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Abstract: Thermal Infrared (TIR) remote sensing images of urban environments are 

increasingly available from airborne and satellite platforms. However, limited access to 

high-spatial resolution (H-res: ~1 m) TIR satellite images requires the use of TIR airborne 

sensors for mapping large complex urban surfaces, especially at micro-scales. A critical 

limitation of such H-res mapping is the need to acquire a large scene composed of multiple 

flight lines and mosaic them together. This results in the same scene components (e.g., roads, 

buildings, green space and water) exhibiting different temperatures in different flight lines. 

To mitigate these effects, linear relative radiometric normalization (RRN) techniques are 

often applied. However, the Earth’s surface is composed of features whose thermal 

behaviour is characterized by complexity and non-linearity. Therefore, we hypothesize that 

non-linear RRN techniques should demonstrate increased radiometric agreement over similar 

linear techniques. To test this hypothesis, this paper evaluates four (linear and non-linear) RRN 

techniques, including: (i) histogram matching (HM); (ii) pseudo-invariant feature-based 
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polynomial regression (PIF_Poly); (iii) no-change stratified random sample-based linear 

regression (NCSRS_Lin); and (iv) no-change stratified random sample-based polynomial 

regression (NCSRS_Poly); two of which (ii and iv) are newly proposed non-linear techniques. 

When applied over two adjacent flight lines (~70 km2) of TABI-1800 airborne data, visual and 

statistical results show that both new non-linear techniques improved radiometric agreement 

over the previously evaluated linear techniques, with the new fully-automated method, 

NCSRS-based polynomial regression, providing the highest improvement in radiometric 

agreement between the master and the slave images, at ~56%. This is ~5% higher than the best 

previously evaluated linear technique (NCSRS-based linear regression). 

Keywords: thermal infrared; relative radiometric normalization; non-linear; TABI-1800; 

no-change stratified random sample 

 

1. Introduction 

Remote sensing technology has been widely used to monitor the Earth’s surface from satellite, piloted 

fixed-wing aircraft and UAS (unmanned aircraft system) platforms, by recording the radiant energy 

emitted or reflected from the Earth’s surface. However, these images are strongly influenced by the  

Sun-surface-sensor geometry, sensor characteristics, atmospheric absorption and scattering and 

microclimatic conditions that introduce noise within the sensor recorded radiant energy [1–3]. As the 

influence of these factors vary over time, a ground object viewed at different times or by different sensors 

tends to exhibit different sensor measurements. Thus, to use multiple datasets collected at different times 

or from different sources, it is necessary to either retrieve the surface radiance by applying suitable 

atmospheric corrections to each image (i.e., absolute atmospheric correction) or normalize the radiance 

values to a standard set of conditions (i.e., relative radiometric normalization) [4].  

Absolute radiometric correction techniques aim to extract absolute surface radiances using sensor 

calibration parameters and atmospheric properties at the time of data acquisition [5]. However, it is often 

difficult to collect the necessary ancillary data (i.e., atmospheric characteristics and sensor calibration 

parameters) for absolute corrections due to the (financial and logistic) costs involved, as well as the lack 

of historical weather data. Whereas, relative radiometric normalization (RRN) techniques aim to reduce 

radiometric differences among multi-temporal images by normalizing the radiometric properties of the slave 

image(s) to a master image, so that it appears as if all of the images were acquired using the same sensor and 

under the same environmental conditions as the master [6]. A master image is the reference image that is 

considered to be radiometrically “correct”. Slave images (one or more images in an image set) are considered 

to have radiometric distortion; thus, they are normalized “to” the master image.  

RRN techniques are often preferred over absolute techniques, because they require no in situ data, and 

they are able to take into account all forms of noise generated from the atmosphere, sensor, microclimate 

and other possible sources in a single straightforward process [7]. As a consequence, relative techniques 

have been widely used for the normalization of multi-temporal multispectral imagery [6,8–10]. 

