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Abstract: Land degradation and desertification has been ranked as a major environmental 

and social issue for the coming decades. Thus, the observation and early detection of 

degradation is a primary objective for a number of scientific and policy organisations, with 

remote sensing methods being a candidate choice for the development of monitoring systems. 

This paper reviews the statistical and ecological frameworks of assessing land degradation 

and desertification using vegetation index data. The development of multi-temporal analysis 

as a desertification assessment technique is reviewed, with a focus on how current practice 

has been shaped by controversy and dispute within the literature. The statistical techniques 

commonly employed are examined from both a statistical as well as ecological point of view, 

and recommendations are made for future research directions. The scientific requirements for 

degradation and desertification monitoring systems identified here are: (I) the validation of 

methodologies in a robust and comparable manner; and (II) the detection of degradation at 

minor intensities and magnitudes. It is also established that the multi-temporal analysis of 

vegetation index data can provide a sophisticated measure of ecosystem health and variation, 

and that, over the last 30 years, considerable progress has been made in the respective research. 
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1. Introduction 

The United Nations Convention to Combat Desertification (UNCCD), ratified by 195 countries, 

identifies land degradation and desertification as one of the most pressing environmental concerns of our 

times [1,2]. Furthermore, the UN Conference on Sustainable Development (“Rio + 20”) has called for a 

target of “zero net land degradation”, whereby the rate of deteriorating lands would be counterbalanced 

by the rate of land improvement. These political frameworks, whilst admirable, require sound scientific 

evidence for effective implementation [3]. However, in spite of political and scientific recognition of the 

importance of land degradation, current estimates of its extent and severity are highly unreliable and 

spurious. The often quoted statistics that 15% of the Earth’s surface and 60% of drylands are degraded [4], 

are acknowledged as qualitative and unsubstantiated [5,6]. These estimates, based on coarse resolution 

expert opinions, are not suitable for policy making or for scientific investigations into the potential 

remediation of degraded lands [7]. 

The timely and early detection of degradation processes is necessary to prevent the continuing 

deterioration of land condition. The lack of authenticated evidence on the magnitude of desertification 

has led to questions over the very existence of a global degradation problem [8,9], with large-scale 

studies frequently at odds with plot and field-scale studies [10,11]. There is a pressing need, therefore, 

for accessible and accurate measurements on the extent of degradation and desertification for policy, 

natural resource management and scientific research needs [7,12]. Given the temporal nature of land 

degradation, it is paramount that measurements adhere to the principles of repetitiveness, objectivity 

and consistency [13]. These requirements, combined with the size of the land occupied by semi-arid 

regions and the degree of development of many vulnerable nations, make Earth Observation (EO)-based 

systems a candidate choice for establishing monitoring networks [14,15]. So far, the most frequently 

utilised method employing EO datasets is trend analysis of vegetation index data, most commonly the 

Normalised Difference Vegetation Index (NDVI), as a proxy for Net Primary Production (NPP). 

Land degradation and desertification is a complex area of scientific research. This complexity partly 

arises from an open discussion on the definition of what actually constitutes degradation. This confusion 

occurs due to the interdisciplinary nature of desertification, encompassing geographical, ecological, 

meteorological and social perspectives, all of which can have regionally specific interpretations [16]. 

Early observations, provided by European foresters in 1930’s West Africa, classified desertification  

as the consequence of desert boundary displacement [17]. This viewpoint was later adapted to cover  

a variety of mechanisms that would result in a detrimental impact upon “the physical, chemical or 

biological status of land which may also restrict the land's productive capacity” [18]. Quantifying 

desertification by measurements of vegetation productivity and cover has led to long running debates 

concerning both the acknowledgment and inference of climatic influence on semi-arid ecosystems, 

with the UNCCD acknowledging that degradation can result from “various factors including climate 

variations and human activities” [1]. For a comprehensive review of the various definitions and their 

contexts see reviews by [5,6,19]. For the purpose of this article, we follow the definition used by the 

Millennium Ecosystem Assessment [20], which refers to land degradation as “the reduction in the 

capacity of the land to perform ecosystem goods, functions and services that support society and 

development”, and to desertification as the same process in arid and semi-arid environments (collectively, 

the drylands). Hence, we use the terms desertification and degradation interchangeably. This definition 
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considers the ability of land to support primary production as key ecosystem service, and its adoption 

implies that a reduction in the measured NPP at a site can potentially be viewed as land degradation [21]. 

This notion forms the theoretical framework on which the majority of EO-based assessments of 

degradation are founded, e.g., [14,15,22]. The potential of vegetation index variation as a measure of 

ecosystem health has been acknowledged for nearly 30 years [23], yet in spite of this simple concept,  

the subject has become extremely controversial within the scientific literature [11,24,25]. This controversy 

prevents the realisation of land degradation early warning and monitoring systems, which have been 

postulated for some time [15]. 

