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Abstract: When object-based analysis is applied to very high-resolution imagery, pixels 

within the segments reveal large spectral inhomogeneity; their distribution can be considered 

complex rather than normal. When normality is violated, the classification methods that rely 

on the assumption of normally distributed data are not as successful or accurate. It is hard to 

detect normality violations in small samples. The segmentation process produces segments 

that vary highly in size; samples can be very big or very small. This paper investigates 

whether the complexity within the segment can be addressed using multiple random 

sampling of segment pixels and multiple calculations of similarity measures. In order to 

analyze the effect sampling has on classification results, statistics and probability value 

equations of non-parametric two-sample Kolmogorov-Smirnov test and parametric 

Student’s t-test are selected as similarity measures in the classification process. The 

performance of both classifiers was assessed on a WorldView-2 image for four land cover 

classes (roads, buildings, grass and trees) and compared to two commonly used object-based 

classifiers—k-Nearest Neighbor (k-NN) and Support Vector Machine (SVM). Both 

proposed classifiers showed a slight improvement in the overall classification accuracies and 

produced more accurate classification maps when compared to the ground truth image. 
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1. Introduction 

The improvements in the spatial resolution of satellite sensors that occurred over the last decade lead 

to the development of new image processing and classification techniques. The increasing availability 

and diversity of the high- and very high-resolution satellite imagery posed a challenge to researchers 

who not only had to deal with the abundance of available data but also with the great detail found in the 

image. One of the approaches that managed to overcome the aforementioned challenges was the 

Geographic Object-Based Image Analysis (GEOBIA). GEOBIA systems gained widespread popularity 

from 2000 onwards and are currently considered to be the state-of-the-art systems in both scientific and 

commercial thematic mapping of very high-resolution spaceborne imagery, e.g., [1–3]. 

The underlying concept of the two-stage GEOBIA approach is based on segmentation as the first 

preliminary step and classification as the second step. Generally, image segmentation is defined as a 

process of partitioning an image into homogenous groups called segments in which each segment is 

homogenous but no union of two adjacent segments is homogenous. In the classification step, regions 

are classified into the most appropriate classes based on their spectral, spatial and contextual information. 

When compared to traditional non-contextual pixel based methods, several GEOBIA approaches 

presented improved results [4]. Regarding the object-based image classification as the second step of the 

GEOBIA approach, different methods and techniques have been investigated and employed in order to 

improve classification accuracy and performance and to fully exploit the additional available  

information provided in the image segments. However, numerous authors, e.g., [1,4–9] agree that any  

segmentation-based classification can only be as good as the underlying segmentation, which means that 

only good segmentation results can lead to object-oriented image classification out-performing pixel 

based classification. Li et al. [10] claim that the final image classification results do not depend merely 

on the segmentation accuracy but also on numerous other factors: the classification scheme, available 

images, training samples selection, data pre-processing that includes feature selection and extraction, the 

classification algorithm, post processing techniques, test sample collection, as well as validation methods. 

In recent years the question has not been whether object-based classifiers are better than pixel based, 

but if and how object-based classification can gain from the classifier itself rather than from the 

aforementioned factors. Toure et al. [11] and Sridharan and Qiu [8] pointed out that the current 

approaches to classification of segments are based on statistical measures of central tendency and 

dispersion associated with normally distributed data. Due to the spectral inhomogeneity of pixels within 

the segments in high and very high-resolution imagery their distribution can be considered complex 

rather than normal [11]. Using classification methods that rely on normality assumptions such as 

maximum likelihood and utilizing merely the summary statistics that fail to capture the in-object 

heterogeneity may therefore lead to inappropriate, inaccurate and misleading results. In order to avoid 

normality violation, Toure et al. [11] proposed the use of histogram curve matching approaches. 

Histograms proved to be reliable features when characterizing classes. Toure et al. [11] also studied the 
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influence of wavebands on classification; the tests were performed with individual red and near infrared 

(NIR) bands and a combination of the two. Three different formulae for combining red and NIR bands 

outperformed the results obtained when using one or the other band individually. 

Sridharan and Qiu [8] presented a fuzzy Kolmogorov-Smirnov based classifier that provides an 

object-to-object matching of the empirical distribution of the reflectance values. The Kolmogorov-Smirnov 

classifier has been employed as the supervised data-learning algorithm, i.e., a segment is assigned to the 

class with which it has the most similar spectral signature relative to the training data signatures. This 

was tested for urban objects recognition from 8-band WorldView-2 data. Sridharan reported a minimum 

10 percent increase in overall classification accuracy when compared to various popular object- and 

pixel-based classifiers. 

Methods that assume data is derived from a particular distribution are referred to as parametric, 

whereas methods that do not rely on data belonging to any particular distribution are known as  

non-parametric. The decision as to whether to choose a parametric or non-parametric method is 

important when dealing with small samples. However, with small samples it may also be difficult to 

detect assumption violations. If the assumption deals with normal distribution, non-normality is hard to 

detect even when present, since small samples contain insufficient information that would enable reliable 

conclusions as regards the data distribution type. 

In object-based image analysis, the segmentation process produces segments that vary greatly in size, 

i.e., samples can be very big as well as very small. Various supervised classifiers tend to use spectral 

information within segments as it appears—all pixel values (regardless of the size of the segment) are 

used to compute either one summary measure or one empirical cumulative distribution function for a 

pair consisting of an unknown segment and a training sample. According to Sridharan and Qiu [8] 

empirical cumulative distributions fully characterize the analyzed segment as well as describe its inner 

complexity. The in-segment complexity is typical for urban areas and heterogeneous agricultural fields 

and should be properly addressed if we wish to obtain accurate classification results. 

This study extends the classification approach based on the use of empirical cumulative distribution 

functions and the two-sample Kolmogorov-Smirnov test distance by Duric et al. [12]. The preliminary 

research conducted on a 3-band orthophoto image revealed the potential of an in-segment complexity 

analysis in regards to classification accuracy. However, due to the incomplete classification and 

evaluation methodology and the insufficient testing segments, it failed to provide objective conclusions 

as regards the benefits or disadvantages of the used classification approach. 

