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Abstract: Remote sensing of snow-covered area (SCA) can be binary (indicating the 

presence/absence of snow cover at each pixel) or fractional (indicating the fraction of each 

pixel covered by snow). Fractional SCA mapping provides more information than binary 

SCA, but is more difficult to implement and may not be feasible with all types of remote 

sensing data. The utility of fractional SCA mapping relative to binary SCA mapping varies 

with the intended application as well as by spatial resolution, temporal resolution and period 

of interest, and climate. We quantified the frequency of occurrence of partially snow-covered 

(mixed) pixels at spatial resolutions between 1 m and 500 m over five dates at two study 

areas in the western U.S., using 0.5 m binary SCA maps derived from high spatial resolution 

imagery aggregated to fractional SCA at coarser spatial resolutions. In addition, we used  

in situ monitoring to estimate the frequency of partially snow-covered conditions for the 

period September 2013–August 2014 at 10 60-m grid cell footprints at two study areas with 

continental snow climates. Results from the image analysis indicate that at 40 m, slightly 

above the nominal spatial resolution of Landsat, mixed pixels accounted for 25%–93% of 

total pixels, while at 500 m, the nominal spatial resolution of MODIS bands used for snow 
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cover mapping, mixed pixels accounted for 67%–100% of total pixels. Mixed pixels 

occurred more commonly at the continental snow climate site than at the maritime snow 

climate site. The in situ data indicate that some snow cover was present between 186 and 303 

days, and partial snow cover conditions occurred on 10%–98% of days with snow cover. Four 

sites remained partially snow-free throughout most of the winter and spring, while six sites 

were entirely snow covered throughout most or all of the winter and spring. Within 60 m grid 

cells, the late spring/summer transition from snow-covered to snow-free conditions lasted 

17–56 days and averaged 37 days. Our results suggest that mixed snow-covered snow-free 

pixels are common at the spatial resolutions imaged by both the Landsat and MODIS sensors. 

This highlights the additional information available from fractional SCA products and 

suggests fractional SCA can provide a major advantage for hydrological and climatological 

monitoring and modeling, particularly when accurate representation of the spatial 

distribution of snow cover is critical. 

Keywords: remote sensing of snow cover; snow-covered area; mixed pixels; spatial 

resolution; Landsat; MODIS 

 

1. Introduction 

Remotely sensed snow-covered area (SCA) provides crucial information for scientists across a variety 

of disciplines. SCA can be used along with ancillary data to estimate the spatial distribution of snow 

water equivalent (SWE) [1–4] and can be assimilated into hydrological and land surface model runs to 

improve model accuracy [5,6]. The presence of an insulating snow cover also has a large effect on ground 

surface temperatures and permafrost [7,8] as well as drainage characteristics [9], and thus SCA time 

series data can provide important information for scientists monitoring and modeling permafrost and 

soil conditions. Finally, snow cover can have a large impact on plant species distribution [10,11], plant 

phenology [12], and animal movement patterns [13–15], and thus SCA data can provide valuable 

information for ecologists and wildlife biologists. 

Remote sensing of SCA has been conducted for nearly four decades using a variety of techniques and 

platforms. While the earlier efforts, as well as many more recent efforts, have focused on monitoring 

binary SCA (i.e., the presence/absence of snow cover within each pixel) [16–21], several approaches 

have been developed to monitor the per-pixel snow cover fraction, often referred to as fractional SCA 

or fSCA [22–26]. Fractional SCA mapping extracts more information than binary SCA mapping from 

the same source dataset and, for the MODIS instrument, 500 m fSCA from the MODIS Snow-Covered 

Area and Grain Size (MODSCAG) algorithm has been demonstrated to more accurately represent SCA 

imaged at finer spatial resolutions with Landsat [27]. Fractional SCA mapping is, however, more 

difficult to implement, typically requiring more complicated algorithms as well as additional 

computational resources, and it may be more difficult to validate than binary SCA data. Additionally, 

some types of data possibly suitable for binary SCA mapping may not be suitable for fractional SCA 

mapping, such as panchromatic imagery or Landsat Multi-Spectral Scanner (MSS) imagery. While 

fractional SCA mapping can provide major advantages in some cases, such as with coarse resolution 
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sensors and when snow cover exhibits fine scale heterogeneity, in other cases, such as with very fine 

resolution sensors and where snow cover is homogenous across large areas, fractional SCA monitoring 

may not offer the same advantages. 

One of the primary factors in determining whether or not a fractional mapping approach is necessary 

or highly beneficial is the prevalence of mixed pixels. The effect of spatial resolution on remotely sensed 

maps of land surface phenomena, including the prevalence of mixed pixels and the relationship between 

accuracy and spatial resolution, has been well documented in the remote sensing literature [28–34]. 

Fractional mapping approaches have been used for monitoring a wide range of cover types and 

environmental phenomena for several decades [22–26,35–39]. Nevertheless, production and widespread 

usage of standard (non-fractional) classification products has continued. This is at least partly because 

the benefits of fractional remote sensing datasets depend on the spatial resolution of the imagery and the 

spatial distribution characteristics of the phenomenon of interest. Snow cover has its own spatial 

distribution and scaling characteristics, which depend heavily on meteorological conditions and terrain. 

While extensive research has been conducted on the spatial distribution and scaling characteristics of 

snow [40–45] to our knowledge, the question of how these affect the choice of remote sensing approach 

at fine to moderate spatial resolutions has not been explicitly addressed. In order to better understand 

when, where, and at which spatial resolutions fractional SCA mapping would be most and least beneficial 

relative to binary SCA mapping, we quantified the frequency of mixed snow-covered/snow-free 

pixels across resolutions, over time, and at sites with different snow climate regimes. Our analysis is 

limited to high-elevation alpine environments, where remote sensing is particularly crucial due to the 

paucity of ground-based monitoring and where estimation of SCA is not significantly affected by 

vegetation canopies. 

Our analysis covers spatial resolutions between 1 m and 500 m, but we focus our analysis on the 

spatial resolutions most relevant to the Landsat and MODIS sensors, with nominal spatial resolutions of 

30 m and 500 m, respectively. For our analysis, we aggregate finer spatial resolution data to coarser 

spatial resolutions, a well-established approach to simulating coarser spatial resolution pixels in both 

remote sensing and modeling [27,28,34]. We employ this approach to estimate the frequency of mixed 

pixels across spatial resolutions for five dates between 2010 and 2014 at maritime and continental snow 

climate study areas. 

An alternate approach to characterization of conditions across a remotely sensed or modeled pixel 

footprint is to collect in situ data at point locations throughout the pixel footprint and use the point data to 

characterize the aggregate conditions across the pixel. We also employ this approach, using arrays of 

temperature data loggers to monitor the daily snow cover fraction between September 2013 and August 

2014 at ten 60 × 60 m grid cell footprints at two alpine study areas. The fractional SCA time series from 

these sites allows us to provide a more precise estimate of the temporal frequency of days with partial snow 

cover at the 60 m pixel resolution, as well as to identify and estimate the length of the transition period 

between fully snow-covered and fully snow-free conditions at sites with deep winter snowpacks. 

2. Study Area and Methods 

Our study areas consisted of two in situ (field) study areas (FSAs) in the Rocky Mountains of 

Colorado and two separate imagery study areas (ISAs) in the Rocky Mountains of Colorado and the 



Remote Sens. 2014, 6 12481 

 

 

Oregon Cascades (Figure 1). Under ideal circumstances, in situ snow cover monitoring and analysis of 

high resolution image data would have occurred at the same locations. The need for cloud-free, high 

spatial resolution imagery from five dates spanning a wide variety of snow cover conditions at an alpine 

location, however, severely constrained the areas where this sort of analysis would be feasible. Both 

locations where we were able to obtain imagery meeting the above specifications were difficult to access 

and managed primarily as wilderness (where installation of sensors is typically discouraged or 

prohibited). Therefore, we opted to conduct our in situ analysis and image-based analysis at separate 

study areas. 