However, there are few reports of RRN techniques applied to high resolution airborne thermal 

infrared (TIR) imagery, as they are typically applied to satellite-based TIR imagery acquired at moderate 
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to low spatial resolution (60 m to 1 km), where there are fewer details to compare, as each pixel in the 

image has already been regularized. For example, Warner and Chen [11] applied RRN to suppress the 

effects of solar heating and topography in daytime Landsat TIR data. They evaluated three RRN 

techniques and concluded that these methods were able to demonstrate improved radiometry of the 

original dataset. Scheidt et al. [12] mosaicked night-time ASTER TIR data by automatically selecting 

pseudo-invariant features (PIFs) from scene overlaps and then fitting the PIFs in a linear regression 

model. More recently, Rahman et al. [13] recognized the need to validate RRN techniques on high 

resolution (H-res) multi-temporal TIR imagery and evaluated four RRN techniques (typically used for 

multispectral data) on multiple flight lines of TABI-1800 (Thermal Airborne Broadband Imager) data 

(at a 50-cm spatial resolution). These included: (i) histogram matching; (ii) pseudo-invariant feature 

(PIF)-based linear regression; (iii) PIF-based Theil-Sen regression (the Theil-Sen [14,15] estimator is a 

robust linear regression model that uses the median of pairwise slopes as an estimator of the slope 

parameter of the correlation between two datasets [16]); and (iv) no-change stratified random sample 

(NCSRS)-based linear regression. Their study showed that two of these methods (i and iv) visually and 

statistically performed better than the others, improving the radiometric agreement between multi-temporal 

TIR flight lines by ~50%.  

Each of the RRN techniques used in these previously noted studies were linear in nature. That is, for 

the purpose of simplifying analysis, it was assumed that the thermal properties of the different surface 

types were linearly correlated. However, in reality, the Earth’s surface is a complex mixture of natural 

and man-made features exhibiting very different, often non-linear thermal properties [17]. For example, 

if water and rock are heated for a constant time under identical environmental settings, the rock 

temperature will rise much quicker than the water due to its lower thermal capacity [18]. Similarly,  

Oke [19] conducted an extensive study on the thermal characteristics of different surfaces of the Earth. 

His results demonstrated a clear difference in the cooling rates of different surfaces, including snow, 

peat soil, sandy soil, clay soil, water, rocks, farmland and woods from sunset to sunrise. A more recent 

study [20] also examined the daytime thermal behaviour of urban surfaces, which revealed nonlinear 

thermal relationships (over time) among different construction materials, including granulite, mixed 

asphalt, bright concrete and dark concrete. Thus, assuming simple linear thermal relationships among 

different types of complex surfaces is expected to produce sub-optimal results. As a result, we 

hypothesize that non-linear RRN techniques should demonstrate increased radiometric agreement over 

complex urban surfaces, compared to similar linear techniques. To test this hypothesis, the objective of 

this paper is to evaluate the two most suitable linear techniques for the RRN of airborne TIR imagery, 

as recently described by Rahman et al. [13], against two newly proposed polynomial techniques (which 

are expected to better suit the thermal complexity of urban surfaces) and to evaluate them visually and 

statistically. To achieve this objective, the following section (Section 2) describes the study area, datasets 

and the RRN techniques used. This is proceeded by a thorough discussion of the results (Section 3) and 

the lessons learned (Section 4).  

2. Methods 

In this section, we introduce the study area and the dataset. We then describe the four relative 

radiometric normalization (RRN) techniques evaluated in this study.  
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2.1. Study Area and Dataset  

Our study area represents a (~70 km2) portion of The City of Calgary, Alberta, Canada, composed of 

two adjacent TABI-1800 TIR flight lines (Figure 1A), each ~0.9 km wide by 39 km long with ~30% 

overlap between them. The City of Calgary is situated approximately 80 km east of the front ranges of 

the Canadian Rockies mountain range and, as a modern metropolitan center, is composed of a variety of 

urban landscape features (Figure 1B). The TABI-1800 (Thermal Airborne Broadband Imager) is an  

H-res TIR airborne sensor that has a swath-width of 1800 pixels, which it collects in a single channel 

(3.7–4.8 µm spectral range). It has an instantaneous field of view (IFOV) of 0.405 milliradians and a field 

of view (FOV) of ±40 degrees with a 14-bit dynamic range. The sensor’s radiometric accuracy is 0.05 °C, 

and it is able to collect data at 90–100 frames per second. The data for this project were acquired between 

2:00 and 3:00 am on 13 May 2012, at a 50-cm spatial resolution and were ortho-rectified using a 10-m 

DEM (digital elevation model). The reported (horizontal) geometric accuracy of the dataset is ±1 m.  

