed to evaluate the performance of the method. It is 
expected that the radiant Road temperatures over an entire flight-line will be equal to the mode Road 
temperature after applying TURN. To verify this, the temperature of the test Road pixels (step 3.2) 
before and after normalization were compared using the Root Mean Square Error (RMSE) which is 
calculated using Equation (3): 

ܧܵܯܴ = ඨ∑ (ܺ − ܺ )ଶଵ ݊  (3)

Where,  
X = Mode Road temperature of a flight-line 
Xij = Road temperature of pixel (i, j) 
n = Number of total test pixels 

In this experiment, the RMSE essentially describes how the radiometric variability of similar 
objects (i.e., samples derived from a ‘homogeneous’ road class) change after applying TURN. Lower 
RMSE values represent more ‘object-like’ results, thus our goal is to obtain a lower RMSE result for 
the same (Road) class. This is because image-objects by definition [43] tend to be composed of similar 
components (i.e., pixels with similar DN values), thus they have a lower internal variability. 

4. Results and Discussions  

The Methods section described TURN applied to a single TIR flight-line based on a 10 m sampling 
interval. In this section, we describe and discuss the results of the same method independently applied 
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to all three thermal flight-lines (shown in Figure 1) over four different sampling intervals (10, 20, 50, 
and 100 m). Table 1 outlines the size of the flight-lines, the number of training samples for each 
sampling interval, and the number of test (Road) pixels used for accuracy assessment.  

Table 1. Training and test sample sizes of the evaluated flight-lines for different  
sampling intervals. 

Scene Attributes Flight-line 1 Flight-line 2 Flight-line 3 

Size (pixels) 2283*22680 1853*22318 2451*36260 

Tr
ai

ni
ng

 
Sa

m
pl

es
 10 m 20252 20884 27854 

20 m 13855 14433 19069 
50 m 4889 5098 6671 

100 m 1792 1874 2462 
Test Samples (total) 1763 1853 2423 

The following sections (4.1–4.4) discuss and compare the results generated from these flight-lines  
at different sampling intervals. Section 4.5 discusses operation considerations, errors and uncertainties 
and Section 4.6 discusses the importance of incorporating existing GIS image-objects into the  
GEOBIA workflow. 

4.1. Sample Size vs. Processing Time  

As automation and operationalization of the TURN method are important goals of this research, we 
compared the processing speeds for collecting and interpolating samples at different sampling intervals 
for different sized flight-lines. To do so, we ran TURN with the same workstation (Intel® Core ™  
i7-2600, Windows Server 2008 (64 bit) on a Quad Core CPU at 3.40GHz, RAM: 16 GB) on each of 
the three flight-lines for four different sampling intervals. TURN code is written in Interactive Data 
Language (IDL 8.0, 64 bit version). Figure 7 and Table 1 show that as the Road sample interval (i.e., 
distance between adjacent samples) for each flight-line decreases, the number of samples and the 
required processing time increases. 

If we consider the results shown in Figure 7 and were to extrapolate them to process the entire City 
of Calgary TIR scene (which consists of 43 TABI-1800 flight-lines covering ~825 km2 and a data 
volume of ~600GB), we estimate that it will require ~7 hours to process all flight-lines at the 10 m 
sampling interval, ~5 hours for the 20 m sampling interval, ~2.5 hours for the 50 m sampling interval, 
and ~1.2 hours for the 100 m sampling interval. Thus, the processing time is negatively correlated with 
the sampling interval (i.e., the larger the sampling interval, the less processing time involved). We also 
note that flight-line 3 requires considerably more processing time than the other flight-lines, as it is 
~50% larger (in size) than the other two flight-lines that were evaluated (see Table 1 and Figure 1).  
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Figure 7. A comparison of CPU processing times for four different sampling intervals (10, 
20, 50, and 100 m) for each of the three different flight-lines. Time differences between 
flight-lines are due to differences in data volumes/flight-line. Time differences within  
flight-lines are due to the sample size required to be processed.  

 

4.2. An Assessment of Radiometric Normalization Accuracy Based on RMSE  

We consider the mode Road temperature of each independent flight-line as its reference 
temperature, and radiometrically normalize the thermal flight-line to this mode as it represents the 
most abundant temperature within the flight-line. Therefore, we expect that after normalization, Road 
temperatures within a flight-line will shift to its mode temperature. To test this hypothesis, we 
randomly selected a number of Road test pixels from the original flight-lines (see Table 1) and 
evaluated their RMSE with corresponding samples from the normalized mode Road temperature 
scenes to determine their radiometric similarity (in °C). Conceptually, the smaller the RMSE, the 
closer the Road temperature is to the mode Road temperature, meaning that the effects of microclimate 
are increasingly normalized.  