2.1. Imagery Study Areas 

The two ISAs, both located in the Western United States, consist of an alpine area in the Cascade 

Mountains in Oregon and an alpine area in the Rocky Mountains in Colorado (Figure 1). While the 

Oregon Cascades ISA exhibits a maritime snow climate characterized by winter temperatures near 0 °C 

and abundant precipitation, the Rocky Mountain National Park ISA exhibits a continental snow climate 

characterized by winter temperatures well below 0 °C and substantially less precipitation. Geographic 

and climatic characteristics of the two ISAs are shown in Table 1. While temperature and precipitation 

estimates are derived from the PRISM dataset [46], mean wind speed estimates were calculated from 

wind speed data collected at the nearest meteorological stations similar in elevation to the study area with 

available wind speed data. The Oregon Cascades ISA is located along the eastern slopes of the Three Sisters 

(a group of three volcanic peaks) in central Oregon (Figure 2a). Land cover consists of barren, rocky slopes 

with some herbaceous vegetation, several small lakes covering < 10 hectares each, and a few small glaciers 

and perennial snow patches, the largest covering < 0.5 km2, amounting to < 14% of the total study area 

(determined by the total snow cover fraction on 1 September 2013, which most likely included substantial 

areas of late-lying seasonal snow cover). Patches of trees also cover approximately 1% of the study area. The 

Rocky Mountain NP ISA is located within Rocky Mountain National Park in central Colorado (Figure 2b). 

Land cover consists of barren, rocky slopes interspersed with herbaceous and dwarf shrub vegetation, along 

with a handful of small glaciers and perennial snow patches, none larger than 0.1 km2. 

Table 1. Geographic and climatic characteristics for each study area. Climatic characteristics 

are derived from the PRISM Climate Dataset [46]. 

Attribute 
Oregon Cascades 

ISA 

Rocky Mountain 

NP ISA 

Cinnamon Pass 

FSA 

Niwot Ridge 

FSA 

Area 9.7 km2 7.7 km2 - - 

Elevation 2124 to 3157 m 3081 to 3910 m 3669 to 3864 m 3425 to 3666 m 

Mean January 

Temperature  

(1981–2010) 

−5.9 to −4.3°C −11.5 to −9.7°C −9.7 to −8.6°C −10.7 to−9.4°C 

Mean July 

Temperature  

(1981–2010) 

8.8 to 12.1°C 8.4 to 11.0°C 8.4 to 10.0°C 9.3 to 11.1°C 

Mean Annual Precip.  

(1981–2010) 
2318 to 3737 mm 1066 to 1195 mm 1169 to 1329 mm 1017 to 1068 mm
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Table 1. Cont. 

Attribute 
Oregon Cascades 

ISA 

Rocky Mountain 

NP ISA 

Cinnamon Pass 

FSA 

Niwot Ridge 

FSA 

Mean January Wind 

Speed (2005–2010) * 
3.2 m/s * 11.9 m/s ** 6.9 *** m/s 11.9 m/s ** 

Mean July Wind 

Speed (2005–2010) 
3.6 m/s * 4.6 m/s ** 4.5 *** m/s 4.6 m/s ** 

* Mean wind speed for Oregon Cascades ISA calculated from hourly data from Round Mountain RAWS, elevation 1798 

m, maintained by the U.S. Forest Service and archived at the Western Regional Climate Center [47]. ** Mean wind speed 

for Rocky Mountain NP ISA and Niwot Ridge SA calculated from daily data from Niwot Ridge LTER Saddle 

Meteorological Station, elevation 3525 m, archived at the Niwot Ridge LTER [48]. *** Mean wind speed for Cinnamon 

Pass SA calculated from daily data from Putney Study Plot, elevation 3756 m, maintained by the Center for Snow and 

Avalanche Studies [49]. 

Figure 1. Study area locations in the Western United States. The Oregon Cascades ISA is 

located in Oregon while the Rocky Mountain NP ISA, Niwot Ridge FSA, and Cinnamon 

Pass FSA are located in Colorado. 
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Figure 2. (a) Oregon Cascades ISA and (b) Rocky Mountain NP ISA. Extent of ISA is 

outlined in red, while the extent of high-relief subsets are outlined in blue and low-relief 

subsets are outlined in orange. Image sources: Digital elevation models for both study areas 

are from the National Elevation Dataset (NED) [50]. Draped imagery for the Oregon 

Cascades ISA is from 0.4 m pan-sharpened natural color WorldView 2 imagery, acquired  

1 September 2013. Draped imagery for the Rocky Mountain NP ISA is from 1 m aerial 

orthoimagery available from the National Map [51], precise acquisition date not available. 

 

2.2. Image Data 

High spatial resolution imagery used for classification of snow-covered area in each ISA was derived 

from the WorldView-1 and WorldView-2 earth observation satellites operated by DigitalGlobe 

corporation. WorldView-1 was launched in 2007 and acquires panchromatic imagery at a nominal spatial 

resolution of 0.5 m, while WorldView-2 was launched in 2009 and acquires panchromatic imagery at a 

nominal spatial resolution of 0.46 m and multispectral imagery at a nominal spatial resolution of 1.84 m. 

For each ISA, we selected five dates (Table 2) when mostly cloud-free WorldView-1 or WorldView-2 

image strips covering our study areas were available from the EnhancedView archive provided by 

DigitalGlobe. For each date selected, we acquired high spatial resolution panchromatic (WorldView-1) 

or natural color pan-sharpened (WorldView-2) orthorectified image strips. The final analysis extent 
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boundary for each ISA was defined by the availability of cloud-free imagery for all five of the selected 

image dates as well as the extent of non-forested terrain. We excluded areas with forest cover from our 

analysis because for this study, we wanted to focus our analysis on the frequency of mixed pixels 

resulting from partially snow-covered ground, rather than mixed pixels that might occur when forest 

canopy is present above snow-covered ground. Areas with cloud cover on any of the five dates as well 

as areas with any significant forest cover were excluded from the analysis extent, resulting in the final 

analysis extents shown in Figure 2. Image strips were clipped to the extent of the study area boundary 

and resampled from the delivered panchromatic or pan-sharpened image product (~0.4 m resolution, 

with bands other than the panchromatic band acquired at ~1.9 m resolution) to 0.5 m resolution using 

nearest neighbor resampling prior to further processing. Resampling to 0.5 was done to maintain 

consistency with a larger database of 0.5 m resolution images not used in this study. 

Table 2. Study area, image type, date, snow cover fraction, 0.5 m binary SCA classification 

accuracy, and recent snowfall history (in terms of snow water equivalent, SWE) for each 

WorldView (panchromatic) or WorldView-2 (3 band) image strip included in the analysis. 