In this paper, we review the theoretical and statistical frameworks used for assessing land degradation 

with vegetation indices with a view to clarify current understandings and to highlight avenues for future 

research. Our specific objectives are to provide: 

− a brief review of the origin of NDVI and the association of multi-temporal analysis in an land 

degradation framework; 

− an evaluation of the current methods used to assess degradation and desertification through 

vegetation indices; 

− an assessment of how these methods integrate into the wider debates on the mechanisms and 

processes of land degradation. 

Although the focus of this review is the assessment of degradation and desertification in drylands,  

the frameworks discussed are by no means exclusive to this subject or environment, and are in many 

cases equally applicable to more wide-ranging global environmental change studies [26]. 

2. NDVI: Origin and Data 

NDVI is expressed as: ࡵࢂࡰࡺ = ࡾࡵࡺ) − (ࡰࡱࡾ ⁄ ࡾࡵࡺ) + (1) (ࡰࡱࡾ

where NIR and RED are reflectance values in the near-infrared and red wavebands, respectively. Thus, 

values range between −1 and 1 with an NDVI < 0 indicating cloud or water and >0.7 dense canopy 

coverage. There is some confusion over the exact origin of the NDVI. Although frequently cited as  

the original record, both Deering [27] and Rouse Jr et al. [28] used the transformed vegetation index 

(TVI = SQRT(NDVI + 0.5)), not the NDVI. A number of ecology and spectroscopy studies through 

the late 1960s and 1970s used NDVI, with the original paper remaining elusive [29–31]. In light of this 

confusion, the NDVI is most commonly credited to Tucker [32] who compared field biomass data with 

various band combinations obtained from handheld spectroradiometer readings. 

NDVI is not a direct measure of vegetation or biomass, hence, it is not directly translatable into 

NPP. However, there is a considerable volume of literature reporting a close coupling between NDVI 

and in-situ NPP measurements [23,33–35]. For a full review of the advantages and limitations of 

vegetation index usage in dryland regions refer to Eisfelder et al. [36] and references therein. A key 

limitation of NDVI in regions of sparse biomass is the influence of soil interference, thus it is not 

advisable to apply NDVI in regions with an average value of NDVI < 0.1. 

Time series analysis of NDVI can be applied using any system capable of measuring reflectances in 

the red and near infrared reflectance bands. However, long-term studies encounter data consistency 
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and availability issues from a number of factors, including solar zenith angle, volcanic aerosols, sensor 

degradation and sensor compatibility. As such, analyses commonly utilise pre-processed datasets 

corrected for these issues (Table 1). The longest source of imagery available is obtained from the 

Advanced Very High Resolution Radiometer (AVHRR) sensor. Developed datasets include the  

1981–2001 Pathfinder AVHRR Land-record (PAL) [37], the 1981–2006 Global Inventory Modelling 

and Mapping Studies (GIMMSg) [38], and the 1981–2011 GIMMS3g [39] at 8 km resolutions A recent 

European consortium have merged AVHRR data with SPOT imagery generating a 5 km (1981–1998) 

and 1 km (1998–2012) product [40]. The AVHRR-derived datasets, in particular the GIMMS and 

GIMMS3g products, continue as the most popular record, due to the unparalleled time span, in spite of 

the increasing availability of higher resolution products, such as SPOT (1 km), MERIS (1 km) and 

MODIS (500 m), all of which feature reduced time-spans. A comprehensive review of the available 

NDVI data sets is given in Pettorelli [41]. 

Table 1. A summary of commonly utilised Normalised Difference Vegetation Index  

(NDVI) datasets. 

Name Sensor Time-Span Time-Step Resolution 

Pathfinder (PAL) AVHRR 1981–2001 10-day 8 km 

Global Vegetation Index GVI) AVHRR 1981–2009 7-day 4 km 

Land Long Term Dara Record (LTDR) AVHRR 1981–2013 Daily 5 km 

Fourier-Adjusted, Sensor and Solar 
zenith angle corrected, Interpolated, 
Reconstructed (FASIR) 

AVHRR 1982–1998 10-day 0.125° 

GIMMS AVHRR 1981–2006 15-day 8 km 

GIMMS3G AVHRR 1981–2011 15-day 8 km 

S10 SPOT-Vegetation 1998+ 10-day 1 km 

EM10 ENVISAT-MERIS 2002–2012 10-day 1/1.2 km 

SeaWiFS SeaWiFS 1997–2010 Monthly 4 km 

MOD (MYD)13 A1/A2 

Terra (Aqua) 
MODIS 

2000+ 

16-day 500 m/1 km 

MOD13 (MYD)A3 Monthly 1 km 

MOD13 (MYD)C1/C2 
16-day/ 
Monthly 

5.6 km 

MOD13 (MYD) Q1 16-day 250 

MEDOKADS AVHRR 1989+ Daily 1 km 

3. Background of Multi-Temporal Analyses 

The use of NDVI for assessing desertification originates in the Sahel region of sub-Saharan Africa, 