In this paper we are going to analyze whether the complexity can be addressed using multiple random 

samplings of small sets of segment’s pixel values and multiple calculations of similarity measures. In 

order to analyze the effect sampling has on classification results, statistics and probability values of  

non-parametric two-sample Kolmogorov-Smirnov test and the parametric Student’s t-test are selected 

as similarity measures for the classification purposes. Both tests are well known in statistical hypothesis 

testing, however, in this analysis, hypothesis reasoning against a selected level of significance will be 

omitted as similarity measures will serve merely as a tool for relative comparison between different 

classes, namely as a degree of matching. Since the Student’s t-test statistics computation is based on the 

mean and standard deviation of the segment’s pixel values, it served well in the evaluation of the 

performance of—the hypothetically more representative—empirical cumulative distribution functions 

when small-sized pixel sets were sampled. 
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To summarize, the objectives of our study are:  

- To describe in-segment pixel heterogeneity by exploiting the potential of multiple small set sampling, 

- To study the effect of multiple small set sampling on normality violation with the parametric 

Student’s t-test, 

- To compare the effectiveness of the Kolmogorov-Smirnov and Student’s t-test based classifiers, and 

- To analyze the impact spectral resolution has on the classification results. 

2. Data and Methodology 

In order to attain the aforementioned objectives, our study applied a data processing workflow  

(shown in Figure 1). The analysis procedures followed an object-based supervised classification 

approach, which typically covers several steps: data pre-processing and preparation, segmentation, 

computation of the segments’ characteristics (attributes), the selection of training samples, classification 

and accuracy evaluation. 

Figure 1. Process flow adopted in the study. 
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In addition to this highly used procedure, the emphasis of our study lied on the in-segment analysis, 

which was included in the attribute computation process. The in-segment domain was addressed using 

multiple pixel value samplings, followed by a multiple computation of similarity measures for each 

segment. In the Kolmogorov-Smirnov statistics the similarity measure is based on the computation of 

empirical cumulative distribution functions, while in the Student’s t-test statistics the similarity measure 

is based on the computation of mean values. The performance and sensitivity of both classifiers was 

assessed with the use of WorldView-2 image (both in its full 8-band form and in its spectrally reduced 

4-band form) and compared to two commonly used object-based classifiers—parametric k-Nearest 

Neighbor (k-NN) and non-parametric Support Vector Machine (SVM), in which the sampling was not 

adopted, i.e., the segments were transferred to the classification step as they were segmented. Both,  

k-NN and SVM, classifiers are implemented in the Exelis VIS ENVI 5.0 image processing software and 

were used within the Feature Extraction Workflow (Example Based Feature Extraction Workflow). 

Sampling and two other proposed algorithms were implemented using the Interactive Data Language 

(IDL) within ENVI. A detailed description of the analysis is provided in the following sections. 

2.1. Case Study Area and Data 

In our study, the 8-band WorldView-2 satellite multispectral and panchromatic images of Ljubljana 

(Slovenia), acquired on 10 August 2010, were used. In order to analyze the effect spectral resolution has 

on the classification performance, 4- and 8-band images served as input data for the classification 

process. An image consisting of four bands includes standard Blue, Green, Red and Near Infrared  

1 bands, whereas an 8-band image includes 4 additional bands: Coastal, Yellow, Red-Edge and Near 

Infrared 2. The applied pre-processing of satellite data involved precise orthorectification and  

pan-sharpening to a spatial resolution of 0.5 m. For the latter the Gram-Schmidt pan-sharpening 

algorithm in ENVI was applied. 

The studied area, located west of the center of Ljubljana, the capital city of Slovenia, is highly 

residential, riddled with a road network. Due to the occurrence of only four most commonly observed 

land cover classes that were later adopted in the supervised classification—roads, buildings, grass and 

trees—a test site of 0.16 km2 (Figure 2) was selected for the experimental purposes of this research. 

The roads class included major roads and other built-up areas (e.g., courtyards). Untreated grass areas 

and lawns with individual trees were placed in the grass class. The trees class mainly consisted of areas 

covered by tree crowns and shrubbery. Despite the large variety of roofing material (black, red, light 

grey, dark grey and white roofs), no subclasses were considered for the buildings class. Since the Sun 

elevation at the time of data acquisition was high and most of the buildings are low, the shadowing effect 

was not severe in terms of reducing the image information. Thus, shadows were not categorized into the 

additional class. 

Detailed national topographic vector data (scale 1:5000, from 2005) served as the reference when 

determining the training samples for the road and buildings classes. Due to the discrepancy between the 

acquisition date of the satellite imagery and the vector reference data, the latter was carefully examined 

in order to ensure it matched the situation on the satellite imagery. National vector data for grass and 

trees land cover was not available, thus, training samples were collected through the visual interpretation 

of very high-resolution (0.5 m) national orthophoto imagery (dated to 2011) instead of pan-sharpened 
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WorldView-2 image. The latter provided less clarity and sharpness on image objects, which made the 

interpretation harder. Although the spatial resolution of national orthophotos enabled a coarse 

differentiation between the trees and grass classes, this way of collecting training data is still considered 

to be extremely subjective. 

Figure 2. The highly residential study area measuring 0.16 km2 is located west of the 

Ljubljana center (Slovenia). It is marked with a black rectangular. 

 

2.2. Segmentation 

In GEOBIA approach segments are used as the basic units that form classified objects. Segmentation 

is a process in which an image is partitioned into a set of mutually disjoint regions that are more uniform 

within themselves than the adjacent regions [13]. The segmentation quality is important when we wish 

to produce an accurate classified image. Poor segmentation results can lead to high misclassification 

rates. Ideally, one segment should represent one object of interest and the segment and object boundaries 

should result in a perfect match [14]. However, in practice erroneous segments are often detected and 

genuine segments omitted [1]. 

The edge-based watershed algorithm implemented in ENVI 5.0 was used to extract land cover 

structure from the WorldView-2 image. With this algorithm, the appropriate level of detail and the 

average segment size are controlled by three parameters: the initial segmentation rate (scale level) and 

the merge level (both with a range between 1 and 100), and the number of selected bands that are to be 

included in the delineation and merging step. The scale level determines the fragmentation degree 
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(number of segments), whereas the merge level combines several smaller segments into a large one. Spectral 

resolution has also proved to be an important factor that impacts the quality of segmentation [14]. In 

their analysis Mesner and Ostir [14] studied the effect of spatial and spectral resolutions on the 

segmentation quality, which was the main focus of their research. They discovered that the poorest 

segmentation results were achieved when all eight spectral bands of the WorldView-2 image were used. 