Location Image Type Acquisition Date 

Snow 

Cover 

Fraction

0.5 m 

Classification 

Accuracy 

2 Day 

Snowfall 

(mm SWE) * 

10 Day 

Snowfall 

(mm SWE) *

Oregon 3-band 12 May 2011 0.93 92% 0 0 

Oregon panchromatic 15 July 2011 0.67 98% 0 0 

Oregon 3-band 1 September 2013 0.14 92% 0 0 

Oregon panchromatic 29 November 2011 0.90 89% 0 36 

Oregon 3-band 26 December 2013 0.93 89% 8 15 

Colorado 3-band 26 February 2014 0.83 87% 3 46 

Colorado 3-band 20 March 2010 0.93 93% 23 28 

Colorado panchromatic 7 May 2011 0.83 81% 0 16 

Colorado 3-band 26 May 2012 0.42 85% 0 0 

Colorado 3-band 29 September 2013 0.52 91% 3 6 
* Recent snowfall history in table 2 is calculated from snowpack telemetry (SNOTEL) station data at nearby sites. Oregon 

Cascades ISA snowfall history was derived from Three Creeks Meadow, elevation 1734 m. Rocky Mountain NP ISA 

snowfall history was derived from Bear Lake, elevation 2896 m. 

2.3. Image Processing Techniques 

We used a version of the ISODATA algorithm [52] to create an unsupervised classification with  

7–9 spectral classes for each image date for each ISA with multispectral imagery available. Spectral classes 

were determined through visual examination to represent primarily snow-covered or primarily snow-free 

pixels. For the three dates where only panchromatic image data was available, we visually determined 

the most appropriate value to distinguish between snow-covered and snow-free pixels. In all cases, initial 

classifications resulting from either the ISODATA classification approach or the threshold classification 

approach required further adjustment. Steep topography at both study sites resulted in variable 

illumination, necessitating manual editing in order to accurately map the extent of snow cover for each 

image date. Results from the original classifications were examined carefully and polygons identifying 

areas where the original classification did not accurately represent the presence or absence of snow cover 
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were manually identified. The majority of pixels misclassified in the original classification were in areas 

with topographic shading. We used a 500 × 500 m grid to ensure all portions of the image were examined 

for areas requiring manual editing. The manually identified polygons indicating incorrectly classified 

pixels were then used to revise the original classification, resulting in the final binary SCA classification 

used for subsequent analysis. 

We conducted a basic accuracy assessment of each 0.5 m binary SCA classification. For the accuracy 

assessment, we used an image analyst who had not been involved in the production of the binary snow 

cover classifications. The analyst identified snow cover presence or absence at separate sets of 100 

randomly selected 0.5 m pixels for each date at each ISA based on visual interpretation of the 0.5 m 

panchromatic WorldView-1 or 0.5 m pan-sharpened natural color WorldView-2 imagery. Snow cover 

presence/absence identified by the analyst was compared to the 0.5 m binary snow cover classification 

values at the corresponding pixel locations for each classified image and used to calculate an estimate 

for overall classification accuracy for each date at each ISA. 

2.4. Snowfall History for Each Date 

Significant snow accumulation can quickly transform a patchy snow-covered landscape, where mixed 

pixels occur frequently, into a fully (or nearly fully) snow-covered landscape, where mixed pixels are 

rare or absent. This transformation from a landscape with abundant mixed pixels to one with few or none 

is even more likely if the new snowfall moisture content is high and wind speeds remain relatively low. 

Thus recent snowfall history is a key factor that can influence SCA and the prevalence of mixed  

snow-covered/snow-free pixels across the landscape. In order to inform our analysis of mixed pixel 

prevalence, we estimated two-day and 10-day snowfall accumulation totals (in mm of snow water 

equivalent, often referred to as SWE) prior to each image acquisition date at each ISA using data from 

nearby snowpack telemetry (SNOTEL) sites. Recent snowfall for the Oregon Cascades ISA was 

estimated using data from the Three Creeks Meadow SNOTEL station 10 km east of the ISA at an 

elevation of 1734 m, while recent snowfall for the Rocky Mountain NP ISA was estimated using data 

from the Bear Lake SNOTEL station 3 km east of the ISA at an elevation of 2896 m. We calculated 

daily new SWE accumulation as the difference between SWE reported at 12 p.m. on the current and 

previous day and reported new total new snow accumulation for the two-day and 10-day periods prior 

to the date of image acquisition. 

2.5. Analysis of Snow-Covered Area Images 

We used the high spatial resolution binary SCA classifications to calculate several metrics for each 

date from each ISA, including total snow cover fraction for the ISA and the fraction of mixed (partially 

snow-covered) pixels across a range of spatial resolutions between 1 m and 500 m. Based on the original 

binary snow cover image, where the value of s at pixel p is 1 for snow-covered pixels and 0 at snow-free 

pixels, fSCA, the fractional snow-covered area for pixel sizes larger than the original binary spatial 

resolution (0.5 m in this case) was calculated using Equation (1): 

fSCA = ∑ ୀୀଵݏ ݊  (1)
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fSCAISA, the snow cover fraction for the entire ISA, was calculated using the same approach, using all 

the high-resolution pixels within the ISA rather than only pixels within a smaller grid cell footprint 

corresponding to a specific spatial resolution. We calculated fSCA for each pixel size between 1 m and 

500 m that could fit evenly (i.e., with no remainder) into both the horizontal and vertical dimensions of 

the clipped ISA images. The Oregon Cascades ISA image dimensions were 12,000 × 4000 pixels, while 

the Rocky Mountain NP ISA image dimensions were 8000 × 4000 pixels. Pixel sizes used for calculation 

of the frequency of mixed pixel occurrence are indicated in Table 3, along with the resulting number of 

pixels at each spatial resolution within the ISA boundary. For our analysis, at each spatial resolution, 

pixels were considered mixed if fSCA was between 0.02 and 0.98. These threshold values were chosen 

instead of counting only pixels with all snow-covered or no snow-covered fine-resolution pixels as pure 

in order to reduce the effect of noise in the data. We calculated the fraction of mixed pixels for the ISA 

at each spatial resolution, fMr, using Equation (2): 

ܯ݂ = ∑ ݉ୀୀଵ 	൜݉ = 0 for fSCA < 0.02 ܽ݊݀ fSCA > 0.98	݉ = 1 for 0.02 ≤ fSCA ≥ 0.98݊  (2)

Table 3. Pixel sizes used to compute frequency of mixed pixels and corresponding pixel 

sample sizes for each ISA. 

Pixel Size 
Oregon Cascades 

ISA Sample Size 

Rocky Mountain NP 

ISA Sample Size 

1 7,925,962 6,812,343 

2 1,981,062 1,702,693 

2.5 1,267,546 1,089,691 

4 494,784 425,503 

5 316,572 272,312 

8 123,625 106,267 

10 79,021 67,957 

12.5 50,496 43,513 

16 30,765 26,495 

20 19,661 16,931 

25 12,598 10,859 

40 4893 4203 

50 3121 2705 

62.5 1995 1723 

80 1199 1037 

100 767 666 

125 491 425 

200 187 162 

250 113 102 

400 42 39 

500 27 24 

Although the differences between minimum and maximum elevation at each ISA were similar (1033 m 

for the Oregon Cascades ISA and 829 m for the Rocky Mountain NP ISA), comparison of elevation 

semivariograms based on 10 m digital elevation data (Figure 3a) indicated higher semi-variance in 
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elevation at the Rocky Mountain NP ISA. In order to allow for comparison between the frequency of 

occurrence of mixed snow cover pixels at the ISAs that would not be biased by differences in 

topography, we selected a 1500 × 750 m high-relief subset from each ISA as well as a 1500 × 500 m 

low-relief subset from each study area (Figure 2). The elevation semivariograms for the high- and  

low-relief subsets from each study area are shown Figure 3b. For the high- and low-relief subsets at each 

study area, we repeated the analysis described above for spatial resolutions between 1 m and 125 m. The 

analysis for the subsets was constrained to 125 m pixels due to the smaller extent of the image subsets. 