Figure 1. (A) The City of Calgary map, displaying the location of the two TABI-1800 flight 

lines used in this study. (B) An example of TABI-1800 imagery (at 50 cm pixels) within the 

study area, detailing the urban complexity resulting from roads, buildings, trees, green space, etc. 
Bright locations are warm, and dark locations are cool. 
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2.2. Relative Radiometric Normalization  

The RRN methods evaluated in this study include: (i) histogram matching (HM); (ii) pseudo-invariant 

feature-based polynomial regression (PIF_Poly); (iii) no-change stratified random sample-based linear 

regression (NCSRS_Lin); and (iv) no-change stratified random sample-based polynomial regression 

(NCSRS_Poly). All algorithms were written in-house using the Interactive Data Language (IDL 8.0), 

were applied to the same datasets and were performed using the same workstation (an Intel(R) Core(TM) 

i7–2600, running Windows Server 2008 (64 bit) on a Quad Core CPU at 3.40 GHz, 16 GB RAM).  

As we only have 30% overlap (max) between the master and the slave images, we (i) first extract the 

overlap sections from both flight lines; as this represents the same land area observed at two different 

acquisition times. Next, (ii) we develop all RRN methods based on these overlaps, then (iii) we apply 

the RRN methods exclusively to the (entire) slave flight line, thus normalizing it to the master. The RRN 

methods used in this study are briefly described below. 

2.2.1. Histogram Matching 

Histogram matching (HM) is described as matching the histogram of the slave image to that of the 

master image, so that their apparent distribution of the digital number (DN) values becomes closer [21]. 

The simplest way to perform HM is to create the histogram of the master and the slave images, then 

calculate the mean difference using Equation (1) and use it to shift (a.k.a. normalize) the slave histogram 

to the master [13]. Figure 2 displays a hypothetical example of the HM technique. ܦܯ = 1݊ ݕ) − )ୀୀଵݔ  (1)

where, ܦܯ = the mean difference, ݊ = the number of pixels, ݔ = the value of pixel i in the slave image 

and ݕ = the value of pixel i in the master image. 

Figure 2. A hypothetical example of radiometric normalization using the histogram 

matching technique. DN (digital number). 
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2.2.2. Pseudo-Invariant Feature (PIF)-Based Polynomial Regression (PIF_Poly) 

Pseudo-invariant features (PIFs) are defined as objects whose electromagnetic properties (reflection, 

absorption and emission) are nearly constant during the imaging conditions and which are independent 

of seasonal or biological cycles [22]. Such features are commonly used as references for the relative 

radiometric normalization of multi-temporal imagery [6,13,22–24]. In this study, we used four types of 

PIFs that were expected to be consistent during the acquisition of both flight lines: (i) grass; (ii) roof top; 

(iii) river water; and (iv) road; each of which cover a broad (non-overlapping) range of temperatures. In 

general, grass and roofs were cooler than most of the features within each flight line; water was warmer 

and road was the hottest. We manually collected ~2000 training sample points (~500 points for each 

type of land cover) within the overlap sections. These points were then plotted (Figure 3) and a sixth 

order polynomial regression equation (Equation (2)) was developed from the scatterplot, which was later 

used to normalize the slave image to the master. We note that numerous orders of polynomial regression 

were evaluated before concluding that for these samples, a sixth order polynomial was optimal. ݕ = ݔ0.0001− + ହݔ0.0033 − ସݔ0.0387 + ଷݔ0.1796 − ଶݔ0.2020 + ݔ0.5659 +0.1583 (R2 = 0.99) 
(2)

Figure 3. A scatterplot of pseudo-invariant features (PIFs) selected within the overlap of the 

master and the slave images. These PIFs represent a combination of four land cover classes 

(grass, river water, rooftop and road) and are shown modeled with a sixth order polynomial 

trend line (black). Poly, polynomial. 