which experienced a prolonged reduction in rainfall between 1960 and 1990 (Figure 1), with particularly 

severe droughts in 1973, 1984 and 1990 [42]. These droughts represent the most dramatic climatic shift 

on modern record and resulted in widespread famine across the region [42]. This ecological and 

meteorological transition was viewed as the consequence of anthropogenic desertification, supporting 

the “expanding deserts” paradigm [17,43,44]. Desertification was understood to result from human 

alteration of land-atmosphere interactions (Figure 2) [45]. Reduced vegetation cover, initiated by 

increased grazing pressures [46,47], was postulated to increase localised albedo and temperature, in turn 
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reducing regional rainfall leading to further vegetation cover loss [48,49]. Thus, an increased anthropogenic 

pressure was attributed as the major driver of regional climate and land cover processes [50]. This was 

in agreement with studies demonstrating the impact of intensive grazing on surface reflectance across 

the Negev-Sinai border [51–53]. Conclusions regarding an expanding Sahara and encroaching dune 

systems, such as those proposed by Lamprey [44] and Stebbing [17], were heavily cited in both 

scientific publication and media outlets [54]. More recent research heavily challenged this viewpoint and 

paradigm [5,55–57]. A number of studies in the Sudano-Sahelian region combined field surveys with 

aerial photography and multi-temporal NDVI. These studies revealed little expansion of the Sahara, 

and a relatively minor human footprint when compared to the climatic signal [55–57]. Other regional-scale 

analyses [54,58] reinforced this conclusion, casting serious doubt on the expanding deserts paradigm [6]. 

The study of Tucker [58] was a seminal study in demonstrating the potential of EO for long-term 

regional-scale ecosystem studies. In combination with other studies in the tropics [59,60], Tucker [58] 

demonstrated the potential to apply time-series analysis on EO imagery for monitoring and assessing 

ecosystem processes. 

Figure 1. Time Series of the Sahel Precipitation Anomaly Index. Anomalies are with respect 

to the 1950–1979 period (Data source: [61]). 

 

The demonstration of the potential of multi-temporal NDVI imagery [58], coupled with the 

development of pre-processed long-term data sets [37], resulted in an increase in the application of 

time-series analysis using NDVI. In the Sahel, a greening trend was observed by numerous  

studies [62–65]. Herrmann et al. [63] used the residual trend method (see Section 4) in combination 

with trend analysis on 19 years of monthly NVDI data to conclude that the region was, in general, 

greening with only localised degradation present. This analysis was reinforced by Huber et al. [64]  

on an extended NDVI data set, in conjunction with soil moisture estimates, with similar conclusions. 

Process-based ecosystem-modelling studies reported an agreement between the observed NDVI patterns 

and climate model-based estimates [66], with little influence from population or grazing pressures [67]. 

Growing season NDVI was found to have increased by 0.09 units from 1981–2007 [64], although  

a reduction in the rate of greening was noted around 2000 [68].This greening trend was found  

to be consistent across semi-arid regions globally, traditionally viewed as the hot-spots of land 

degradation [9,69,70]. With comparable desert boundary variation also noted in Asian drylands [71,72]. 
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Greening was found to occur through two mechanisms: a lengthening of the growing season through 

earlier springs and delayed senescence and an increase in the maximum amplitude of NDVI [70,73,74]. 

Evidence of increased vegetation productivity accompanied a revised view of the cause of Sahelian 

rainfall fluctuations. Modelling studies revealed that the desiccation-vegetation feedback loop, 

theorised by Charney [48], had been greatly exaggerated [5]. Regional rainfall variation is primarily 

related to external drivers, principally sea surface temperature in the low-latitudes [75] but also northern 

hemisphere volcanic aerosol emissions [76], with localised vegetation-atmospheric interactions playing a 

minor role [75]. The majority of vegetation greening, in the Sahel and globally, can be attributed to 

increased precipitation over the past 30 years [77]. However, the question of human influence on  

semi-arid ecosystems remains highly controversial [14,78]. Furthermore, the sensitivity of trend methods 

to detecting degradation processes has been questioned [21]. Claims that current precipitation patterns 

may be disguising wide-spread degradation [11,21] require urgent investigation. The consequences of 

this degradation would be severe when dry periods return to degrading or degradation-prone localities. 

Figure 2. Representation of the positive feedback loop for desertification [45]. 

 

In arid regions, vegetation, and therefore NDVI, is highly correlated to rainfall [79], thus any variation 

in rainfall affects the NPP. Although temperature variation is also important in many regions [72,80]. 