Figure 3. Semivariograms for elevation derived from 10 m DEM for (a) the Oregon 

Cascades and Rocky Mountain NP ISAs, and (b) high- and low-relief subsets from the 

Oregon Cascades and Rocky Mountain NP ISAs. 

 

In order to determine the potential for error in total study area snow cover fraction that might be 

introduced by monitoring binary SCA rather than fractional SCA at various spatial resolutions, we also 

calculated total ISA snow cover fraction based on binary SCA at spatial resolutions greater than the 

original 0.5 m resolution. To accomplish this, at each spatial resolution, r, we first calculated fSCA for 

each pixel at resolution r using Equation (1) and then calculated the binary SCA-derived study area snow 

cover fraction, bSCAr  using Equation (3): 

bSCA	 = ∑ ୀୀଵݏ ൜ݏ = 0, for fSCA < ݏ0.5 = 1, for fSCA ≥ 0.5݊  
(3)

where n was equal to the total number of pixels at resolution r within the ISA. For this comparison, it 

was essential that nearly identical samples of high resolution pixels were used for calculations at all 

spatial resolutions considered. For this reason, we were unable to conduct this analysis at spatial 

resolutions > 250 m, since the irregularly shaped ISA analysis extent resulted in the elimination of a 

substantial number of high resolution pixels that fell within the analysis extent but also within an 

aggregated grid cell that extended beyond the boundary extent. 

For the Rocky Mountain NP ISA, we conducted additional analysis to determine the overall frequency 

and spatial distribution of areas where a Landsat scale (~30 m) binary SCA representation characterizing 

pixels with ≥ 50% snow cover as snow-covered and pixels with < 50% snow cover as snow-free would 

be prone to error. We chose 40 m spatial resolution for this analysis because, of the pixel resolutions we 
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evaluated (shown in Table 3), the 40 m resolution offered the closest approximation of the estimated 

ground instantaneous field of view (GIFOV) for the Landsat TM instrument, which is slightly larger 

than the nominal spatial resolution of 30 m [53]. To map the spatial distribution of potential errors arising 

from the use of binary SCA, we calculated fSCA using Equation (1) for 40 m pixels, and then calculated 

bSCA40 m for 400 m blocks corresponding with 10 × 10 arrays of 40 m pixels (rather than for the full 

ISA extent), using Equation (3). The position of the 10 × 10 (400 m) pixel blocks was determined by the 

ISA boundary, with the origin point for the grid located at the northwestern corner of the image. We 

then calculated fSCA for each 400 × 400 m block using the original 0.5 m resolution binary image and 

the approach described in Equation 1 and compared fSCA to bSCA40m at each block, calculating the 

mean absolute difference between fSCA and bSCA40m. By comparing fSCA and bSCA40m at each block, 

we calculated the error that would be expected to occur for blocks of 100 40 m pixels if 40 m binary, 

rather than 40 m fractional SCA, was used. It is important to note that we were estimating differences 

that might arise from binary vs. fraction SCA mapping at 40 m spatial resolution, and in this case, 400 

m was the size of the aggregation unit that corresponded to a 10 × 10 array of 40 m pixels, but not the 

spatial resolution of interest. 

2.6. In Situ Snow Cover Monitoring Overview 

In order to estimate the prevalence of partially snow-covered conditions for individual grid cells 

similar in size to Landsat pixels, we conducted in situ fractional SCA monitoring at 60 m grid cells at 

two field study areas in the Rocky Mountains of Colorado (Figure 1) between September 2013 and 

August 2014. In situ fractional SCA data collected at these footprints will be used as part of an ongoing 

effort for validation of a Landsat fractional SCA product currently under development, and consequently 

we opted for monitoring 60 m footprints rather than 30 m footprints (the nominal pixel size for Landsat). 

The 60 m footprint size was selected because the effective resolution of Landsat has been shown to be 

larger than the 30 m nominal resolution [53], and also because monitoring the larger 60 m footprint 

would reduce the impact of spatial registration errors on comparisons between in situ and remotely 

sensed data. 

2.7. In Situ Snow Cover Monitoring Study Sites 

At the first FSA, referred to from this point forward as the Cinnamon Pass FSA, we measured daily 

snow cover fraction over six 60 × 60 m footprints in the vicinity of Cinnamon Pass in the San Juan range 

of the Colorado Rocky Mountains (Figure 4a). Sites ranged in elevation from 3669 to 3864 m, with slope 

angles ranging from 11° to 28° (Table 3). Modeled mean annual precipitation at the study area for the 

period 1981–2010 computed from the PRISM climate dataset [46] ranged from 1169 to 1320 mm; mean 

January temperatures ranged from −9.7 °C to −8.6 °C and mean July temperatures ranged from 8.4 °C to 

10.0° C for the same period. 
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Figure 4. Locations for 60 × 60 m grid cells instrumented with arrays of temperature data 

loggers at (a) the Cinnamon Pass FSA and (b) the Niwot Ridge FSA. 

 

At the second FSA, referred to from this point forward as the Niwot Ridge FSA, we measured daily snow 

cover fraction at four 60 × 60 m footprints at and above the alpine tree line on Niwot Ridge (Figure 4b), 

located about 3 km east of the continental divide in the Rocky Mountains west of Boulder, Colorado. 

Footprints at the Niwot Ridge FSA ranged in elevation from 3425 to 3666 m and included slope angles 

from 10°–19° (Table 4). While two of the four sites were > 200 m above tree line and included only 

herbaceous and dwarf shrub vegetation, two sites were within 20 m of stunted spruce and fir trees, which 

could be found throughout the area above the upper limit of contiguous upright forest. Modeled mean 

annual precipitation at the study area for the period 1981–2010 computed from the PRISM climate dataset 

ranged from 1017 to 1068 mm, with mean January temperatures ranging from −10.7 °C to −9.4 °C and 

mean July temperatures ranging from 9.3 °C to 11.1 °C for the same period (Table 3). 
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Table 4. Study area location and site characteristics for 60 × 60 m grid cell footprints where 

in situ monitoring was conducted. CP indicates Cinnamon Pass, while NR indicates  

Niwot Ridge. 

Site 

Field 

Study 

Area 

Elevation (m) 
Slope 

(Degrees)
Aspect Land Cover 

Local 

Topographic 

Position 

1 CP 3850 11 W rocky alpine meadow ridgetop 

2 CP 3845 15 NW rocky alpine meadow ridgetop 

3 CP 3669 28 SE alpine meadow mid-slope 

4 CP 3784 27 E alpine meadow mid-slope 

5 CP 3779 15 S alpine meadow mid-slope 

6 CP 3776 12 NW alpine meadow valley 

7 NR 3666 19 N rocky alpine meadow near ridgetop 

8 NR 3496 10 N rocky alpine meadow ridgetop 

9 NR 3425 19 S talus slope mid-slope 

10 NR 3430 14 S rocky alpine meadow valley 

2.8. In Situ Snow Cover Monitoring Approach 

At each of 10 monitoring sites within our field study areas, we buried 16 HOBO Pendant temperature 

data loggers 2–5 cm below the soil surface (Mention of a particular product does not constitute endorsement 

by the U.S. federal government). At one site where the pixel footprint was dominated by a rocky talus slope, 

some data loggers were placed below rocks near the surface of the talus pile. Our placement of data loggers 

varied from the approach used by Raleigh et al. [54] in the spatial resolution of the footprint monitored  

(60 × 60 m in our study vs. 500 × 500 m in Raleigh et al. [54]), the number of sensors deployed, and the 

placement of sensors within the footprint. While Raleigh et al. [54] deployed between 37 and 89 sensors 

in several different sensor configurations, including quasi-regular grids and transects, all of which covered 

500 × 500 m or larger areas, we used regular 4 × 4 grids with 20 m spacing at each site, for a total of  

16 sensors covering each 60 × 60 m footprint (Figure 5).  