 

2.2.3. No-Change Stratified Random Sample (NCSRS)-Based Linear Regressions 

The manual selection of PIFs is subject to user bias and errors and can be difficult, time consuming 

and costly to complete correctly, especially in areas where the analyst may have limited local field 

experience. To overcome these issues, a number of studies describe using automatic techniques to 
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identify no-change sets (i.e., invariant features) from which they select reference samples for relative 

radiometric normalization [6,8,13,25–27]. In this paper, we apply the method described in  

Rahman et al. [13], which used the mean and standard deviation (SD) to automatically identify the  

no-change set within the flight line overlap. This required producing an image difference map of the 

overlap sections by subtracting the slave from the master overlap (i.e., Master DN-Slave DN), then 

creating a histogram from this difference map.  

As these flight lines were collected during a calm night only ~20 min apart, we assumed that the 

temperature of different land cover types was not significantly altered. Consequently, any abrupt changes 

in surface temperature during this brief time are considered as noise and are masked out of the image 

difference histogram using a heuristically-derived measure of SD. Due to the airborne nature of these 

data, we note that this activity also compensates for areas within the scene that may have localized 

geometry issues greater than the reported geometric error (±1 m) of the post-processed data.  

“Compensates for” means that areas with large geometric error are expected to show high variance in 

the change image; thus, these areas are not included in the analysis. This SD measure corresponds to 

data points (i.e., DNs) beyond the mean ±3SD, which has been extensively shown to work over different 

cover types [13]. To collect representative samples from the remaining image, the master and slave overlap 

DN pairs were sorted in an ascending order, and a random pair was selected from each 500-point bin 

(i.e., 0.2% of the population); in this case, totaling 42,280 sample points. Data were sorted to cover the 

entire radiometric range of the overlap image, so that different land cover types (with different 

temperatures) are included in the samples. The selected samples were then plotted (Figure 4) to develop 

a linear regression equation (Equation (3)), which is then applied over the slave image to radiometrically 

normalize it to the master image. ݕ = ݔ0.9124 + 0.334 (R2 = 0.88) (3)

Figure 4. A scatterplot of no-change stratified random samples (NCSRS) with a sixth order 

polynomial trend line (black) and a linear trend line (red dotted) between the master and the 

slave images. 
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2.2.4. No-Change Stratified Random Sample (NCSRS)-Based Polynomial Regression 

The same samples (Figure 4) that are used for NCSRS-based linear regression (Section 2.2.3) are 

used here to develop a polynomial regression equation (Equation (4)). This equation is used to 

radiometrically normalize the slave image to the master.  ݕ = ݔ0.000004 − ହݔ0.00009 + ସݔ0.00017 + ଷݔ0.00696 − ଶݔ0.3294 ݔ0.95803+ − 0.1189 (R2 = 0.93) 
(4)

2.3. Validation of the Results Using Root Mean Square Error (RMSE) 

It is expected that the radiometric (temperature) difference between identical features in the master 

and the slave flight lines (within the overlap) will decrease after performing normalization. To test this, 

we randomly selected 2000 test points from the four major land cover types present in the overlap 

sections, including: (i) grass; (ii) rooftop; (iii) river water; and (iv) road (~500 points for each type of 

land cover); then, we calculated the root mean square error (RMSE) of the selected points for all 

presented methods using Equation (5).  

ܧܵܯܴ = ඨ∑ ௦௧ܰܦ − ܦ ௦ܰ௩)ଶଵ ݊  (5)

The RMSEs are then compared (see Section 3) to assess the performance of all methods. RMSE is 

used as an overall comparative measure of fitness, as it defines the difference between values predicted 

by the model and the observed values. The smaller the RMSE, the closer the model is to the  

observed values. 

3. Results and Discussions  

3.1. Visual Assessments 

Visual assessment is a straightforward way to judge the performance of the evaluated methods. In so 

doing, the master and the slave flight lines were joined and features along the mosaic line were assessed. 