The study area was located in North–Eastern Slovenia and the imagery used in [14] was acquired on 21 

June 2011. Since segmentation is an essential part of the object-based classification approach used in this 

study, the findings described in [14] served merely to obtain optimal segments. The acquired segments 

represented an input for the detailed analysis of the classification step, which was not addressed in [14]. 

Through various trials and a subsequent visual inspection of the segmentation results, the scale and 

merge level were adopted to best delineate the image objects. Red, Blue, Green and NIR1 bands were 

selected as input bands in the segmentation, for both, the 4-band and 8-band, image analysis. The use of 

these 4 bands provided the most homogenous segmentation results in which meaningful segments with 

respect to the urban cover were created. However, this resulted in a few under-segmented segments, in 

which two land covers were located within a single segment (e.g., a tree crown and a building or a 

building with a grey roof and a road). Although the urban landscape was identified as a highly complex 

environment and therefore image objects should be addressed using multilevel segmentation,  

1544 segments in our study were defined at a single segmentation level. 

Attribute assignment represents the final step in the segmentation process. Attributes are computed 

for each segment in each band. Attributes can be spectral (variations in tone or color) or spatial (shape 

and spatial patterns). Spatial attributes may refer to the structure or texture of the object—understood as 

a tonal variation of the object of interest—or to the broader relationship between the object and its 

surroundings—usually referred to as context [15]. Since the computation of probability values in the 

two-sample Kolmogorov-Smirnov and Student’s t-test classifiers is based solely on the spectral 

information (pixel values), k-NN and SVM classification methods were primarily conducted in ENVI 

with only four spectral attributes (Table 1) [16]. Thus, a more straightforward comparison of the four 

classification methods took place in the accuracy assessment step. In order to study the effect of the 

additional attributes on the classification results, the classification using k-NN and SVM methods was 

later repeated with 22 different attributes (4 spectral, 4 texture, 14 spatial) (Table 1). Spectral information 

is not required with 14 spatial attributes since they are computed from the polygon defining the boundary 

of the pixel cluster. Therefore, their value is constant in all bands. 

2.3. The Selection of Training and Testing Samples 

In supervised classification samples with a known identity (training samples) are necessary if we wish 

to construct a model capable of classifying unknown (testing) samples. Concise information as regards 

the number of selected training and testing samples can be found in Table 2. In our analysis, the national 

orthophoto image provided a basis for the training and testing sample determination. Due to our funding 

constraints it was impossible to perform field verification. Training samples were distributed throughout 

the image and we also attempted to ensure a uniform number of training samples with spectral 

homogeneity through careful visual inspection. However, due to the variety of roofing material in the 

study area, a higher number of training samples were chosen for the buildings class. 
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Table 1. Types of attributes computed per segment for the k-NN and SVM classification 

methods, as implemented in the ENVI 5.0 processing software. 

Attribute Type Description 

Spectral 

Minimum Minimum value of pixels comprising the region in band x. 
Maximum Maximum value of pixels comprising the region in band x. 

Mean Mean value of pixels comprising the region in band x. 
Standard deviation Standard deviation value of pixels comprising the region in band x. 

Texture 

Range Average data range of pixels comprising the region within the kernel. 
Mean Average value of pixels comprising the region within the kernel. 

Variance Average variance of pixels comprising the region within the kernel. 
Entropy Average entropy value of pixels comprising the region within the kernel. 

Spatial Area Total area of the polygon, minus the area of the holes. 

 

Length 
The combined length of all polygon boundaries, including the boundaries 
of the holes. 

Compactness 
A shape measurement that indicates the compactness of the polygon.  
A circle is the most compact shape with a value of 1/π. 

Convexity 
This attribute measures the convexity of the polygon. The convexity 
value for a convex polygon with no holes is 1.0, while the value for  
a concave polygon is below 1.0. 

 Solidity 

A shape measurement that compares the area of the polygon to the area 
of a convex hull that surrounds the polygon. The solidity value for a 
convex polygon with no holes is 1.0, while the value for a concave 
polygon is below 1.0. 

 Roundness 
A shape measurement that compares the area of the polygon to the square 
of the maximum diameter of the polygon. The roundness value of a circle 
is 1, while the value for a square is 4/π. 

 Form factor 
A shape measurement that compares the area of the polygon to the square 
of the total perimeter. The form factor value of a circle is 1, while the 
value of a square is π/4. 

 Elongation 
A shape measurement that indicates the ratio of the major axis of the 
polygon to the minor axis of the polygon. The elongation value for a 
square is 1.0, while the value for a rectangle is greater than 1.0. 

 Rectangular fit 
A shape measurement that indicates how well the shape is described by a 
rectangle. The rectangular fit value for a rectangle is 1.0, while the value 
for a non-rectangular shape is below 1.0. 

 Main direction 
The angle subtended by the major axis of the polygon and the x-axis in 
degrees. The main direction value ranges between 0 and 180°. 90° is 
North/South, while 0 to 180° is East/West. 

 Major length 
The length of the major axis of an oriented bounding box that encloses 
the polygon. 

 Minor length 
The length of the minor axis of an oriented bounding box that encloses 
the polygon. 

 Number of holes The number of holes in the polygon. 

 Hole area 
The ratio of the total area of the polygon towards the area of the outer 
contour of the polygon. The hole-solid ratio value for a polygon with no 
holes is 1.0. 
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Table 2. The number of selected training and testing samples per individual class. 

Class 
Number of Selected Segments 

for Training Samples 
Number of Selected Segments 

for Testing Samples 

Roads 6 67 
Buildings 11 257 

Trees 7 
176 

Grass 5 
Total 29 500 

In order to study the effectiveness of the four classification methods, random testing sample sets were 

selected—separate for roads and buildings classes (67 segments for the roads class and 257 segments 

for the buildings class) and combined for trees and grass classes (176 segments). Consequently, once the 

final layer of classified segments was obtained and intersected with the reference layer for grass and 

trees classes, only the presence of roads and buildings was examined and verified in the new layer. The 

decision to merge the testing samples for trees and grass arose from the uncertainty in determining them 

through the visual interpretation of the orthophoto image when a high number and variety of segments 

were involved. 

Segments that were identified as training samples were excluded from the testing samples set. Table 2 

shows that almost one third of all (1544) segments that were identified in the segmentation process were 

selected for the evaluation process of the classification performance. 