Figure 5. Schematic diagram of the arrangement of temperature data loggers at each 60 × 60 m 

grid cell footprint. Data loggers are indicated by black circles. 
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Each data logger recorded the temperature at 1.5-hourly intervals. At the Cinnamon Pass study area, 

loggers were installed in mid-September 2013 and collected in July–August 2014, while at the Niwot 

Ridge study area loggers were installed in mid-October 2013 and also collected in July–August 2014. 

While 16 temperature data loggers were installed at each site, in a few cases, we were unable to locate a 

buried temperature data logger, and in a few other cases, data loggers stopped recording due to 

malfunction or insufficient battery voltage. All data from temperature data loggers that stopped recording 

prior to retrieval were discarded in order to ensure that calculated snow cover fraction would be based 

on the same set of points for the entire monitoring period. 

We used the algorithm introduced by Raleigh et al. [54] to convert the 1.5-hourly temperature time 

series from individual sensors to a daily snow cover fraction value for each 60 m grid cell footprint. 

Snow cover located above a sensor insulates the uppermost layer of the soil, resulting in a substantial 

reduction of the range in temperature variability experienced near the soil surface [7]. At temperate sites, 

in the absence of snow cover there is typically a strong diurnal ground temperature oscillation that 

disappears when snow cover is present. Monitoring this daily ground temperature variation allows for 

the identification of periods of snow cover using time series data collected at hourly to several hour 

increments [54–57]. Automated classification of periods with snow cover requires the selection of an 

appropriate 24-hour temperature range threshold; 24-hour periods where the temperature range is below 

this value will be classified as snow-covered. No single value has been established in the literature as 

appropriate for all conditions, as ground surface temperature variability is affected by a number of 

factors, including soil type, soil moisture, depth of burial, air temperature variability, and incoming solar 

radiation. We selected a 24-hour temperature range threshold of 2 °C, considerably larger than the 

temperature threshold used by Raleigh et al. and other studies [54–57]. Visual interpretation of 

temperature time series data suggested that this higher value allowed for identification of shallow snow 

cover during mid-winter while having minimal impact on the classification of snow cover conditions 

during the spring and summer melt period. 

For each sensor that recorded data for the entire monitoring period, for each interval in the 1.5-hourly 

time series we calculated the difference between minimum and maximum temperatures recorded for the 

previous 24 h as well as the next 24 h in the time series. If the 24-hour temperature range value exceeded 

2 °C for either the previous 24-hour period or the upcoming 24-hour period, the 1.5-hourly time series 

snow cover value was set to 0, indicating snow-free conditions. If the 24-hour temperature range values 

for both periods were less than 2 °C, the 1.5-hourly time series snow cover value was set to 1, indicating 

snow-covered conditions. Snow cover fraction on the ground at time series interval t, fSCAt was then 

calculated for each interval in the time series using Equation (4): fSCA୲ = ∑ ୀୀଵݏ ݊  (4)

where sl was binary snow presence, indicated by 1, or absence, indicated by 0, at temperature data logger l. 

We then computed the mean daily snow cover fraction for the footprint, fSCAd, using Equation (5):  fSCAୢ = ∑ fSCA௧ୀଵ௧ୀଵ ௧16  (5)

While we were not able to validate the methodology for monitoring grid cell snow cover fraction at 

any of the 60 m footprints in this study, photographic survey data collected at five 60 m footprints at 
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high-elevation subalpine forest and meadow sites in Utah and California indicated good agreement 

between photo-derived snow cover fraction and snow cover fraction calculated from similar grids of 

temperature data loggers using the same approach (mean absolute difference 0.09) [58]. 

In order to gauge the impact of the 24-hour temperature range value threshold on computed snow 

cover fraction, we conducted a sensitivity analysis where we computed the daily snow cover fraction 

using values of 0.5 °C, 1 °C, 2 °C and 3 °C. For each day in the time series, we calculated uncertainty 

in grid cell snow cover fraction, fSCAu, by calculating the difference between snow cover fraction 

computed using the 0.5 °C threshold, fSCA0.5, and snow cover fraction computed using the 3 °C 

threshold, fSCA3.0, using Equation (6): fSCA୳ = fSCAଷ. − fSCA.ହ (6)

fSCAu had a theoretical range from 0 (indicating no difference between snow cover fraction computed 

using a 0.5° C threshold and snow cover fraction computed using a 3 °C threshold) to 1 (indicating no 

snow cover computed using a 0.5 °C threshold and full snow cover computed using a 3 °C threshold). 

3. Results  

3.1. High Spatial Resolution Binary Snow-Covered Area 

Binary SCA classifications at 0.5 m spatial resolution for the Oregon Cascades and Rocky Mountain 

NP ISAs are shown in Figures 6 and 7, with examples from each study area shown in Figure 8. Total 

study area snow cover fraction for each date from the two ISAs ranged from 0.143 to 0.943 (Table 2). 

Classification accuracy for the 0.5 m binary SCA classifications ranged from 81%–98%, with a mean of 

90% for all 10 images (Table 2). Mean classification accuracy was slightly higher at the Oregon 

Cascades ISA (92.0%) than at the Rocky Mountain NP ISA (87.4%). Mean classification accuracy was 

very similar for the three dates where pan-sharpened three-band imagery was used (89.9%) and the three 

dates where panchromatic imagery was used (89.3%) 

3.2. Prevalence of Mixed Pixels across Spatial Resolutions and between Study Areas  

The fraction of mixed pixels at spatial resolutions between 1 m and 500 m is shown in Figure 9. At 

40 m spatial resolution, slightly larger than the estimated GIFOV for Landsat at nadir, mixed pixels 

accounted for 25%–50% of total pixels at the Oregon Cascades ISA (mean of 36% for five dates), and 

41%–93% of total pixels at the Rocky Mountain NP ISA (mean of 69% for five dates). At 500 m, the 

nominal spatial resolution for MODIS, mixed pixels accounted for 67%–93% of total pixels at the 

Oregon Cascades ISA (mean of 81% for five dates) and from 79%–100% of total pixels at the Rocky 

Mountain National Park ISA (mean of 93% for five dates). While the fraction of mixed pixels varied 

substantially across the available imagery dates for each ISA, the fraction of mixed pixels was 

consistently higher at the Rocky Mountain NP ISA than at the Oregon Cascades ISA. 
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Figure 6. WorldView imagery (top row) and high-resolution binary snow-covered area 

maps (bottom row) for the Oregon Cascades ISA. Panchromatic band data is displayed for 

the 15 July 2011 and 29 November 2013 images, while red band data is displayed for the  

12 May 2011, 1 September 2013, and 26 December 2013 images. 
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Figure 7. WorldView imagery (top row) and high-resolution binary snow-covered area 

maps (bottom row) for the Rocky Mountain NP ISA. Panchromatic band data is displayed 

for 7 May, while red band data is displayed for the 26 February 2014, 20 March 2010,  

26 May 2012, and 29 September 2013 images. 
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Figure 8. Examples of 0.5 m binary snow-covered area classifications (right side) based on 

WorldView 2 imagery (left side). Oregon Cascades, 26 December 2013, (panels a and b) 

and Colorado Rocky Mountains, 26 February 2014 (panels c and d). 