If the visual differences between the master and the normalized slave images are smaller than that of the 

master and the raw slave images, the normalized image can be considered as radiometrically fitted to the 

reference image.  

A visual assessment of grass, road, water and rooftop samples (illustrated in Figure 5) shows that 

each tested method visually improves the radiometric agreement between the master and the slave 

images compared to the raw image. However, the degree of normalization varies depending on the 

method used and the land cover type assessed. Specifically:  

 HM appears to perform very well for road and water, but performs only moderately well for grass 

and rooftop.  

 PIF_Poly performs well for road and water and moderately well for grass, but it does not perform 

well for rooftop.  

 NCSRS_Lin performs very well for water and moderately well for road, grass and rooftop.  
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 NCSRS_Poly performs very well for road and water and well for grass and rooftop. Though 

subjective, we further suggest that grass and rooftop visually appear best modeled by this method. 

Figure 5. Visual examples of four different relative radiometric normalization 

methods applied along the mosaic join line of four different land cover types (grass, road, 

water and rooftop). PIF_Poly—pseudo-invariant feature-based polynomial regression; 

NCSRS_Lin-no-change stratified random sample-based linear regression. 

 

In general, the radiometric error of geographically simple features, like road and water, are visually 

reduced by all methods; this, in part, can be explained by their high thermal inertia, which results in low 

within-class variability (regardless of their acquisition time within either flight line). 
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We also note that while the river water class is a part of a dynamic system, its nighttime temperature 

fluctuates very little as its source is regulated by high mountain snow melt. However, complex features, 

like grass and rooftops, are not well modeled by most of the evaluated methods. This, in part, can be 

explained by their complex and variable nature. That is: (i) Different types of grass will exhibit different 

nighttime evapotranspiration rates; and (ii) the temperature of different roof sections (even for the same 

building structure) can be differentially heated at different times during the night, as they respond to 

varying local microclimatic differences in temperature and humidity—two attributes typically assessed 

by modern in-home thermostats. At a broader community scale, roof tops can further be considered a 

highly variable land cover feature, as they are composed of numerous materials, many of which have 

different emissivity characteristics that need to be corrected for (after radiometric normalization) in order 

to convert their relative temperature values (defined by the sensor) to true kinetic temperatures [2,3].  

As a consequence, a small constant difference in (relative) ambient temperature may result in several 

degrees of difference in roofs composed of different materials, which are not corrected for emissivity. 

Figure 6 provides another visual example of how the four evaluated relative radiometric 

normalization techniques reduce the thermal variability between the master and slave image(s) for four 

different land cover types. Figure 6A (the master) and 6B (the slave) represent corresponding  

grey-scale TABI-1800 image samples of a small area located within the flight line overlap that is 

predominantly composed of vegetation, roads, a (water-body) river and roofs. In both of these grey-scale 

sub-images, grass (smooth lower right) and roofs (top right corner) appear cool (mid-dark grey), the 

river (lower left diagonal feature) and trees (textured blobs) are moderately warm (light grey), while 

roads and paths are the hottest (white). In Figure 6C, the strongest temperature difference between the 

master and the uncorrected (raw) slave image appears yellow (+3 °C) for trees and rooftops. However 

after radiometric normalization, these differences and those of other features tend to visually decrease 

(Figure 6D–G). For example, water and road appear well modeled by most of the methods, displaying a 

minimum difference (i.e., black or blue ≈ 0–1 °C) between the master and the normalized slave images. 

Overall, rooftops and trees display the highest differences (yellow ≈ +3 °C), which perpetuates over 

different spatial extents in all slave images. Upon more detailed visual inspection, these yellow coloured 

rooftops and trees appears to be due to geometric shift-differences, especially noticeable as yellow 

regions along the edge of buildings (see the top right Figure 6D–G) and on tree-tops and along paths 

(within the same figures). However, based on a visual assessment of the pseudo-coloured temperature 

differences for all of the RRN samples, NCSRS_Poly visually appears to perform the best for all four 

land cover types (as it exhibits the most black and blue colors, thus representing the smallest temperature 

differences), closely followed by HM and NCSRS_Lin.  
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Figure 6. A visual example of how relative radiometric normalization techniques decrease 

the radiometric variability between flight lines. (A) A sample area from the master image. 