2.4. Supervised Classification Process 

The following supervised classification methods were used in our study: (a) k-Nearest Neighbor;  

(b) Support Vector Machine; (c) two-sample Kolmogorov-Smirnov classification algorithm and  

(d) Student’s t-test classification algorithm. The k-Nearest Neighbor method computes the Euclidean 

distance from each segment in the segmentation image to every defined training sample. The distance is 

measured in an n-dimensional space, in which n is the number of attributes for the individual training 

sample [17]. The Support Vector Machine is a supervised classification method derived from the 

statistical learning theory [18]. The SVM approach seeks to find the optimal separating hyperplane 

between classes [19] by focusing on the points closest to the hyperplane. The closest points are called 

support vectors. 

The following processing parameter default values were used with k-NN (a) and SVM  

(b) classifiers available in the ENVI 5.0 image processing software: (a) number of neighbors: 1;  

(b) kernel type: radial basis, degree of kernel polynomial: 1, bias in kernel function: 1, gamma in kernel 

function: 0.03, penalty parameter: 100.00. As the classification accuracies could be significantly 

influenced by the parameter selection, an additional analysis of the parameter values was conducted 

(using only the 4-band image and spectral attributes) in order to avoid favoring the proposed method. 

The analysis has shown that default values yielded the highest mean producer and user accuracies. 

Therefore, default values were considered safe to adopt in our land cover determination application. 

In general, the concept of the supervised classification approach in the case of the two-sample 

Kolmogorov-Smirnov classification algorithm and the Student’s t-test classification algorithm is based 

on the comparison of the unknown segment with the training samples (i.e., all-against-one approach), 
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where an unknown segment is classified into a class with which a highest similarity measure was 

determined. The similarity analysis using two-sample Kolmogorov-Smirnov and Student’s t-test 

measures starts with the computation of the attribute for each segment (empirical cumulative distribution 

function and mean value, respectively), and continues with the computation of test statistics and 

probability values (p-values). The p-value of the two statistics represents the input for the classification 

process. In order to classify an unknown segment, the p-value needs to be computed against all segments 

with known classes (training segments) in each band. In the following step, p-values from all bands are 

combined for each “unknown segment-segment with a known class” pair. These are joined in the overall 

similarity measure (membership grade), which is defined as the geometric mean of p-values for all bands. 

Sridharan and Qiu [8] consider this approach to be fuzzy. The overall similarity measure value ranges 

between 0 and 1, where 0 represents no similarity between the two segments and 1 represents identical 

segments. The final step in the classification process assigns any unknown segment to a class with the 

maximum overall membership grade. The theoretical background for both proposed classification 

algorithms is described in greater detail in Sections 2.4.1 and 2.4.2. 

2.4.1. The Two-Sample Kolmogorov-Smirnov Test Statistics Based Classification Algorithm 

The Kolmogorov-Smirnov test statistic is widely used to measure the closeness between two 

empirical cumulative distribution functions (ECDF). Given two sets of observation (e.g., two segments 
with pixel values), ሺܺଵሻ, ܺሺଶሻ, … , ܺሺሻ  and ሺܻଵሻ, ሺܻଶሻ, … , ሺܻሻ , their respective empirical cumulative 

distribution functions, denoted as ܵሺሻሺݔሻ and ܵሺሻሺݔሻ, are defined as (Equations (1) and (2)) [20]:  
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For each index ݇ two equally sized samples will have the same empirical distribution function values, 

however, these values will differ for a chosen value ݔ which makes the differentiation possible. In the 

two-sample case, the criterion for closeness is defined as the maximum value of the absolute difference 

between two empirical cumulative distribution functions (Equation (3)):  

, max ( ) ( )m n m n
x

D S x S x= −
 (3)

The Kolmogorov-Smirnov statistic ܦሺ,ሻ is non-parametric and distribution free, therefore it has the 

advantage of making no assumptions as regards data distribution [21]. The statistic can assume any value 

between 0 and 1. The closer it is to 0, the more likely it is that the two samples were drawn from  

the same population. Corresponding to the statistic and size of the two samples, the probability value  

(p-value) is calculated in the next step. A p-value is a measure of how likely it is for the difference 
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between two empirical cumulative distribution functions to have occurred by chance, assuming the null 

hypothesis that two samples are drawn from the same distribution holds true. In our research, the p-value 

was calculated with an empirical determination suitable for small and medium sized samples (Equation (4)). 

2 21 2

1

2 ( 1) j j
KS

j

p value e λ
∞

− −

=

− = −
 

(4)

in which ߣ = ൫ඥ ܰ 	+ 	0.12 + 0.11 ඥ ܰ⁄ ൯ ∙ , and ඥܦ	 ܰ 	= 	 	∙ା. 

Similar to the two-sample Kolmogorov-Smirnov distance	ܦሺ,ሻ, the p-value also ranges from one  

to zero; however, the two are inversely proportional. If the p-value is low it is highly likely that the  

two sets of observations were drawn from populations with different distributions. In other words, if we 

assume that the obtained p-value equals 0.03 random sampling from identical populations would result 
in 97% of the experiments with a ܦ, difference smaller than the observed one, while in 3% of the 

experiments the difference would be larger than in the observed one. 

2.4.2. Student’s t-Test Statistics Based Classification Algorithm 

Similarly to the Kolmogorov-Smirnov statistics, the separability analysis between two segments can 

be addressed using the Student’s t-test statistics and the corresponding probability value. Unlike the 

Kolmogorov-Smirnov test in which the computation is based on the empirical distribution functions,  

this test is commonly used as a two-sample location test for the following null hypothesis: the means of 

two populations are equal assuming that the variances of the two populations are also equal. If the 

assumption as regards the variance equality is dropped, the test is known as the Welch’s t-test which was 

employed in this research. The t statistic that tests whether the population means are different is 

calculated as (Equation (5)): 
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where ܺ and ܻ are sample means, ܵ∗ଶ and ܵ∗ଶ are sample variances and m and n are sample sizes.  

The t statistics follows the ordinary Student’s t distribution with ν degrees of freedom calculated  

as (Equation (6)): 
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The p-value is computed in order to quantify how far apart the two means are. Its computation is not 

as straightforward as in the Kolmogorov-Smirnov statistics, since it is based on the construction of 

incomplete beta function for which the input variables are the t statistic and degrees of freedom. 
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2.4.3. Random Sampling Approach 

In addition to the general supervised classification in which segments are analyzed in their full size 

(all pixels in the segment at once), we also implemented a random sampling approach. The idea of the 

random sampling approach is presented in Figure 3. 