Therefore, in order for any long-term permanent degradation to be detected, it is necessary to remove 

the influence of a precipitation trend. A number of methods have been proposed that aim to accomplish 

this. Le Houerou [81] originally proposed the ratio of NPP to rainfall, the Rain-Use Efficiency (RUE), 

as an ecosystem indicator. It was suggested that arid lands would produce around 4 kg-dry 

matter/ha/year/mm rainfall, and that a reduced RUE indicated land degradation. Further analysis revealed 

that RUE values varied between regions [82,83]. Consequently, temporal variation in RUE was proposed 

as an indicator of degradation [22]. Prince et al. [22] investigated the regional RUE of the Sahel from 

1982–1994, using seasonally integrated NDVI as a proxy for NPP. This analysis revealed little 

temporal variation in RUE across the region, thus indicating a consistent ecosystem dynamic through 

periods of droughts. However, the application of RUE as an indicator of land degradation has become 

highly controversial [24,78,84]. An explanation of the limitations and assumptions of RUE is given  
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in Section 4. Statistical methods to separate NDVI from rainfall trends have also been proposed;  

these include the RESidual TRENDds (RESTREND) method [85,86] and the Precipitation Marginal 

Response (PMR) [87]. These methods both focus on detecting a shift in the statistical relationship 

between rainfall and NDVI. The proposed degradation mechanism is comparable to RUE: as degradation 

occurs, the usage of precipitation shifts, whereas meteorologically-induced degradation relationships 

stay constant [85,86,88]. 

4. Trend Analysis Frameworks 

4.1. NDVI Trend Analysis 

Time series techniques can be grouped into parametric and non-parametric methods. The application 

of these techniques on EO imagery has become a contentious issue due to the inherent limitations and 

assumptions; an overview of the most commonly used ones, is given below.  

Linear trend analysis applies a linear regression model to quantify change in the dependent variable,  

y (i.e., NDVI) against an independent variable, x (i.e., time). The direction and magnitude of change 

from this model thus explains the change in NDVI over the period analysed. This test has a number of 

assumptions that must be met in order to be considered robust [89]: 

(1) independence of the dependent variable; 

(2) normality in the model residuals; 

(3) consistency in residual variance over time; 

(4) independence in residuals. 

In addition to spatial autocorrelation functions present [90,91], memory effects in dryland systems 

make inter- and intra-annual NDVI values strongly correlated [92–94]. Thus, assumption one above and, 

commonly, four, are unlikely to be met. The consistency in residual variance is heavily influenced by 

anomalous and outlier values, such as those caused by hemispheric climatic oscillations [21], and may 

also be breached. 

The Theil-Sen trend is a non-parametric trend estimation technique. Functionally similar to linear 

least squares regression, it operates on non-parametric statistics and is not dependent upon the 

assumptions of linear regression. Trends are estimated using the median values and are therefore  

less susceptible to noise and outliers, with a robust trend estimated with up to ~29% noise across the 

data [95,96]. 

The Mann-Kendall test measures the monotonicity or consistency of a trend [97]. The test is a 

cumulative value of the instances of increases or decreases from a pairwise comparison, with values of 

+1 indicating a continually increasing and −1 a continually decreasing trend. Although robust against the 

assumption of linear regression, the trend is susceptible to producing low values for time series with a 

strong overall change but moderate annual fluctuations. 

4.2. Differences between Trends, Datasets and Sensors 

A number of studies have compared the results obtained from applying a variety of trend  

methods [8,70]. Results indicate that although the trend estimations differ, there is rarely a major 
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difference between results with both direction and magnitude consistent across methods. For global 

semi-arid regions, Fensholt et al. [8] compared Mann-Kendall and linear regression models, finding a 

mean difference of 0.039 and −0.019 for positive and negative trends and maximum differences of 

0.285 and 0.158 with standard deviations of 0.037 and 0.029, respectively. A comparison of trend 

estimation, for a pixel in the Sudanese Sahel, is shown in Figure 3. 

A majority of studies use NDVI data sets derived from the AVHRR sensor (Table 1). As a 

meteorological sensor the AVHRR was not designed for terrestrial ecosystem applications [98], thus a 

number of issues are inherent. For example, the near-infrared waveband (Channel 2) overlaps with a 

region of strong atmospheric water vapour absorption, influencing the resulting NDVI values. Unlike 

modern sensors such as MODIS and SPOT, AVHRR does not possess ancillary bands that allow for 

the detection of atmospheric conditions. Thus, a range of processing is applied to raw AVHRR imagery 

in the preparation of NDVI records. The PAL and GIMMS/3 g records do not apply atmospheric 

correction, instead using maximum value compositing (MVC) of Top of Atmosphere (TOA) values to 

preserve the original data patterns [38,39,99]. However, comparison with the LTDR, which possess an 

atmospheric correction procedure, highlights the residual error that may remain within the GIMMS 

data due to this omission, particularly in regions with high Aerosol Optical Thickness (AOT) [100]. 