In order to best illustrate the effects of all four different sample intervals on each of the 3 flight-
lines, Figure 8 shows the percent decrease in RMSE - where larger values are better. This is because 
they represent a greater reduction in RMSE between the original image and the normalized image. In 
all cases, the RMSE decreases after normalization, thus the road temperatures are becoming more 
consistent across the scene, as per our initial assumption. However, the normalized test pixels are 
closest to the mode Road temperature for TURN-surfaces generated from small sampling intervals. 
This means that greater overall similarity is achieved for smaller sample sizes; though we note that 
statistically, the percentage difference is relatively small (~2–3%) between the 10 m, 20 m and 50 m 
sample intervals. In contrast, the 100 m sample shows a notable decrease (4–7%) in RMSE compared 
to the 10 m sample, indicating that microclimatic variability is less well (statistically) modeled at this 
coarser sampling interval.  
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Figure 8. The percent (%) decrease in RMSE of three evaluated flight-lines after 
radiometric normalization at four different sampling intervals.  

 

4.3. Root Mean Square Error (RMSE) vs. Processing Time  

Considering the fact that TURN is developed for large-area high-spatial resolution (1.0 m) TIR 
imagery, processing needs to be fast while also maintaining a strong reduction in RMSE. To compare 
accuracy (RMSE) vs. processing time, we calculated the mean decrease in RMSE and mean processing 
time of three flight-lines for four different sampling intervals and plotted them (Figure 9).  

Figure 9. A comparison of average radiometric accuracy vs. average processing time for 
three flight-lines at four different sample intervals. 
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Figure 10. In this figure, (A) illustrates a portion of the original TIR flight-line composed 
of buildings, roads, grass, etc. Dark tones are cooler, bright tones are warmer. (B–E) 
illustrate four interpolated TURN-surfaces that represent continuous urban microclimate 
temperature variability surfaces (°C), derived from local TIR road-objects, at four different 
sampling intervals: (B) 10 m, (C) 20 m, (D) 50 m, and (E) 100 m. Roads are in white, and 
isotherms (dark lines representing 0.5 °C intervals) are provided to aid visual assessment. 

 

Results show that as the sampling interval decreases, the accuracy increases (thus the RMSE gets 
smaller), but the processing time also increases. However, we note that between the 10 m and 20 m 
sample intervals, processing time decreased by ~30%, but statistically, the average accuracy did not 
change noticeably. Conversely, the processing time for the 100 m sample interval is 85% less than at 
the 10 m sampling interval. However, its average accuracy is considerably decreased (~7%). 
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Considering these results, we conclude that 20 m is the optimum sample interval for this study, as it 
balances local temperature variability (Figure 10) and computation speed. 

4.4. Visual Assessment of Interpolated Surfaces at Different Sampling Intervals  

TURN generates an interpolated surface representing the Road temperature deviations within a 
flight-line. Figure 10 provides an example of how microclimate variability is visually represented by 
the TURN-surface at different sampling intervals. 

The flight-line sample in Figure 10A represents two main vegetated areas (one at the top and 
another at the middle of the figure) surrounded by roads and buildings. From a detailed visual 
inspection, we note that the vegetated areas are cooler than the built-up areas, making the adjacent 
roads appear cooler (dark grey) than the mode Road temperature; thus, requiring a positive temperature 
adjustment (i.e., see the light grey surfaces at the top and middle of Figure 10B). Figure 10B,C shows 
that the thermal characteristics of different land cover types are visually represented in greater detail 
with 10 m and 20 m sampling intervals. At the 50 m sampling interval (Figure 10D), the surface is 
more generalized, but still sufficient to distinguish different types of land cover (compared with Figure 
10A). However, at the 100 m sampling interval (Figure 10E), a larger portion of the corresponding 
land surface temperature detail is lost through generalization. We note that, given these unique 
perspectives, TURN-surfaces may also represent useful tools for urban planners to identify potential 
urban heat sinks, and localized sources of urban heat islands. 