Figure 3. Random sampling approach. Empirical cumulative distribution functions and 

mean values are computed for each set of sampled pixel values for segments with a known 

and unknown class. A p-value between segments with an unknown and known class is 

computed after each sampling and averaged (mean p-value) in order to obtain a single value 

for the specific combination of the two segments. ECDF stands for empirical cumulative 

distribution function, KS for two-sample Kolmogorov-Smirnov test statistics and T for 

Student’s t-test statistics. 

 

A selection of a random set of pixel values for the segment was used to compute multiple 

aforementioned variables (empirical distribution functions and mean values) that were averaged in order 

to obtain the final p-value used for the overall degree of matching computation. It is assumed that with 

multiple samplings the in-segment heterogeneity can be captured more accurately than with single 

computation of summary statistics, in which any normality violations associated with summary statistics 

can lead to misleading results. This may not be the case if small pixel sets are sampled, since non-normality 

is hard to detect in small samples. 

We studied the effect the sample size and the number of samplings have on the p-value. In order to 

achieve this, we selected three homogenous segments, each containing over 1000 pixels. Two segments 

were similar (black roofs), while the third one differed (grass patch) (Figure 4). We selected them visually. 
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Figure 4. Segments from the segmentation layer selected for the sampling analysis: (a) a 

black roof; (b) a black roof; (c) a grass patch. Each segment contains more than 1000 pixels. 

(a) (b) (c) 

3. Results and Discussion 

3.1. Sampling Analysis 

Figures 5 and 6 show how the p-value between the segments with similar land covers (two black 

roofs, Figure 5) and segments with different land covers (a black roof and a grass patch, Figure 6) is 

influenced by the number of sampled pixels using the Kolmogorov-Smirnov statistics and the Student’s 

t-test statistics. Different sized pixel sets were sampled 100 times in each segment. As shown later, with 

this number of samplings (100), the p-value becomes stable and does not vary significantly. 

The comparison of Figures 5 and 6 shows that the p-value converged to zero as the number of sampled 

pixels increased. The drop is very fast when the Kolmogorov-Smirnov statistics was applied. As defined 

in Section 2.4., both proposed classifiers are based on the proximity or similarity analysis. The starting 

premise is that no two segments are identical. Instead, segments should be considered as continuous 

variables for which the perspective plays a significant role: the closer we look (i.e., the larger the sample 

size), the smaller is the necessary difference that leads to the claim that the segments are not derived 

from the same population, despite the fact that two empirical cumulative distribution functions would 

appear to be the almost identical when plotted. Therefore, a sufficiently large sample would lead to the 

rejection of the hypothesis, if, of course, the hypothesis testing was applied. These conclusions could 

also reflect the equations used for the p-value computation that is better suited to small and medium 

sized samples. However, we also tested the asymptotic functions suitable for larger samples with the 

two-sample Kolmogorov-Smirnov statistic that yielded p-values of a similar magnitude. 

The results shown in Figures 5 and 6 are summarized in Figure 7 that illustrates the difference in the 

p-value in individual bands for the two-sample Kolmogorov-Smirnov statistics (Figure 7a) and for the 

Student’s t-test statistics (Figure 7b) in the example for 10 sampled pixels. Both classifiers clearly 

indicated that the largest differentiation between different land covers (a black roof and a grass patch) 

was seen in Red-Edge, Near Infrared 1 and Near Infrared 2 bands. In these bands, the calculated  

p-value was insignificant (almost equal to zero), which suggests that the two observed segments were 

actually different and that infrared bands could contribute useful separability information in the 

classification process. Different p-values in the Red band (p-value was higher for segments with different 

land covers) indicated a possible misclassification if only this band was used for classification purposes. 

The results were also summarized for cases in which a higher numbers of pixels (20, 50, 100, 200, 500, 
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and 1000) were sampled. As the number of the sampled pixels increased, the Coastal and Green bands 

became increasingly important in the differentiation with the Kolmogorov-Smirnov test statistics, as the 

p-values in Red-Edge, Near Infrared 1 and Near Infrared 2 bands converged towards zero very fast (with 

50 sampled pixels). The Red band became unreliable for classification purposes. With the Student’s  

t-test statistics, Yellow, Red and Red-Edge bands were the highest contributors to the separation of 

different segments as the number of sampled pixels increased. 

Figure 5. The per-band p-value computation between segments with similar land covers 

(two black roofs) when different sizes of sampled pixel sets were applied and when: (a) the 

two-sample Kolmogorov-Smirnov statistics; (b) the Student’s t-test statistics was used. 

 
(a) 

 
(b) 
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Figure 6. The per-band p-value computation between segments with different land covers 

(a black roof and a grass patch) when different sizes of sampled pixel sets were applied and 

when: (a) the two-sample Kolmogorov-Smirnov statistics; (b) the Student’s t-test statistics 

was used. 

 
(a) 

 
(b) 

Figure 7 represents the results merely for the three analyzed segments (two black roofs and a grass 

patch). In order to provide more generalized and objective conclusions on a contribution of individual 

bands to classification results, a larger number of segments with different land covers should be selected 

and compared. 

Finally, in order to study the effect of the number of samplings on the p-value, a sample size of  

10 pixels was chosen. We selected this small sample size, because the p-value was the highest when the 

minimum number of pixels was sampled (see Figures 5 and 6). However, it was assumed that with a 

small-sized sampled pixel set, the p-value could easily be affected by outliers. The question arose as to 

how many times a set of pixels needs to be sampled in order for the p-value to become stable. The results 

are presented in Figures 8 and 9. 

With both classifiers the p-value stabilized when approximately 100 samplings were performed.  

The sampling analysis also included the comparison of two small segments (i.e., segments with less than 
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150 pixels) and mixed sized segments (i.e., one small and one large segment). The results were consistent 

with the large segments. 

Figure 7. The difference in the p-value per individual band for 10 sampled pixels when:  

(a) the Kolmogorov-Smirnov statistics (Figures 5a and 6a combined); (b) the Student’s  

t-test statistics was applied (Figures 5b and 6b combined). 