(B) The same area from the slave image. Pseudo-colored absolute image difference (C) 

between the master and the uncorrected slave image and between the master and the 

normalized salve images resulting from (D) HM, (E) PIF_Poly, (F) NCSRS_Lin and  

(G) NCSRS_Poly. 

 

3.2. Statistical Analysis  

As noted in Section 2.2.4, the root mean square error (RMSE) was used to define the statistical 

agreement between the normalized slave images and the master image. This required collecting 2000 

stratified random sample points within the overlap that represent four different land cover types over a 

wide range of temperatures. These include: (i) grass; (ii) road; (iii) water; and (iv) rooftop. Table 1 

summarizes the RMSEs calculated for these cover types.  
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Table 1. The overall RMSE of four different land cover types, for each of the four different 

relative radiometric normalization methods evaluated in this study. Bold values represent the 

lowest RMSE of each class and overall RMSE calculated for each image. 

Land Cover Type 
RMSE (°C) 

Slave HM PIF_Poly NCSRS_Lin NCSRS_Poly

Grass 0.420 0.236 0.227 0.193 0.163 

Road 0.201 0.097 0.128 0.122 0.123 

Rooftop 0.586 0.436 0.452 0.371 0.322 

Water 0.216 0.106 0.108 0.130 0.113 

Overall * 0.356 0.194 0.210 0.173 0.159 

* Mean of RMSEs of all selected test samples for different land cover types. 

In general, all methods show a reduced radiometric variation between the master and the slave images. 

From Table 1, we see that complex features, like rooftops and grass, have higher RMSE values in the 

uncorrected slave image than other features. This is understandable, as different roofing materials are 

used in Calgary, including asphalt shingles, clay tiles, cedar, tar and gravel, wood, concrete, fibreglass, 

vinyl shingles, etc. each of which have different thermal capacities, conductivity and emissivity. As a 

result, we found it challenging to radiometrically normalize rooftops with each of the methods. Similarly, 

the grass class also has a higher RMSE in the uncorrected slave image, potentially due to: (i) the various 

species compositions, each with varying allometric and morphometric characteristics; and (ii) the 

varying amount of moisture in the background soil [28]. The other two features (road and water) are 

relatively simple and exhibit relatively lower RMSE values in the slave image. They are also reasonably 

well modeled by all methods, resulting in decreased RMSE values (~50%). However, the complex 
feature classes (rooftop and grass) are best modeled only by the NCSRS-based methods, with the 

NCSRS-based polynomial technique providing the lowest overall RMSE values (0.322 and  

0.163 respectively).  

Figure 7 illustrates the scatterplots and resulting trend-lines between the master and the slave images 

before (Figure 7A) and after (Figure 7B–E) normalization. The blue lines represent the linear trend lines, 

while the red dashed lines illustrate the expected trend of each dataset at perfect radiometric agreement. 

Scatterplots can be used to describe various correlations between different variables. A high positive 

linear correlation exists between two datasets when the data cloud follows a 45° diagonal line (i.e., the 

red dotted line in Figure 7A–E). This indicates that the datasets are not only highly correlated, but also 

that their DN values are very close to each other.  

In a perfect scenario, if two datasets represent the same features, their slope in the scatterplot should 

be 45° and their intercept should be at zero. In the scatterplot of the raw images (Figure 7A), the slope 

is shown to be 35.5° and the intercept is shown as 2.1. However, each of the normalized scatterplots 

(Figure 7B–E) improves the slope between the master and the slave, and most of the methods improve 
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both the intercept and the slope. Of those methods tested, the scatterplot results (Figure 7A–E) show that 

the NCSRS_Poly trend line (Figure 7E) is visually and statistically the closest to the red line with a slope 

of 43.1°, an intercept of 1.3 and an R2 of 0.84. Thus, it represents the best performing normalization 

method, followed by NCSRS_Lin (Figure 7D). Conversely, while the HM method improves the slope 

between the master and the slave (indicating that the radiometric agreement is supposed to improve), the 

intercept is slightly increased, and in the case of PIF_Poly, the intercept is further increased (meaning 

that the radiometric agreement is supposed to be decreased).  