Furthermore, aging of the AVHRR carrying satellite results in a shift in the equatorial crossing time of 

the sensor, referred to as orbital drift. Orbital drift can, without reliable correction, influence NDVI 

values and computed trends, for a location specific quantification of orbital drift effects on AVHRR 

data see Nagol et al. [101]. Comparisons of the various AVHRR-derived datasets (PAL, GIMMS/3g, 

LTDR, FASIR) display regionally varying levels of agreement. For the Iberian peninsula,  

Alcaraz-Segura et al. [102] found good spatial agreement between the PAL, LTDR and FASIR 

datasets, with the GIMMS-derived trends differing. A similar observation was identified in South 

America where the GIMMS data failed to identify trend highlighted by PAL and FASIR records [103]. 

In the USA and Mexico, records displayed good correlation, however, trend estimates did vary 

particularly in dryland areas [104]. In a global-scale analysis, Beck et al. [105] compared the four 

AVHRR-derived records with Landsat and MODIS imagery. Consistency in trends was identified for 

Australia and central Asia, with divergent trend estimates in Africa, South America and the Sahel [105]. 

Comparisons between sensor datasets are a common method of quality assurance for AVHRR-derived 

NDVI records. The MODIS sensor is considered the most accurately calibrated and atmospherically 

corrected NDVI record available. Therefore, comparing the MODIS products with overlapping 

AVHRR-derived data can highlight issues present with the older AVHRR records. A global comparison 

of MODIS and GIMMS NDVI trends, for dryland regions was, undertaken by Fensholt et al. [8]. 

Trend values show high correlations (0.8>) for most semi-arid regions; however, areas bordering the 

arid zone with sparse vegetation were lower indicating spurious NDVI in these localities. This was in 

agreement with earlier work which identified that MODIS-GIMMS correlations were higher in the 

humid regions of the Sahel, compared to the arid areas [65]. 

4.3. Detecting Structural and Real-Time Change 

Trend breaks. All of the methods detailed above establish a trend detailing the change in NDVI over 

time; this represents a simplification of what may be a highly complex chronology of shorter duration 
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trends [106,107]. Analysing the overall trend, particularly with long time series, may be misleading as 

contrasting trends can potentially balance out. Verbesselt et al. [107] proposed that NDVI change can 

be classified in three components: seasonal/cyclic changes, gradual variation, and abrupt or sudden 

changes. Within this outline, they developed the Breaks for Additive Season and Trend (BFAST) 

algorithm, which disaggregates an NDVI time-series into three constituents: seasonal variation, trends, 

and noise [107]. By allowing the detection of multiple shorter duration trends, a better understanding of 

the temporal drivers of NDVI can be obtained. de Jong et al. [106] implemented the BFAST algorithm 

on the global GIMMS NDVIg archive. Semi-arid regions were identified as being highly variable in 

trend direction and magnitude, partly due to the impact of hemispheric climatic oscillations [68,106].  

It was highlighted that dryland regions frequently displayed abrupt greening spells followed by periods 

of gradual browning. 

Real-Time Change Detection 

The detection of historic trends and shifts in vegetation productivity is very useful to scientific 

inquiry, and may serve to inform land management policies to mitigate degradation drivers. However, 

historic trends are of limited value to contemporary management, as considerable reductions must first 

materialise (see Section 5.2). Thus, real-time or near real-time detection is necessary to inform policy 

makers at the earliest possible opportunity. This objective, i.e., the identification of real-time environmental 

disturbance, is shared by a number of environmental applications, such as food security [108], 

deforestation [109] and epidemiology [110]. The challenge of being able to identify real-time disturbance 

is in distinguishing a genuine trend from the seasonal trend and noise components. White and  

Nemani [111] demonstrated that phenological change could be forecast by comparing a user-defined 

threshold against the historical variability found within clustered phenoregions. The setting of arbitrary 

user-defined thresholds encounters difficulty when there are complex land cover transitions or frequent 

periods of high instability, adding a significant cost to application [112]. To overcome this issue, 

Verbesselt et al. [112] proposed a pixel-level disturbance detection approach, based on the historical  

time-series of each individual pixel. For each pixel, a stable “history” period is automatically determined 

and disturbances are compared to this regime [112]. This approach proved suitable for detecting  

drought-induced disturbance but was not so successful in removing background noise.  

4.4. Removing Precipitation Influence 

As previously mentioned, Rain Use Efficiency (RUE) is the quotient value of NPP to corresponding 

precipitation [22,81]. It has been proposed that degradation reduces the precipitation usage of an area, 

as overland flow and runoff increase with reduced vegetation cover and density. Thus, a reduced  

RUE can be indicative of land degradation, independent of climatic effects [22]. This mechanism is 

based on two key assumptions: (1) linearity in the response of NDVI/NPP to increased precipitation; 

and (2) an independence of RUE to fluctuation in its constituents [65]. The well reported linear 

relationship between NPP and rainfall in drylands [79] can potentially be compromised when tail 

events for both rainfall and NPP occur. At high precipitation amounts, factors other than rainfall 

become limitations to NPP, and increases in precipitation do not induce further productivity [79].  