 
(a) 

 
(b) 

The substantial difference between the sizes of the two compared samples was the subject of the 

research in the field of hypothesis testing. Gordon and Klebanov [22] proved that a paradoxical situation 

takes place when the two-sample Kolmogorov-Smirnov test is used: one cannot use additional information 

contained in a very large sample if the second sample is relatively small, meaning that the two-sample 

Kolmogorov-Smirnov test can lose power when the sizes of the two samples differ substantially. 

To summarize, 10 pixels were sampled 100 times for each segment both, with the Kolmogorov-Smirnov 

and Student’s t-test classifiers. This assured that the two samples were always of the same size as well 

as enabled the inclusion of very small segments. Segments with less than 10 pixels, i.e., 23 segments in 
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total, were left unclassified. Due to their small size they had no visual effect on the final  

classification image. 

Figure 8. The per-band p-value computation between segments with similar land covers 

(two black roofs) when different numbers of 10 pixel samples were applied and when:  

(a) the two-sample Kolmogorov-Smirnov statistics; (b) the Student’s t-test statistics was used. 

 
(a) 

 
(b) 
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Figure 9. The per-band p-value computation between segments with different land covers 

(a black roof and a grass patch) when different numbers of 10 pixel samples were applied 

and when: (a) the two-sample Kolmogorov-Smirnov statistics; (b) the Student’s t-test 

statistics was used. 

 
(a) 

 
(b) 

3.2. Classification Results and Accuracy Assessment 

The final classification results and the basic accuracy assessment of the four used classifiers are 

summarized in Tables 3 and 4. Several accuracy measures, which give direct and basic indications of 

the classification quality, can be applied in the evaluation process [23]. In our study, user and producer 

accuracies per class and mean user and producer accuracies (in bold) were adopted and provided. Table 3 

presents a confusion matrix for all four classifiers for the event in which k-NN and SVM classification 

methods were conducted with four spectral attributes, while Table 4 provides additional performance 

results for the event in which 22 attributes (4 spectral, 4 texture and 14 spatial) were used with k-NN and 

SVM classifiers. In the latter case, the results served to study the effect additional attributes have on the 

classification performance. The basic classification capability was estimated by examining the number 

of segments classified as the addressed class in regards to the reference data and the number of 
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misclassified segments for both the 4-band and the 8-band image. None of the four methods produced 

mean user and producer accuracies that would exceed 90%. 

Moderate classification accuracies were the result of a single level segmentation, which can never 

ensure a clear delineation of objects and boundaries as seen in reality. Therefore, the segments appeared 

over- and under-segmented, which lead to a misinterpretation of their true land cover. This can be 

observed with all four classifiers by reading the values in the columns for trees and grass classes, where 

mainly buildings have been misassigned to this class. This is a result of over-segmentation, in which a 

building and a tree appeared within the same segment on numerous occasions. 

The classification results for the 4-band image in Table 3 reveal that higher mean user and producer 

accuracies were achieved with Kolmogorov-Smirnov and Student’s t-test classifiers (when the sampling 

approach was adopted) in overall, than with k-NN and SVM methods. These results show the potential 

of the in-segment analysis for the classification process. Amongst the four methods, the parametric 

Student’s t-test classifier resulted in the best overall performance, which suggests that the normality 

violation is not an issue when small-sized pixel sets are sampled. The sampling of small-sized pixel sets 

had a greater effect on the computation of the empirical cumulative distribution functions. With a sample 

consisting of a mere 10 pixels, the in-segment distribution and its unique characteristics were 

inefficiently captured due to the large generalization, which resulted in the reduced classification 

capability of the two-sample Kolmogorov-Smirnov test statistics. Thus, empirical distribution functions 

should be approached in a different way. 

Both proposed classifiers performed best for the classification of roads, grass and trees. Using merely 

spectral information resulted in a poor classification of objects from different classes built from the same 

material (i.e., roads and buildings with grey roofs). Thus all four classifiers most commonly misclassified 

the buildings and roads. This suggests that the two proposed classifiers would also be ineffective for 

classifying 3-band RGB aerial images. The SVM classifier outperformed the remaining three methods 

when detecting buildings; however its performance was very poor for classifying roads. Six training 

samples were included in the roads class. The poor performance of the SVM classifier might have been 

caused by the large, yet spectrally relatively homogenous (no margin training samples were provided) 

training samples. The SVM method is otherwise known to achieve high classification results with small 

training sets [19]. 

It is insufficient to rely merely on the spectral information in supervised classification when training 

samples are not representative or individual classes do not show a great variety of different objects. This 

issue was most evident in both proposed classifiers. Their characteristic is to find the best match for the 

segment in the analysis related to the available training data samples (the all-against-one approach), 

making them highly dependable on the number and variety of training samples. If an insufficient number 

of samples are provided, both classifiers will provide a match and assign a class to a segment; however 

this class might not be the real one. 
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Table 3. A confusion matrix for all four classifiers for the 4- and 8-band input image in the event when k-NN and SVM classification  

methods were conducted with four spectral attributes. The user and producer accuracy values in bold represent the mean overall user and 

producer accuracy. 

 
k-Nearest Neighbor 

4-Band Image 8-Band Image 

Reference Roads Building Trees + Grass Total Producer Accuracy (%) Roads Building Trees + Grass Total Producer Accuracy (%) 

Roads 43 20 4 67 59.7 48 18 1 67 57.8 
Building 29 190 38 257 87.6 32 195 30 257 82.2 

Trees + grass 0 7 169 176 80.1 3 24 149 176 82.8 
Total 72 217 211 500 75.8 83 237 180 500 74.3 

User accuracy (%) 64.2 73.9 96.0 78.0  71.6 75.9 84.6 77.4  

 
Support Vector Machine 

4-Band Image 8-Band Image 

Reference Roads Building Trees + Grass Total Producer Accuracy (%) Roads Building Trees + Grass Total Producer Accuracy (%) 

Roads 22 41 4 67 59.5 23 18 1 67 62.2 
Building 15 210 32 257 83.3 13 210 34 257 90.5 

Trees + grass 0 1 175 176 82.9 1 4 171 176 83.0 
Total 37 252 211 500 75.2 37 232 206 500 78.6 

User accuracy (%) 32.8 81.7 99.4 71.3  34.3 81.7 97.1 71.0  

 
Two-Sample Kolmogorov-Smirnov Test Statistics Classifier 

4-Band Image 8-Band Image 

Reference Roads Building Trees + Grass Total Producer Accuracy (%) Roads Building Trees + Grass Total Producer Accuracy (%) 

Roads 52 14 1 67 61.1 52 14 1 67 59.0 
Building 33 179 45 257 92.7 36 181 40 257 92.8 

Trees + grass 0 0 176 176 79.3 0 0 176 176 81.1 
Total 85 193 222 500 77.7 88 195 217 500 77.6 

User accuracy (%) 77.6 69.6 100 82.4  77.6 70.4 100 82.7  
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Table 3. Cont. 