Figure 7. (A) A comparison of the scatterplot between the original master and the slave 

images and after applying four normalization methods: (B) HM; (C) PIF_Poly;  

(D) NCSRS_Lin; and (E) NCSRS_Poly. The thin blue lines describe the data trend line, 

while the red dashed lines show the expected trend(s) at perfect radiometric agreement. 

 

3.2.1. A Comparison of Automatic vs Manual Methods 

When automatic methods (HM, NCSRS_Lin and NCSRS_Poly) are compared against the manual 

method (PIF_Poly), the Table 1 results demonstrate that automated methods are able to more efficiently 

process large volumes of data, while maintaining a higher level of accuracy (i.e., a lower RMSE).  
Figure 5 and Table 1 further show that although the (PIF_Poly) method performed moderately well for 

grass, road and water, it failed to improve the radiometric agreement for rooftops. Additionally, the 
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required manual collection of samples is time consuming, subject to human error and not easily 

operationalized for large datasets. 

3.2.2. An Assessment of Computation Time 

When analyzing large area, H-res TIR imagery, especially within an operational setting, computation 

time is an important criterion to consider. In order to meaningfully assess the computation times for each 

of the evaluated radiometric normalization methods, we applied each method over the same datasets and 

used the same workstation for subsequent analysis. All algorithms were written (in house) in the 

Interactive Data Language (IDL 8.0) and optimized for performance. 

Processing results (Table 2) show that the NCSRS-based linear regression method required the least 

amount of time to execute (1.4 min). The second fastest method was histogram matching, which required 

2.14 min; while NCSRS_Poly and PIF_Poly each took 4.7 min to compute. However we rate 

NCSRS_Poly as the third fastest, as its training samples were automatically selected. Conversely, 

PIF_Poly required the manual collection of training samples, which, in this case, took about 30 min to 

manually define (from within the overlap between the two flight lines). Furthermore, as the number of 

flight lines increases, this method becomes increasingly complicated, as additional samples will need to 

be manually collected from each overlap section. For example, if we were to use this method to process 

the full City of Calgary with its 43 TABI-1800 fight lines (~600 GB), we estimate 22 h of additional 

labour, just for manual sample collection (i.e., 42 overlaps × 30 min each). Thus, we rate PIF_Poly as 

the slowest method to implement and do not recommend it for large area operational analysis. 

Table 2. Computation time of four different relative radiometric normalization (RRN) 

methods evaluated in this study. 

RRN Method Computing Time (min) 
Histogram Matching 2.14 

PIF_Poly 4.7 * 
NCSRS_Lin 1.4 
NCSRS_Poly 4.7 

* Represents the computation time required after the manual collection of PIFs. 

3.2.3. A Comparison of Linear vs Polynomial Methods 

In the Introduction, we hypothesized that nonlinear (i.e., polynomial) RRN techniques are better 

suited to model the temperature variability of complex urban features in H-res TIR imagery than 

corresponding linear techniques. In this section, we test this hypothesis by comparing only the  

NCSRS-based linear and polynomial RRN techniques, as they both use the same automatically generated 

samples in their corresponding regression equations 

From a visual assessment of the cover classes in Figures 5 and 6 and the scatterplot agreement in 

Figure 7, we conclude that NCSRS_Poly visually performs better than NCSRS_Lin. Furthermore,  

Table 1 shows the lowest overall RMSE resulting from NCSRS_Poly. That is, when compared to the 

original slave test samples (Table 1), NCSRS_Poly decreases overall RMSE by 56%, which is 5% less 
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than NCSRS_Lin (51%). However, if we only look at the results for the most complex class (rooftop), 

NCSRS_Poly decreases the RMSE by 46%, vs 36% for NCSRS_Lin.  

From Figure 8, we see that results from the polynomial function (in green) display notable 

improvement over the raw data (blue) or the linear method (yellow) for the two complex land cover 

classes—grass and rooftop (each of which are characterized by greater internal variability). For more 

simple landscape features, like water and road, both methods perform very closely, with NCSRS_Poly 

only slightly better for water. 