At very low precipitation there may be no vegetation present resulting in RUE values approaching 
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infinity. This is further exacerbated by the positive intercept caused by soil reflectance [65]. At low 

biomass levels the vegetation is unable to prevent runoff and infiltration from occurring, thus subsequently 

low RUE will be observed. Rainfall increases may potentially drive an increase in both RUE and 

biomass, rendering RUE irrelevant as a detrending technique [84]. However, this interpretation has been 

criticised as being limited to sites with anomalous precipitation regimes [24,113,114]. RUE values have 

been demonstrated to correlate with inter-annual precipitation fluxes [65,88]. However, it is statistically 

questionable to test for dependence between RUE and rain as they are not independent [115].  

Fensholt et al. [116] proposed the use of a seasonality subtracted “small integral” of NDVI, as opposed 

to the full growth season integral, which could mitigate against correlations with rainfall, provided 

linearity assumptions are satisfied. 

Figure 3. Comparison of linear and Theil Sen regression slopes for a pixel in the Sahel. 

 

Figure 4. Comparison of the Rain Use Efficiency and residual trends for a pixel in the Sahel. 
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The Residual Trends (RESTREND) method compares the response of an NDVI time-series to a 

predicted response. The predicted response is generated by calculating a regression between NDVI 

values and precipitation [85,86]. The residuals from this regression are then subjected to a trend analysis.  

A positive trend in residuals indicates an increasing NDVI signal compared to the precipitation trend 

(land improvement), whereas a negative trend indicates a declining NDVI per precipitation unit 

(degradation). By implementing a statistical rather than a quotient method, this approach avoids the 

limitations of RUE with regards to linearity and dependence [88]. A comparison of RUE and 

RESTREND is shown in Figure 4, note the negative RUE trend induced by high rainfall at the end of 

the time series. 

The Precipitation Marginal Response (PMR) quantifies the slope of a linear regression between 

NPP/NDVI and rainfall, thus describing the sensitivity of NPP to rainfall fluxes by expressing the 

change in the dependent variable (NDVI) per unit of precipitation [87,117]. 

5. Relating Time-Series Frameworks to Degradation Processes 

All trend analysis assessments are based on the foundation that comparable sites, when subjected to 

degradation, will display reduced photosynthetic production, and thus NDVI [35,118]. This represents 

a symptomatic approach, as the mechanism of land degradation is irrelevant, provided a reduction in 

NPP materialises [13]. Thus, the two key assumptions of these methods are, firstly, that degradation 

consistently materialises as a reduction in NPP, and secondly, that NDVI variation is capable of 

capturing this reduction. These issues are reviewed below. 

5.1. Does Land Degradation Initiate a Decline in NPP? 

The assumption that land degradation reduces the NPP of a site is dependent upon the underlying 

mechanism. A reduction in vegetation cover, whilst species composition and diversity is maintained, will 

materialise as a reduction in NPP [10]. However, a common degradation mechanism affecting dryland 

regions is encroachment of woody shrub species into grasslands. This process results in an increase in 

bare ground coverage coupled with increased runoff and alterations of soil C and N stocks [45,119]. 

Nevertheless, shrubland encroachment does not necessitate a reduction in NPP. Thus, the analysis of the 

seasonal maximum or annual integral of NDVI is unlikely to detect this process successfully. However, 

shrubs species, and encroachment, do exhibit a number of distinct eco-hydrological responses, which 

may be exploited by an NDVI-based analysis. Shrubs species are, in general, perennial plants and 

manage to survive the dry season. Mitchard and Flintrop [120] mapped woody and shrub biomass in 

African Savannahs, using the dry season maximum NDVI. The results of this analysis agreed with 

collated field data of shrub encroachment and forest degradation, although the authors stipulate that the 

results should be viewed with caution due to the technical issue with dry season NDVI [120]. The 

ability of shrub species to support deeper root networks also influences their usage of precipitation. 

Williamson et al. [121] investigated the species-specific response of NDVI to preceding precipitation 

events. Grassland species reported the highest relationships for concurrent precipitations, whereas 

shrubland relationships were notably improved when the previous years were included [121]. Verón and 

Paruelo [87] highlighted the potential of variation in the rainfall-NDVI co-efficient (the precipitation 

marginal response) as a potential indicator of species composition variation. It should be noted that shrub 
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encroachment is not universally accepted as a component of land degradation [122]. Nevertheless, the 

associated reduction in pastoral resource that accompanies an increase in shrub coverage makes it a 

commonly perceived degradation process in many regions, and is thus included herein. In addition to the 

commonly acknowledge process of shrub encroachment an impoverishment of woody vegetation species 

has also been reported [123]. Herrmann and Tappan [123] and Herrmann et al. [124] compared 

Senegalese vegetation trend maps with archive photography and focus group meetings with local 

inhabitants. Results indicated that NDVI derived-greening trends did not necessarily correlate with 

users perceptions of vegetation improvement. In some locations a decrease in tree coverage and a shift 

to drought tolerant shrub species was reported, irrespective of changes in population and land usage. 