 
Student’s t-Test Statistics Classifier 

4-Band Image 8-Band Image 

Reference Roads Building Trees + Grass Total Producer Accuracy (%) Roads Building Trees + Grass Total Producer Accuracy (%) 

Roads 52 14 1 67 56.5 52 14 1 67 59.1 
Building 40 194 23 257 93.3 36 196 25 257 93.3 

Trees + grass 0 0 176 176 88.0 0 0 176 176 871 
Total 92 208 200 500 79.3 88 210 202 500 79.8 

User accuracy (%) 77.6 75.5 100 84.4  77.6 75.5 100 84.4  

Table 4. Additional confusion matrix for k-NN and SVM classifiers; conducted with 22 attributes (4 spectral, 4 texture and 14 spatial attributes). 

 
k-Nearest Neighbor 

4-Band Image 8-Band Image 

Reference Roads Building Trees + Grass Total Producer Accuracy (%) Roads Building Trees + Grass Total Producer Accuracy (%) 

Roads 40 20 7 67 68.9 44 20 3 67 74.6 
Building 16 202 39 257 83.1 14 213 30 257 81.9 

Trees/grass 2 21 153 176 76.9 1 27 148 176 81.8 
Total 58 243 199 500 76.3 59 260 181 500 79.4 

User accuracy (%) 59.7 78.6 86.9 75.1  65.7 82.9 84.1 77.6  

 
Support Vector Machine 

4-Band Image 8-Band Image 

Reference Roads Building Trees + Grass Total Producer Accuracy (%) Roads Building Trees + Grass Total Producer Accuracy (%) 

Roads 32 25 10 67 88.9 35 30 2 67 87.5 
Building 4 226 27 257 87.9 5 231 21 257 87.1 

Trees/grass 0 6 170 176 82.1 0 4 172 176 88.2 
Total 36 257 207 500 86.3 40 265 195 500 87.6 

User accuracy (%) 47.8 87.9 96.6 77.4  52.2 89.9 97.7 79.9  
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There were no major differences between the classification results when the 4- or the 8-band images 

were used. The overall accuracies were only slightly higher (up to 3.5%) with the 8-band image for the 

k-NN and SVM methods and slightly lower (up to 1%) for the two-sample Kolmogorov-Smirnov and 

Student’s t-test classifiers. In the terms of user’s accuracy, the classes that benefited the most from 

additional bands were: roads in the k-NN and SVM classification methods, and buildings in the  

two-sample Kolmogorov-Smirnov classifier. With the Student’s t-test classifier, user accuracies 

remained unchanged. While the use of the 8-band WorldView-2 image has been recognized to improve 

classification results [24], this did not prove significant in our study. As seen in Figure 7, a WorldView-2 

image with its additional bands (Coastal, Yellow and Red-Edge) provides high separability between 

different land covers. However, as suggested in [24], the low positive contribution of the extra bands to 

classification accuracies could be due to the inability of classifiers to handle the pairwise collinearity of 

bands, meaning that each of the new bands is correlated to one or more of the standard band(s). 

After additional attributes were selected for the k-NN and SVM methods, the latter resulted in 

increased user and producer accuracy (up to 10%), while the performance of the k-NN method did not 

change significantly (Table 4). A SVM classifier has been reported to perform well with an increased 

feature dimensionality (number of attributes) [25], but it has also proven to be less sensitive to increases 

in feature dimensionality compared to other statistical classifiers [26]. 

Figure 10 represents the classification output images created with the use of the 8-band image. The 

classification results were not field-verified, thus the Worldview-2 satellite image served as the ground 

truth image. A visual inspection and comparison of the classification images and the satellite data 

indicated that more realistic and accurate maps were obtained with two proposed classifiers. It can be 

seen that with the k-NN and SVM classifiers numerous segments were classified as buildings 

(approximately 60% of all 1544 segments) and this resulted in a generalized output classification image. 

A detailed comparison of classification images is provided in Figure 11. 

In addition to the presented case study, four algorithms were used to classify 3338 segments in the 

second highly residential study area measuring 0.25 km2 and located 1.5 km west of the primary study 

area. This classification was conducted using a 4-band Worldview-2 image (Red, Green, Blue and  

NIR1 bands) and a new set of training samples for four land cover classes: roads (6), buildings (9),  

trees (7) and grass (9). With the k-NN and SVM classification methods only four spectral attributes  

were used. 

The performance of the classification conducted for the new study area was assessed only visually, 

i.e., the classification results were compared to the WorldView-2 satellite image, which was used as the 

reference image. The determination of the reference information for 3338 segments was omitted since it 

would be influenced by high subjectivity. In terms of output classification images, the classification 

results were consistent with the previously described results. Overall, the Student’s t-test statistics based 

classifier yielded the most realistic classification image, despite misclassifying several buildings with 

grey roofs as roads. The k-NN classifier misclassified several roads and other built-up and impervious 

areas as buildings and some of the buildings with black roofs as trees or grass. The SVM classifier 

performed poorly when classifying roads, as it classified (generalized) areas of buildings and roads 

merely as buildings, similarly to what was described for the primary study area. Compared to the 

Student’s t-test classifier, the two-sample Kolmogorov-Smirnov test statistics based classifier classified 

a higher number of buildings with grey roofs as roads. Trees and grass areas were most accurately 
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determined with two proposed classifiers. With the use of the two-sample Kolmogorov-Smirnov 

statistics based classifier and Student’s t-test statistics based classifier 120 segments (3% of all segments) 

remained unclassified. 

Figure 10. The final classification image for all four classifiers related to the 8-band 

classification results presented in Table 4: (a) k-NN; (b) SVM; (c) the two-sample 

Kolmogorov-Smirnov statistics based classifier; (d) the Student’s t-test statistics based classifier. 