Figure 11. An example of radiometric normalization using TURN. (A) A portion of the raw  
TABI-1800 image. (B) A TURN-surface (i.e., an interpolated road temperature deviation surface) 
of the same area. (C) An image of the same area after applying the TURN-surface. 
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The idealized final output of the proposed model is a flight-line ‘free’ from the effects of 
microclimate, thus displaying a more uniform radiometric response of similar objects within it. In  
Figure 11, we show an example of how radiometric difference among similar objects decreases after 
applying TURN. Figure 11A represents a portion of the raw flight-line displaying rooftop, road, grass, 
etc., Figure 11B represents the TURN-surface created using 10 m sampling interval, and Figure 11C 
represents the normalized portion of the flight-line using TURN-surface. If we look at the rooftops in 
the raw image (Figure 11A), we notice that they are represented by different shades of blue and green 
meaning that there is a notable variation in rooftop temperature. However, once TURN applied  
(Figure 11C), the rooftops appear much consistent (green).  

4.5. Operational Considerations, Errors and Uncertainties  

This section briefly discusses three important operational consideration regarding TURN.  

4.5.1. Mitigating Microclimate, Surface and Atmospheric Effects 

When acquiring TIR airborne imagery, ideally winds should be lower than 5–10 km/hr and ambient 
temperate lower than 7 °C so as to provide sufficient environmental contrast [44]. However, the reality is 
that weather is dynamic, and even the best planned acquisitions need to deal with the often changing 
meteorological conditions they are presented with. This in part is why TURN was conceived, and why 
we suggest it will become an important contribution to the TIR community. We further propose that 
given sufficient spatial and temperature resolution to define appropriate road samples, the TURN method 
is able to visually and statistically mitigate the integrated impact of microclimatic and atmospheric 
variability and other physical surface conditions such as elevation, slope, aspect etc. that externally 
influence TIR radiometry acquired from H-Res TIR platforms [14,15]. This is because the temperatures 
derived from local road samples already represent an integration of these environmental conditions. 
Nevertheless, evidence of this is beyond the scope of this research. As noted in Section 2, we do have 
access to temperature data from 26 meteorological stations during the TIR acquisition time. However, for 
a large city like Calgary (~43 TABI-1800 TIR flight-lines), we suggest that 26 stations is simply too 
coarse to validate microclimatic variability, which occurs within 1–100 m. To do so, would require 
setting up ~40–60 meteorological stations (1 every km2) within each flight-line, and ~800–1000 stations 
for the whole city; which is beyond the scope of this—or any study that we are aware of. 

4.5.2. Road Pseudo-Invariance  

TURN is developed based on the assumption that roads of the same material are radiometrically 
invariant. In reality, roads are not completely invariant due to their different material types and surface 
conditions (resulting from age, traffic load, exposure to solar radiation, geographic location, etc.) [45]. 
However, this is also true for all other pseudo-invariant features [27]. Conceptually, for this project, 
this situation can only be avoided by manually acquiring numerous road temperature samples over the 
entire study area, immediately prior to TIR data collection (to allow for them to reach thermal 
equilibrium with the environment), which is completely impractical for large study areas. This in-part 
is why this method was developed. 
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4.5.3. Emissivity Corrections  

The three evaluated flight-lines represent the radiant temperature of different land cover composing 
the scene. Thus, Road extraction and interpolation are also performed based on radiant temperatures. 
For absolute microclimate temperature corrections, emissivity corrected Road samples need to be 
interpolated and applied to an emissivity corrected surface. For example, Nichol [41] proposed the 
Emissivity Modulation (EM) technique (similar to image sharpening described by Gustavson et al. [46]) 
to correct thermal images for different emissivity classes. EM uses a geographically corrected optical 
image to classify different land cover classes. The corresponding emissivity class values are then 
integrated with the thermal image to calculate true kinetic temperature. Based on this idea, we suggest 
that EM along with TURN can be used to produce an emissivity corrected and microclimate 
normalized TIR flight-line that represents the true kinetic temperature of the cover-types of interest. 

4.6. Transforming Existing Vector Image-Objects into Multiscale Fields  

Bain [47] describes three main categories of geographic space—spatial objects, regions, and 
fields—and notes that fields are not well represented by objects. However, to the best of our 
knowledge, this is the first time in the GEOBIA literature, that discrete sparsely sampled image-objects 
are transformed into a continuously varying multiscale field. To do so, we initially define roads by 
buffering around existing City of Calgary GIS vectors (i.e., polylines) that represent road centers. Thus, 
we do not actually apply segmentation to define the initial road objects (though we do apply 
thresholding to an NDVI image to remove vegetation objects that overhang/obscure these new  
road-objects). In this sense, TURN is a step towards meeting a recent challenge to the GEOBIA 
community [48] to incorporate existing GIS vector objects within the GEOBIA workflow, rather than 
relying solely on segmentation methods that have no unique solution [25]. 