 

Figure 9. Fraction of mixed (partially snow-covered) pixels for pixel resolutions between 1 m 

and 500 m, for (a) the Oregon Cascades imagery study area, and (b) the Rocky Mountain 

NP imagery study area. Vertical blue lines indicate 40 m spatial resolution (slightly above 

the nominal spatial resolution for Landsat) and 500 m spatial resolution (the nominal spatial 

resolution for MODIS). 
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The high-relief subset from the Oregon Cascades ISA and the corresponding high-relief subset from 

the Rocky Mountain NP ISA exhibit similar semivariograms, while the low-relief subsets from the two 

study areas exhibit nearly identical semivariograms (Figure 3b). Comparisons of the fraction of mixed 

pixels at spatial resolutions between 1 m and 125 m indicate higher prevalence of mixed pixels at the 

Rocky Mountain NP ISA in both the high-relief and low-relief subsets (Figure 10). 

Figure 10. (a) Fraction of mixed pixels for Oregon Cascades ISA high-relief subset,  

(b) fraction of mixed pixels for the Rocky Mountain NP ISA high-relief subset, (c) fraction 

of mixed pixels for the Oregon Cascades ISA low-relief subset, and (d) fraction of mixed 

pixels for the Rocky Mountain NP ISA low-relief subset. Vertical blue lines indicate 40 m, 

slightly above the nominal spatial resolution of Landsat. 

 

3.3. Differences between Binary and Fractional SCA 

Our analysis indicated that as spatial resolution became coarser, the difference between study area snow 

cover fraction computed from binary SCA and fractional SCA, and thus the potential for error in binary 

SCA mapping, tended to increase (Figure 11). In general, if the 0.5 m snow cover fraction was > 0.6, 

binary snow cover fraction for the study area tended to increase at coarser spatial resolutions, while if 

the 0.5 m snow cover fraction was < 0.6, binary snow cover fraction for the study area tended to decrease 

at coarser spatial resolutions. While differences between study area snow cover fractions derived from 

binary versus fractional SCA were generally small, the change in study area snow cover fraction with 

spatial resolution was more significant for the July 2011 image from the Oregon Cascades ISA, with the 

study area snow cover fraction increasing from 0.67 at 0.5 m to 0.85 at 250 m. 
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Figure 11. Relationship between pixel resolution and total study area snow cover fraction 

derived from binary SCA for (a) Oregon Cascades ISA (b) and Rocky Mountain NP imagery 

ISA. Vertical blue lines indicate 40 m, slightly above the nominal spatial resolution of Landsat. 

 

Figure 12. Spatial distribution of 400 × 400 m blocks from the Rocky Mountain NP imagery 

study area where absolute differences between binary and fractional SCA were low (< 0.05), 

medium (0.05–0.10), high (0.10–0.15), and highest (> 0.15). 
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More detailed analysis of the spatial and temporal distribution of the differences between binary and 

fractional SCA at 40 m spatial resolution were conducted for the Rocky Mountain NP ISA. For a grid 

of 400 × 400 m blocks, we mapped the absolute difference between block snow cover fraction derived 

from 40 m binary SCA and block snow cover fraction derived from the original 0.5 m binary SCA image. 

Although the majority of 400 m blocks indicated absolute differences between binary and fractional 

SCA < 0.10, a number of blocks with absolute differences between binary and fractional SCA > 0.15 

were identified at the Rocky Mountain National Park ISA (Figure 12). Snow cover within each of these 

blocks exhibited very fine scale variability in the original 0.5 m snow cover image. 

3.4. Prevalence of Partially Snow-Covered Conditions at In Situ Monitoring Sites 

In contrast to the results of the imagery analysis, which allowed us to calculate the prevalence of 

partially snow-covered pixels over a range of scales for many pixels on just a few dates, the in situ snow 

cover fraction measurements allowed us to calculate the prevalence of partial snow cover conditions at 

ten 60 m pixel footprints over all days for a 10-month period. Summary fractional SCA statistics 

computed from temperature data loggers are presented in Table 5. As mentioned previously, in a few 

cases, we were unable to locate a buried temperature data logger, and in a few other cases, data loggers 

malfunctioned or stopped recording due to insufficient battery voltage. The total number of temperature 

data loggers used for calculation of snow cover fraction varied between 12 and 16, with valid data 

available from at least 14 sensors for eight of the 10 sites (Table 5). 

Daily time series of snow cover fraction for five of the six grid cells monitored at the Cinnamon Pass 

FSA and three of the four grid cells monitored at Niwot Ridge FSA are shown in Figure 13. Daily grid 

cell snow cover fraction calculated from temperature data logger arrays indicate that snow cover 

conditions at grid cell footprints fell into two distinct categories. At four of the 10 sites, full snow cover across 

the grid cell footprint occurred only rarely (3–45 days), despite snow covering a portion of the footprint for 

as many as 243 days during the monitoring period. At the remaining six sites, the grid cell footprint was fully 

snow covered between February 1 and late spring or early summer, with partial snow cover conditions 

common for some footprints during the earlier part of the season. For the six footprints with continuous or 

near continuous full winter snow cover, the first day with less than full snow cover after 1 April occurred 

between 3 May and 5 July. The length of the transition period between fully snow-covered and fully  

snow-free conditions ranged from 17–56 days, while the mean transition period length was 37 days.  

Table 5. Full, partial, and total snow cover days, as well as snow-covered to snow-free 

transition period metrics for 60 × 60 m footprints. Transition period metrics were not 

calculated for sites with intermittent winter snow cover. CP indicates Cinnamon Pass, while 

NR indicates Niwot Ridge. fSCA indicates fractional snow-covered area. 

Site 
Study 
Area 

Valid 
Sensors 

Snow Cover Days 
Partial/Total 

Ratio 

First Day  

Full Partial Total 
< 1.0 

fSCA 

< 0.5 

fSCA 

Snow-

Free 

Length 

(days)

1 CP 14 17 223 240 0.93 - - - - 

2 CP 16 16 243 259 0.94 - - - - 
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Table 5. Cont. 

Site 
Study 
Area 

Valid 
Sensors 

Snow Cover Days 
Partial/Total 

Ratio 

First Day  

Full Partial Total 
< 1.0 

fSCA 

< 0.5 

fSCA 

Snow-

Free 

Length 

(days) 

3 CP 15 144 99 243 0.41 3 May 21 May  15 June 43 

4 CP 16 235 25 260 0.10 9 June 23 June  2 July  23 

5 CP 16 229 39 268 0.15 1 June 16 June  10 July 39 

6 CP 16 242 61 303 0.20 18June 7 July  13 Aug. 56 

7 NR 15 45 223 268 0.83 - - - - 

8 NR 12 3 183 186 0.98 - - - - 

9 NR 15 186 88 274 0.32 5 July 17 July  22 July 17 

10 NR 13 162 137 299 0.46 29 June 15 July  13Aug. 45 

Figure 13. Daily 60 m grid cell snow cover fraction time series from (a) grid cells 1, 5, and 

6 at Cinnamon Pass FSA (b), grid cells 3 and 4 at Cinnamon Pass FSA, and (c) grid cells 8, 

9, and 10 at Niwot Ridge FSA. Time series depicted in the same panel are all from grid cells 

within 500 m and could thus be contained within a single 500 m MODIS grid cell. Time 

series from the two 60 m grid cells not shown are similar to #1 (south facing) in panel (a) 

and #8 (ridgetop) in panel (c). 