 

The high computing complexity and low speed performance are considered to be the major drawbacks 

of the proposed classification approach. On average the Student’s t-test based algorithm needs 1.5 s to 

classify one segment with a 4-band image and 3 s to classify one segment with an 8-band image. Using 

the two-sample Kolmogorov-Smirnov test based algorithm, it takes an average of 5 s to classify one 

segment with a 4-band image and 13 s to classify one segment with an 8-band image. Both features are 

a result of the data structure organization of the computed variables in the IDL programming language 
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and could be improved significantly if the sampling approach and the computation of the empirical 

distribution functions were altered. 

Merely a few approaches in literature have been found to deal with the analysis of the impact the  

in-segment investigation has on the object-based classification results. Toure et al. [11] reported that 

curve matching classifiers yielded higher classification accuracies than the nearest neighbor classifier, 

however, the overall accuracies of all classifiers were still moderate (between 27% and 73%). Sridharan 

and Qiu [8] compared the effectiveness of the Fuzzy Kolmogorov-Smirnov classifier to six other 

classifiers (k-NN, SVM, Spectral Angle Mapper, Maximum Likelihood classifier, Minimum Distance 

to Mean classifier and Parallelepiped classifier). The Fuzzy Kolmogorov-Smirnov classifier performed 

substantially better than the remaining classifiers. Its overall accuracy was higher by at least 10%. 

Figure 11. The detailed subset of classification images represented in Figure 10 in relation 

to the satellite image that was used as an input for the classification process and was also 

considered as the ground truth image: (a) pan-sharpened Worldview-2 image (shown as a 

false color composite); (b) k-NN classifier; (c) SVM classifier; (d) the two-sample 

Kolmogorov-Smirnov statistics based classifier; (e) the Student’s t-test statistics based 

classifier. Images reveal higher classification accuracies of the two proposed classifiers 

compared to the ground truth image. 

 

The performance of the proposed classification approach was not compared to machine learning and 

tree-based algorithms, which are considered as advanced classification techniques and are becoming 

increasingly popular in the GEOBIA community. Extensive analysis conducted in [10] and [24] indicate 

that high classification accuracies can be achieved with the Random Forest classifier when applied to 

the supervised object-based approach; however, the high accuracy was to a great extent dependent on 

the training set representativeness and the quality of segmentation [24]. In spite of high classification 

accuracies, these two studies cannot serve for the straightforward comparison, since in [10], the Landsat 

TM data with a course spatial resolution was used and in [24] segments were manually delineated. 

Although the k-NN and SVM methods provided less accurate results with the use of the 4-band image, 

this does not imply that these are inefficient classification methods. It has been suggested [27] that 

selecting the “best” classifier is not necessarily the wisest decision, since valuable information may be 

produced by classifiers that are considered to be less successful. Taking into account that a specific 

classification metric is better adapted to a specific situation, all classifiers can have the potential of being 

the “best” for a certain situation. Therefore, image understanding and active learning techniques tend to 

be implemented and used [1]. Image understanding is a complex cognitive process for which we may 
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currently lack the key concepts. Therefore, in order to ensure a strong foundation, research in this field 

needs to focus on the deeper understanding of the relationship between image objects and landscape 

objects, rather than exclusively on the development of new techniques that are tailored for specific 

applications [28] and rarely transferable [3]. 

4. Conclusions 

We have presented an approach for addressing the in-segment complexity that would enhance the 

object-based classification performance of high-resolution satellite data. The in-segment analysis was 

investigated with the use of multiple small sized samples—10 pixels—with two proposed classifiers:  

the two-sample Kolmogorov-Smirnov test and the Student’s t-test based statistics. The performance  

and capability of the approach was assessed on a WorldView-2 image for four urban land cover  

classes (roads, buildings, grass and trees) and compared to two commonly used object-based 

classifiers—k-Nearest Neighbor (k-NN) and Support Vector Machine (SVM). The analysis was 

conducted using a 4- as well as an 8-band image. 

A highly residential area, riddled with a road network and a variety of roofing material, to the west 

of the Ljubljana center (Slovenia) was selected as the study region. In the study, 1544 segments were 

defined at a single segmentation level, out of which almost one third (500) of all segments was selected 

for the classification performance evaluation. 

With the use of 4 spectral bands, both proposed classifiers showed improvements in the overall 

classification accuracy when compared to the well-established k-NN and SVM classifiers. The parametric 

Student’s t-test yielded the highest user and producer classification accuracies in general. Buildings were 

most accurately classified with the use of the SVM classification method. All four classifiers were most 

likely to misclassify buildings and roads, which was a result of using merely spectral attributes. Mere 

spectral information using only 4 spectral bands is insufficient when attempting to separate objects made 

from similar material. 

The use of empirical distribution functions showed merely a small increase in the classification 

accuracy. This could be due to the high generalization of the empirical distribution in the event when 

only 10 pixels are sampled. It is impossible for too generalized empirical distribution functions to 

describe the in-segment unique and complex distribution. 

There were no major differences between the classification accuracies when a 4- or 8-band image 

was used. The low positive contribution of the extra bands in the WorldView-2 image could be a result 

of the classifier’s inability to handle the collinearity of bands and the redundant information. As regards 

the output classification images, two classifiers with a proposed sampling approach yielded visually 

more appealing and more accurate classification results compared to the input satellite image, which was 

considered to be the ground truth image. 

Further research will aim to investigate the various aggregation methods for multiple probability 

values computed within the sampling process as well as provide a different approach of empirical 

distribution functions analysis that would enhance the classification capabilities. The sampling approach 

may have a greater potential, however no p-value averaging should be included in the last stage of the 

two-sample Kolmogorov-Smirnov and Student’s t-test statistics. In our study, the adopted averaging 

approach with the two proposed classifiers resulted in a similar output as the summary statistics based 
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methods that have been proven to fail in capturing unique segments’ distributions. The idea that needs 

to be addressed—also in relation to improving the computation speed of the algorithms implemented in 

the IDL programming language—is the comparison of an equal number of subparts with two empirical 

distribution functions. This would mean that all pixels were used at once and no sampling would be 

necessary. With additional studies, which would include a larger number of more diversified study areas, 

the benefits and drawbacks of the sampling approach and the use of the empirical distribution functions 

could be more generalized and transferable within different classification applications (agriculture, land 

cover determination). 
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