5. Conclusions 

Local microclimatic components such as wind, humidity, precipitation and surface moisture have a 
non-linear impact on TIR imaging, making detailed analysis non-trivial. To mitigate these effects, we 
describe Thermal Urban Road Normalization (TURN) applied to three non-adjacent flight-lines of  
H-Res TABI-1800 imagery (~182 km2), that cover a complex urban scene. TURN is a new method that 
radiometrically normalizes TIR flight-lines so that it appears as if the entire scene were acquired under 
the same microclimate conditions and at the same time. In this method, roads within the scene are 
considered as a pseudo invariant feature from which (environmentally integrated) temperature samples 
are defined and interpolated. Road samples are used as a reference object-class for two reasons: (i) Road 
material is generally constant within a city, and (ii) Roads are relatively evenly distributed over urban 
areas—thus providing a sufficient number of evenly distributed samples from which to create a 
continuous interpolated TURN-surface. This TURN-surface is a continuous temperature variability map, 
that models (i) the integrated effects of microclimatic variability over the entire TIR scene, and (we also 
suggest), (ii) location-based characteristics such as elevation, slope and aspect, and (iii) atmospheric 
variability, as these characteristics are already integrated within the extracted TIR samples. 
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We note that prior to interpolation, eight different spatial interpolation techniques (Section 3.5) 
were evaluated, with Inverse Distance Weighting (IDW) generating the most representative surface, as 
it specifically models the influence of local variability. The resulting TURN-surface (derived using 
IDW) is then used to normalize the original TIR flight-line by removing the varying effects of local 
microclimate. In total, radiometric normalization was performed on three non-adjacent flight-lines at 
four different sample intervals (10 m, 20 m, 50 m, and 100 m). Results show that as the normalization 
interval decreased, the accuracy increased (i.e., the internal variability of similar features within a 
thermal flight-line decreased). Specifically, this method reduced the internal Road temperature 
variability by ~25% at the 10 m and 20 m sampling interval, ~19% at the 50 m sampling interval, and 
~15% at the 100 m sampling interval. However, as the sampling interval decreased, the processing 
time increased. From the combined results of reduced within-scene variability and computational 
speed, we conclude that 20 m is the optimum sampling scheme to generate a TURN-surface, as:  
(i) processing time is reduced by ~25% (compared to that at 10 m), (ii) the radiometric normalization 
accuracy (RMSE) changed very little compared to results achieved at 10 m, and (iii) the 20 m 
temperature variability map showed very similar radiometric detail to that of 10 m. 

While these results are very promising, we note that in some circumstances it may be a challenge to 
define specific road-types as pseudo invariant features. This is because the radiometry of general road-
types depends upon material type, age, surface condition, orientation and surrounding environment. 
Thus, care should be applied when selecting appropriate roads. However, this does not invalidate the 
selection of road-types in this evaluation, as GIS road-types were provide by the City of Calgary. 
Another cautionary note, involves the lack of sufficient field data to validate the model at fine 
resolutions. Although samples from 26 weather stations were available for the entire City of Calgary 
during this acquisition, this sample size is insufficient for large area validation. Thus, the next step of 
this research includes validating the TURN model in a smaller pilot site using extensive field 
measurements. However, we note that it is not trivial to obtain extensive road/air temperature measures 
coincident with a TIR airborne acquisition; which in-part, is why this method was initially developed. 
In addition, even if sufficient measures were obtained, they would only validate the method applied to 
a relatively small number of samples. 

Thermal Urban Road Normalization (TURN) is a new method that enables the generation of 
radiometrically uniform flight-lines, so that physically similar features within a flight-line exhibit 
consistent temperatures. Furthermore, 
 This method can be automated, is computationally fast and highly transferable; thus we 

propose that it is able to be operationally applied to large, H-Res TIR datasets. 
 TURN-surfaces may represent a useful tool for urban planners to identify urban heat sinks, and 

localized sources of urban heat islands. 
 Conceptually, TURN-surfaces could be integrated with the Emissivity Modulation method [41] 

to produce an emissivity corrected and microclimate normalized TIR scene that represents the 
true kinetic temperature of the corresponding cover-types of interest. 

 To the best of our knowledge, this is the first time in the GEOBIA literature, that discrete  
road-objects are defined and sampled to create a continuous temperature variability field for the 
full-scene, which is then used to automatically obtain a ‘microclimate-free’ scene.  
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 This research meets a recent challenge to the GEOBIA community to integrate pre-defined GIS 

vector objects within the analytical process rather than solely defining image-objects with 
segmentation methods that have no unique solution. 
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