 

 

3.5. Sensitivity of Calculated Snow Cover Fraction to 24-Hour Temperature Range Threshold 

Results from the sensitivity analysis of the effect of 24-hour temperature range threshold on calculated 

snow cover fraction at each footprint indicate that, at sites where partially snow-covered conditions were 

common throughout the winter, calculated snow cover fraction was highly sensitive to the temperature 

threshold value used in the algorithm (Figure 14a, Table 6). At sites where fully snow-covered conditions 
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persisted throughout the winter, calculated snow cover fraction was much less affected by varying the 

temperature threshold (Figure 14b, Table 6). The mean grid cell snow cover fraction uncertainty  

(in terms of snow cover fraction, ranging from 0–1) for all days between 15 October and the last day with 

snow cover ranged from 0.01 to 0.39 (Table 6), with an overall mean of 0.16 for all sites and all days. When 

only the period between 1 April and the last day of snow cover was considered, mean uncertainty was lower 

at all sites, ranging from 0 to 0.24, with an overall mean of 0.08. For the 15 October—snow-free period, the 

fraction of days with uncertainty in snow cover fraction > 0.1 ranged from < 0.01–0.86, while for the  

1 April—snow-free period, the fraction of days with uncertainty in snow cover fraction > 0.1 ranged 

from 0–0.67. During the 1 April—snow-free period, the fraction of days with > 0.1 uncertainty at five 

of the 10 sites was ≤ 0.03. 

Figure 14. Results from sensitivity analysis indicating 60 m grid cell snow cover fraction 

using 0.5 °C, 1 °C, 2 °C, and 3 °C temperature thresholds for (a) an example site with partially 

snow-covered conditions throughout the winter and spring (site #2) and (b) for an example site 

with consistent fully snow-covered conditions throughout the winter and spring (site #9). 

 

Table 6. Snow cover fraction uncertainty metrics for each 60 m grid cell. Uncertainty is 

expressed in terms of snow cover fraction ranging from 0 to 1. 

Site 
Valid 

Sensors 

Partial/Total 

Snow Cover 

Days Ratio 

15 October—Snow-Free Date 1 April—Snow-Free Date 

Total 

Days 

Mean 

Uncertainty

Fraction of 

Days with 

Uncertainty 

> 0.10 

Total 

Days

Mean 

Uncertainty 

Fraction of 

Days with 

Uncertainty 

> 0.10 

1 14 0.93 240 0.29 0.86 72 0.22 0.67 

2 16 0.94 258 0.26 0.76 91 0.13 0.45 

3 15 0.41 241 0.11 0.35 75 0.02 0.00 

4 16 0.10 257 0.01 0.00 92 0.00 0.00 

5 16 0.15 264 0.04 0.12 100 0.03 0.13 

6 16 0.20 297 0.03 0.13 135 0.02 0.00 

7 15 0.83 262 0.39 0.81 100 0.16 0.49 

8 12 0.98 216 0.29 0.81 55 0.24 0.69 

9 15 0.32 272 0.09 0.26 112 0.01 0.03 

10 13 0.46 293 0.12 0.29 134 0.01 0.01 

Mean: - - - 0.16 0.44  0.08 0.25 
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4. Discussion  

Our analysis of mixed pixel prevalence across spatial resolutions indicates that mixed pixels occur 

frequently across the alpine landscape even at fine spatial resolutions (< 10 m), and that they often 

dominate the landscape at the spatial resolution imaged by Landsat (nominally 30, with true GIFOV 

closer to 40 m). For our analysis, we defined mixed pixels as pixels with fSCA between 0.02 and 0.98. 

While these thresholds may seem quite lax for identification of mixed pixels (or conversely, quite strict 

for identification of pure pixels), our goal was to estimate the fraction of the alpine landscape at different 

places, times, and spatial resolutions where sub-pixel variability in snow-covered area was present. The 

thresholds of 0.02 and 0.98 were chosen in lieu of 0 and 1 to account for occasional noise in the data. 

Our definition of mixed pixels will likely result in identification of more mixed pixels than would be 

mapped using Landsat and MODIS, since fSCA mapping algorithms such as MODSCAG often have 

difficulty mapping snow cover at fractions < approximately 0.15, while Landsat-based algorithms will be 

prone to overestimation of snow cover when saturation of the visible bands occurs, resulting in fewer 

mixed pixels when snow cover fractions are slightly below 1. Nevertheless, we believe it is important to 

quantify the prevalence of all mixed snow cover pixels, including those where the fraction of snow-covered 

or snow-free ground is quite small. Even very small differences in pixel fSCA, such as the difference 

between fSCA fractions of 1.0 and 0.97 can potentially indicate substantial differences in snow cover 

conditions, such as the difference between end of winter conditions with deep snow cover and conditions 

later in the spring where snow water equivalent has been reduced by 50% but only a tiny fraction of the 

pixel has melted out. 

We found that mixed pixels were more common across all spatial scales and dates at our continental 

ISA in Colorado than at our maritime ISA in Oregon. It is possible that the more rugged topography at 

the Rocky Mountain NP ISA may be partially responsible for this difference. The increased prevalence 

of mixed pixels across all dates can still be observed, however, even when subsets with similar 

topographic characteristics are compared, at least for spatial resolutions < 125 m.  

Differences between recent snowfall histories at the two ISAs prior to image acquisition are also 

insufficient to explain the greater prevalence of mixed pixels at the Rocky Mountain NP ISA, although 

heavy snow accumulation prior to the date of image acquisition did appear to reduce the incidence of 

mixed pixels in the Rocky Mountain NP ISA relative to other dates without recent heavy snow 

accumulation at the same ISA. At the Rocky Mountain NP ISA, the prevalence of mixed pixels was 

much lower for the three dates with ≥ 16 mm snow water equivalent accumulation over the previous  

10 days (26 February 2014, 20 March 2010, and 7 May 2011) than for the two dates with little or no 

new snow over the previous 10 days (26 May 2012 and 29 September 2013) (Figure 9b). Heavy snow 

accumulation did not appear to have as pronounced an effect on the prevalence of mixed pixels in the 

Oregon Cascades ISA (Figure 9). 

If differences in recent snow accumulation were the primary factor responsible for differences in the 

prevalence of mixed pixels between the two ISAs, we would expect to find a higher incidence of mixed 

pixels at the Oregon Cascades ISA than at the Rocky Mountain NP ISA, since no snowfall occurred 

within 10 days for three of the five dates analyzed at the Oregon Cascades ISA. Instead, we found the 

incidence of mixed pixels at the Oregon Cascades ISA was actually consistently lower than the incidence 

of mixed pixels at the Rocky Mountain NP ISA. We hypothesize that, over the course of the winter, the 
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combined effects of lower moisture content during snow accumulation events, lower overall 

precipitation, and higher wind speeds (Table 1) resulted in the development of a more heterogeneous 

snow cover at the continental Rocky Mountain NP ISA than at the Oregon Cascades ISA. Snowfall 

events with high moisture content (a common occurrence in the maritime snow climate of the Oregon 

Cascades) are more likely to coat all terrain surfaces evenly during accumulation. In contrast, snowfall 

events with lower moisture content (a common occurrence in the Colorado Rockies) often result in less 

uniform accumulation, a situation that is exacerbated by consistently higher wind speeds. 

Finally, it is also possible that differences in very fine scale surface roughness that cannot be captured 

by a 10-m DEM may also play a role in explaining the differences between the prevalence of mixed 

pixels at these two study areas. 

It is worth noting that a significant but unknown fraction of the snow cover mapped in the 1 September 

2013 image from the Oregon Cascades ISA consisted of exposed glacial ice as well as snow cover from 

the current year on top of glacial ice, particularly within the high-relief subset image (Figure 2). While 

the presence of glacier cover raises the overall ISA snow cover fraction, it is also likely to reduce the 

prevalence of mixed pixels at the spatial resolutions considered here, since glaciers represent a large 

mass of contiguous ice and snow that might otherwise be occupied by a patchy distribution of late-lying 

seasonal snow cover patches. 