Figure 8. A comparison of linear (LIN) and polynomial (Poly) regression-based radiometric 

normalization using the same no-change stratified random samples (NCSRS). 

 

Based on this combination of results, it is clear that the polynomial technique (NCSRS_Poly) provides 

improved radiometric agreement over the linear technique, though we note that NCSRS_LIN is  

three-times faster to implement (see Table 2). Scaled for 43 flight lines, this represents a processing time 

of 58.8 min vs 197.4 min. While a faster implementation time is best, we consider NCSRS_Poly as the 

most operationally capable, based on the strength of its visual and statistical results, even with its 

(currently) slower implementation time. If necessary, increased processing speed can be gained from 

faster hardware.  

4. Conclusions  

This paper has evaluated two linear relative radiometric normalization techniques, (i) histogram 

matching and (ii) no-change stratified random sample-based linear regression, against two new 

polynomial RRN techniques, (iii) Pseudo invariant feature-based polynomial regression and  

(iv) no-change stratified random sample-based polynomial regression. One of the evaluated techniques 

required manual sample collection, while the other three were automatic.  
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Pseudo invariant feature-based polynomial regression (PIF_Poly) is based on a polynomial regression 

equation derived from a scatterplot formed by manually-selected pseudo-invariant feature point pairs 

(i.e., of grass, road, rooftop and water) extracted from the overlap between the master and the slave flight 

lines. Results show that this method is unsuitable for the operational radiometric normalization of H-res 

thermal infrared imagery in terms of time, visual assessment and statistical analysis. Specifically,  

it showed the highest overall RMSE for all classes; thus, it is the least accurate of those tested. 

Additionally, the manual selection of its reference points is time consuming and subject to human error, 

and as data volumes increase, the time and complexity of such a method will also increase.  

Histogram matching (HM) performs a scalar shifting of the slave histogram to the reference histogram. 

This method is easy to understand, simple to implement, the second fastest of those tested and produces 

acceptable visual results. However, while a simple scalar adjustment is very good for relatively invariant 

features, like water or road, it does not work well for complex urban features, like rooftops and vegetation, 

which are present in all flight lines. Nevertheless, this method does not reduce the radiometric agreement. 

Overall, it produced the third highest RMSE for all classes. Thus, for a quick assessment with acceptable 

results, we still consider this method as effective.  

No-change stratified random sample-based linear regression (NCSRS_Lin) generates a linear 

regression equation based on automatically selected sample points from the reference and the slave flight 

line overlaps. This linear regression method is computationally the fastest tested method; it is simple to 

understand, easy to execute and produces visually and statistically better results than HM, including 

those for complex features, like grass and rooftops.  

No-change stratified random sample-based polynomial regression (NCSRS_Poly) generates a 

polynomial regression equation based on the same automatically generated sample set as NCSRS-based 

linear regression. In terms of computational time, this method is slower than HM and NCSRS-based 

linear regression; however, it achieved the best results from both visual and statistical assessments.  

We ranked it third fastest in computation time, tying with (PIF_Poly), but beating it, due to its automatic 

sampling feature. In particular, the non-linear characteristic of this method, when applied to a large 

number of automatically collected samples, was the best at modelling complex urban surfaces, especially 

urban rooftops and grass. It also performed well for less complex features, such as road and water.  

In summary, all four of the methods evaluated in this paper have increased the radiometric agreement 

between the reference and the slave image. In terms of time, NCSRS-based linear regression was the 

fastest method, and it also generated visually and statistically acceptable results. In terms of statistical 

results, the NCSRS-based polynomial regression method produced the best results, with its radiometric 

agreement (between the master and the slave image) increasing by ~56%, closely followed by  

NCSRS-based linear regression (~51%). Results show that the non-linear method (NCSRS_Poly) better 

models the various heterogeneous thermal properties of a complex urban landscape compared to the 

evaluated linear methods; thus, we recommend it as the most appropriate to use for normalizing H-res 

airborne TIR urban imagery.  
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