Interestingly, opposing results were found for an area of the Sahel in Mali, where an increase in 

cultivation and tree cover was identified [125]. 

In summary, a variety of NDVI-based methods have been designed and tested, but validation of 

results, and hence the suitability of NDVI-based methods to assess degradation, remains limited 

5.2. Can NDVI Trends Capture a Reduction in NPP? 

The ground truthing and validation of products generated by remote sensing is a critical methodological 

stage. However, the validation of trend analyses is inherently problematic. It is rarely feasible to 

validate 30-year trends with a large spatial footprint. In addition, there are few biomass-sampling sites 

with a spatial scale suitable for validating coarse resolution pixels and even fewer sites with a continuous 

record dating back to the early 1980s. Here, we summarise the existing literature on comparisons of 

long-term biomass data with vegetation index values and trends, and discuss alternative methods of 

validation, such as qualitative validation and simulation analysis. 

Wessels et al. [35] compared a 533-site, 19-year biomass dataset with an AVHRR-derived NDVI 

record for the Kruger National Park, South Africa. This comparison produced generally favourable 

correlations for the NDVI/biomass relationships, with an average R2 of 0.42 capturing the majority of 

inter-annual variability. Sites with low correlations were attributed to the heterogeneous land cover 

resulting in mixed pixels, poorly represented by the biomass samples [35]. A number of Sahelian 

localities have been subjected to long-term observation under the African Monsoon Multidisciplinary 

Analysis—Coupling the Tropical Atmosphere and the Hydrological Cycle (AMMA-CATCH) 

programme. Two of these sites, i.e., Gourma, located in northern Mali (data from 1984–2011) and 

Fakara in southern Niger (data from 1994–2011), were assessed against long-term GIMMS3g NDVI 

time-series trends [126]. At both sites, field data agreed with the direction and magnitude of the 

corresponding NDVI trend, with respective correlation co-efficients of 0.74 and 0.41. The co-efficient 

for Fakara becomes 0.59 when an outlier for 2010 is omitted [126]. The lower values obtained for 

Fakara were attributed to a mixed agro-pastoral land use pattern, when compared to the predominantly 

pastoral land use identified at the Gourma site [126]. The issue of localised land use/cover patterns 

resulting in mixed pixels was also noted by Brandt et al. [127]. This was partially rectified by utilising 

a higher-resolution NDVI product (Geoland V1 at 5 km resolution), which revealed patterns obscured 

by the GIMMS3g data. However, attempts to document localised factors for regional analysis proved 

problematic due to the large variety of land use/cover conditions present [128]. In the absence of  

long-term biomass records, a number of studies have used qualitative comparisons to validate trend 
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outputs. Wessels et al. [88] compared rainfall-corrected NDVI trends, using RESTREND, to a national 

land survey output, with an acceptable level of agreement between the two outputs. Further qualitative 

validation was undertaken by Evans and Geerken [85], who used field study surveys and visual 

interpretation of Landsat imagery to validate degradation assessments for Syrian drylands. Both of these 

studies relied on a generally high level of agreement between outputs and the validation data to assess the 

reliability of applied methods. Studies that attempt large-scale regional [64,65] or global [8,14] 

assessments, frequently rely on even less robust validations and focus on the linkages of hot-spots with 

environmental change narratives postulated by field studies. Although commonplace, studies utilising 

qualitative validation methods have been highly criticised. Wessels et al. [21] highlighted that this 

process does not sufficiently assess the accuracy and sensitivity of methodologies to variable start-dates 

and intensities of degradation. 

A recent alternative to the approaches above is simulation analysis, which tests the sensitivity of 

methods by artificially altering a dataset prior to analysis, thus a technique is assessed against a known 

baseline. This approach has been used to test the responsiveness of time-series segmentation methods 

aiming to decompose noisy data series [107,112,129] prior to the application on a global  

time-series [68,106]. The advantage of the simulation approach is that the intensity and duration of a 

shift can be determined, and the response of the applied analysis directly compared [130]. A land 

degradation simulation assessment was implemented by Wessels et al. [21], where a variety of  

start-date and intensity land degradation simulations were applied to 1 km-NDVI data covering the 

Kruger National Park, to represent the degradation of a non-degraded baseline. This study revealed that 

an NDVI reduction of 20%–40% was required to identify a significant negative trend in the region, using 

either RESTREND or a number of other trend techniques [21]. Thus, the majority of trend techniques 

employed [8] would be capable of detecting only the most severe of degradation processes, and would 

therefore not be useful as a degradation early-warning system [21]. Comparable simulation experiments 

were used to test the sensitivity of RUE in the Sahel region [115]. Here a degradation of >20% was 

found to be detectable, provided it did not occur at the start or end period of analysis. 