The observation that portions of the alpine landscape remain free of snow cover across much of the 

winter and spring while other areas remain snow covered well into the summer is not novel. The daily 

60 m snow cover fraction time series computed from 1.5-hourly temperature data collected near the 

ground surface, however, allowed us to quantify the frequency of partially snow-covered conditions at 

a scale similar to that provided by Landsat. While the calculated snow cover fraction for pixel footprints 

with intermittent snow cover appeared to be quite sensitive to the 24-hour temperature range threshold 

used to classify the presence or absence of snow cover above each sensor, the results from the uncertainty 

analysis still indicated that, regardless of the temperature range threshold value used, partial snow cover 

conditions occurred with great frequency throughout the winter and spring. For the remaining sites, 

where snow covered the entire pixel footprint for most or all days prior to the spring snowmelt period, 

the temperature range threshold value appeared to matter very little, suggesting that snow cover fraction 

estimates for these footprints can be considered more reliable. 

At the four sites where partially snow-covered conditions were common throughout the winter and 

spring, monitoring per-pixel snow cover fraction provides a clear advantage over binary monitoring 

approaches that use an arbitrary, potentially variable fractional snow cover threshold to classify a pixel 

as snow-covered or snow-free. At this type of site, binary snow cover classifications will consistently 

overestimate the true snow cover fraction for most instances when snow covers > 50% of the pixel 

footprint and consistently underestimate the true snow cover fraction for most instances when snow 

covers < 50% of the land surface, although aggregation of results from many pixels can reduce the 

magnitude of the error. While at first glance, the need for a fractional monitoring approach may seem 

less obvious for sites where fully snow-covered conditions occur throughout the winter, the spring 

transition period between fully snow-covered and fully snow-free conditions at these sites spanned a 

period when 2–4 scenes would be collected by a single Landsat instrument (with the potential for even 

more scenes during periods of concurrent Landsat missions and in areas covered by more than one orbital 

path). During this transition period, there is an obvious benefit to retrieving per-pixel snow cover 
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fraction, rather than simply the presence or absence of snow cover, as per-pixel fractional snow-covered 

area can provide detailed information on the progression of snowmelt at the pixel rather than just a vague 

approximation of the time when the pixel transitioned from > 50% snow cover to < 50% snow cover. 

The rarity of pure pixels at 500 m spatial resolution and the sometimes dramatic differences in snow 

cover conditions that often exist in close proximity within 500 m grid cells (as demonstrated in Figure 13) 

present a strong case for the necessity of adopting a fractional SCA mapping approach when working with 

MODIS data in high mountain areas. It is important to note that for an instrument such as MODIS, the 

actual ground instantaneous field of view (GIFOV) represented by a single pixel is always larger than the 

nominal spatial resolution of 500 m, as only approximately 75% of the signal originates from within the 

nominal 500 m field of view [59]. In addition, for pixels imaged near the edge of the scan, where the scan 

angle can be as high as 55°, the GIFOV represented in a single pixel is approximately 10× as large as at 

nadir [60]. While this study does not directly address the frequency of mixed pixels for ground 

instantaneous fields of view larger than 500 × 500 m, for resolutions between 1 m and 500 m, the 

probability of mixed pixels generally continues to increase with increasing pixel size, and thus it seems 

likely that mixed pixels would occur even more frequently for cases where the GIFOV is substantially 

larger, as it is for MODIS pixels not located near the center of the scan. Ultimately, the vast diversity of 

conditions within a single MODIS pixel footprint, even at the nominal 500 m spatial resolution, emphasizes 

the utility of finer scale remote sensing using Landsat or a similar finer resolution platform. 

The lower incidence of mixed pixels at the Landsat spatial resolution suggests that a binary SCA 

mapping approach may be acceptable for some applications in mountain regions at the Landsat scale. For 

example, in a larger basin with a diversity of slopes and aspects, binary SCA overestimation of snow cover 

on north-facing slopes with 75% snow cover may often be offset by underestimation of snow cover on  

south-facing slopes with 25% snow cover, resulting in a basin-wide SCA estimate that closely approximates 

the true SCA for the basin. However, for basins with more homogeneous terrain at scales > 30 m, monitoring 

of individual slopes, and any applications where highly accurate spatial distributions are essential, the 

additional information provided by a fractional SCA dataset provides a major advantage.  

For many applications, the most important measure of snowpack is the snow water equivalent (SWE) 

or snow depth. While optical remote sensing cannot be used directly for monitoring either SWE or snow 

depth, there is a strong link between SWE and SCA [61], and SCA retrievals from optical sensors can 

be used in a variety of ways to assist with the estimation of snow depth or SWE. These include the 

provision of melt-out dates used for SWE reconstruction [1–3], constraining modeled SWE to areas 

where snow cover is actually present [4], and providing the spatial distribution of snow cover for 

validation of modeled snow cover evolution over space and time [62,63]. In all of these cases, there is a 

benefit to using fractional SCA at 30 m spatial resolution, particularly if the modeling occurs at 30 m 

spatial resolution or finer. 

It is important to note that the above discussion assumes similar accuracy in retrievals of both binary 

and fractional SCA. Highly accurate binary SCA data will always remain more useful than fractional 

SCA data of poor quality. Likewise, highly accurate fractional SCA data will always be more useful 

than poorer quality binary SCA data. 
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5. Conclusions  

While mixed snow-covered/snow-free pixels can occur at any spatial resolution, at both of our ISAs, 

mixed pixels become increasingly common at coarser spatial resolutions. The curves representing the 

fraction of mixed pixels versus spatial resolution varied substantially depending on total study area snow 

cover fraction, time of year, and snow climate regime. Mixed pixels were more prevalent at the colder, 

drier continental study area. At the Landsat spatial resolution, mixed pixels comprised 36% of the total 

pixels over all dates in the Oregon Cascades ISA and 69% of the total pixels for the Rocky Mountain 

NP ISA. At the MODIS spatial resolution, mixed pixels comprised 81% of the total pixels over all dates 

in the Oregon Cascades and 93% of the total pixels for the Rocky Mountain NP ISA.  

Daily fractional SCA calculated from in situ temperature data loggers covering 60 m grid cell 

footprints at two high elevation sites in Colorado suggested sites could be divided into two distinct 

categories. Four of the 10 footprints could be characterized as intermittently snow-covered sites where 

full snow cover across the entire 60 m footprint occurred rarely (as few as three days at one site), despite 

continuous or near continuous partially snow-covered conditions throughout the winter and spring. The 

remaining six footprints could be characterized as sites that remained fully snow-covered for most or all 

days between late fall and late spring or summer. While these sites experienced fewer days overall with 

partially snow-covered conditions, a period of continuous or nearly continuous partially snow-covered 

conditions occurred at each site during the transition between fully snow-covered and fully snow-free 

conditions. The mean length of this transition period was 37 days, with length varying from as few as 

17–56 days. 

At the MODIS spatial resolution, the rarity of pure pixels make fractional SCA mapping the obvious 

choice for snow cover monitoring in mountainous environments. At the finer Landsat spatial resolution, 

binary SCA mapping may be acceptable for some applications, but fractional SCA mapping offers 

substantial advantages for a variety of applications, particularly in cases where the accurate representation 

of snow cover spatial distributions (rather than just total SCA integrated over larger areas) is important. 
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