A number of studies have proposed that additional analyses using higher resolution imagery, such as 

the Landsat and SPOT satellites, would be well suited to provide further localised information on trends 

observed [63,131,132]. Comparisons of Landsat and AVHRR-based trends have revealed generally 

similar patterns [131], with further analysis demonstrating that vegetation estimates derived from 

Landsat imagery all display similar trend patterns [133]. Recent progress in applying time-series analysis 

on Landsat imagery stacks has demonstrated the potential for observing land use/cover variation at high 

spatial and temporal resolution [134–137]. In addition, the ability to generate large-area compositing 

techniques from multiple Landsat scenes [138,139], offers new opportunities for multi-scale analyses to 

improve on the relationships between land use/cover change and NDVI trends on multiple spatial and 

temporal scales. 

An important consideration of remote sensing studies is the resolution and scale of imagery used [140]. 

Higher resolution imagery will better identify local issues and trends, particularly in heterogeneous  

areas [128,131]. This advantage must be balanced with the more generalised large-scale view undertaken 

a large number of studies, where observing local factors is not a primary objective [8,14]. NDVI-based 

studies have historically been limited to the coarse-resolution preprocessed datasets details above  

(Table 1); this has limited the discussion of the impacts of altering the scale upon trend estimations. 
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Recent developments in the provision of both free and pre-processed Landsat data [141,142] may lead 

to an increased focus on higher-resolution sensor data, therefore the impact of varying pixel size on 

trend estimation should be a research priority prior to the undertaking analysis.  

6. Conclusions and Outlook 

Land degradation and desertification are important issues to both ecological and social research.  

The need for a quantitative, repeatable methodology to assess land degradation and desertification 

reliably is more pressing than ever before. EO data offer the only viable method for large-scale 

assessments, and despite the continued controversy over the techniques used, considerable progress has 

been made over the last 30 years. This review has identified two key prerequisites to the establishment 

of degradation and desertification monitoring and early warning systems. Firstly, methodologies must be 

subject to a standardised and robust validation in order for policy makers and planners to have 

confidence in results; secondly, degradation at minor intensities or early stages must be detectable in 

order for preventive action to be taken before irreversible damage occurs.  

The validation of trend analysis would ideally be undertaken by robust comparisons with field 

biomass data covering a comparable spatial and temporal scale. However, this is rarely possible. The 

need for using remotely sensed vegetation data is related to this very issue and a major concern is the 

requirement for consistency between studies. This could potentially be achieved through a standardised 

comparison with whatever long-term data exist. The proposed Global Drylands Observing System 

(GDOS) [143,144] would be a critical precursor to this. Alternatively, the simulation experiments 

proposed by Wessels et al. [21] and Verbesselt et al. [112] offer clear potential for the development of 

consistent and repeatable methodologies [115], which could be aided by the transition to open-source 

statistical programs. The availability of packages such as BFAST [107] and Greenbrown [130] 

demonstrates the potential for such a transition. 

The early detection of land degradation, particularly at low intensities represents a major limitation 

on the usability of degradation early-warning and monitoring systems. The application of structural 

and real-time change detection represent the greatest progress on this issue, but further work is still 

required. Bayesian statistics, whereby model assumptions are based on prior knowledge, may also be 

beneficial for identifying deviation form expected trajectories.  

The land degradation monitoring community may also benefit from the experiences of deforestation 

observation projects, which have acknowledged the importance of local stakeholders and end-users for 

efficient development [145,146]. The use of volunteered information and photographs for validation of 

land cover maps could be of value as an additional data source in regions with limited long-term field 

data. The monitoring of desertification is meaningless if not integrated with local end-users. The 

traditional top-down approach of researchers developing products leads to a lack of connection between 

the intended users and the design procedure, and may not be suitable for handling the wide variety of 

local issues [145]. Software tailored for land degradation, comparable to the CLASlite (Carnegie Landsat 

Analysis System-lite) program, which allows end-users to access information and development 

methodologies to map deforestation and forest cover, would be of advantageous [147]. However, 

technological limitations in many developing regions may hamper the uptake of such technology [148]. 
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It should be cautioned that NDVI analysis is best suited as one component of a multi-faceted 

methodology. The multiple symptoms and drivers of land degradation provide a number of opportunities 

for quantitative assessment using EO [149,150]. It is through the combination of these indicators that a 

holistic assessment of land degradation can be achieved [15,151]. In addition, NDVI-based analyses only 

consider the biomass of an ecosystem; this falls short of fully appreciating the wide range of ecosystem 

services and local uses that may be present [152]. Degradation assessments cannot be achieved through a 

biomass or Carbon stock assessment alone, as it is the usage and flow of biomass/Carbon that provide 

benefit to the biosphere [153]. Land degradation and desertification prevention and remediation efforts 

should also consider local stakeholder usage and ecosystem functions in order to promote poverty 

alleviation and environmental health objectives in synchrony [154]. 
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