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Abstract: The purpose of this study was to examine how different polarimetric parameters 

and an object-based approach influence the classification results of various land use/land 

cover types using fully polarimetric ALOS PALSAR data over coastal wetlands in 

Yancheng, China. To verify the efficiency of the proposed method, five other classifications 

(the Wishart supervised classification, the proposed method without polarimetric 

parameters, the proposed method without an object-based analysis, the proposed method 

without textural and geometric information and the proposed method using the nearest-neighbor 

classifier) were applied for comparison. The results indicated that some polarimetric 

parameters, such as Shannon entropy, Krogager_Kd, Alpha, HAAlpha_T11, VanZyl3_Vol, 

Derd, Barnes2_T33, polarization fraction, Barnes1_T33, Neuman_delta_mod and entropy, 

greatly improved the classification results. The shape index was a useful feature in 

distinguishing fish ponds and rivers. The distance to the sea can be regarded as an important 

factor in reducing the confusion between herbaceous wetland vegetation and grasslands. 

Furthermore, the decision tree algorithm increased the overall accuracy by 6.8% compared 

with the nearest neighbor classifier. This research demonstrated that different polarimetric 

parameters and the object-based approach significantly improved the performance of land 

cover classification in coastal wetlands using ALOS PALSAR data. 
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1. Introduction 

As one of the most productive ecosystems in the world, wetlands play a key role in regional and 

global environments [1,2]. Timely land cover information is indispensable to wetland management and 

protection. As the first step in wetland monitoring, land cover identification and classification are highly 

important [3]. Given the large extent and plentiful marsh vegetation in wetlands, field-based monitoring 

is not practical. Remote sensing technology, which is large scale, integrated and rapid, is available for 

timely investigations of wetlands [4,5]. Compared with conventional optical remote sensing, which 

cannot penetrate vegetation canopies or cloudy conditions [6,7], synthetic aperture radar (SAR) is an 

effective tool for mapping and monitoring coastal wetlands [8]. 

With the continuous development of sensor platforms, fully polarimetric SAR (PolSAR) systems, 

both airborne sensors (AIRSAR, ESAR, UAVSAR, etc.) and spaceborne sensors (ALOS PALSAR, 

RADARSAT-2, TerraSAR-X, etc.), have shown enormous potential in characterizing wetland extent 

and identifying land cover types. The polarimetric parameters extracted from PolSAR data when using 

polarimetric decomposition are related to the physical properties of natural media; thus, they can be used 

for land cover mapping. In recent years, many land cover classification methods based on polarimetric 

decomposition have been proposed. In Touzi’s work [9], a roll-invariant incoherent polarimetric 

decomposition was used for the optimum characterization of wetland target scattering. Yajima et al. [10] 

proposed a modified four-component scattering power decomposition to map and monitor wetlands using 

L-band and X-band airborne polarimetric SAR images. The authors noted that the features of wetland 

vegetation were clearly observable with the modified scheme. In conjunction with polarimetric response 

plots, parameters derived from Cloude–Pottier and Freeman–Durden decompositions are very 

supportive of land cover identification within the Great Lakes Basin of Canada [11]. By combining  

S-band with X-band quad-polarimetric airborne SAR, Beijma et al. [12] mapped vegetation extents and 

identified vegetation types with polarimetric descriptors extracted from Cloude–Pottier, Freeman–Durden 

and Van Zyl decompositions in coastal zones. As stated in the above studies, each method has unique 

limitations and may not be able to estimate the parameters accurately. Integration of various polarimetric 

decompositions is likely to overcome this problem. Moreover, many PolSAR classifications in previous 

studies are pixel-based, which do not consider the geometric and textural information embedded in  

SAR data. 

Object-based image analysis, which uses geometric, statistical and textural information for improving 

accuracy, has been increasingly used in remote sensing classification [13–16]. This method uses more 

information by focusing on spatially-related objects that are delineated from remote sensing images 

rather than pixels. Furthermore, the method is less affected by noise contained in PolSAR data [17]. 

Object-based image analysis results in more accurate and detailed mapping products for land cover 

classification [17–19]. Benz and Pottier [17] noted that ambiguities in the Cloude–Pottier decomposition 

can be resolved by object-based analysis with the additional use of geometric and context features.  
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Niu et al. [18] and Qi et al. [19] independently examined the capability of object-based classification for 

detailed urban land cover mapping by using C-band fully polarimetric RADARSAT-2 images; both 

studies obtained satisfactory results. Therefore, object-based analysis is preferred for land cover 

classification in coastal wetland zones using PolSAR data. However, hundreds of features related to 

textural, statistical and geometric information can be extracted from image objects, in addition to 

polarimetric parameters. Using all features in a classification is improper, because these features will 

greatly increase the computations, and the noise in some features might distort the final performance. 

Therefore, how to select the optimal features in object-based PolSAR classification is a challenge. 

Notably, a decision tree algorithm can be used to solve the problem of feature selection in object-based 

classification [19]. 

This work investigated the influence of different polarimetric parameters and an object-based approach 

on land cover classification in coastal wetlands using polarimetric Advanced Land Observing Satellite 

Phased Array L-band Synthetic Aperture Radar (ALOS PALSAR) data. First, a large polarimetric 

parameter set was derived from 20 decomposition methods to support the land cover classification. Second, 

an object-based analysis was used to segment the multi-layer image, which was formed by 92 polarimetric 

parameters and six coherency matrix elements, into meaningful objects. Moreover, the features of the 

objects were calculated. Third, a decision tree algorithm was employed to optimally select features and 

develop the classification tree. Finally, the classification results were obtained with the constructed tree. 

2. Study Area and Datasets 

The experiment was conducted in the Yancheng National Nature Reserve, which is located along the 

eastern coast of China in the Yangtze River Basin. The study site covers approximately 17 km × 17 km 

and is approximately 270 km northwest of the city of Shanghai (Figure 1). The study area is within the 

transitional zone between terrestrial and aquatic ecosystems. The land use/land cover (LULC) types in 

the area can be divided into three groups: natural wetlands (wetland vegetation, rivers, sea and sand), 

artificial wetlands (paddy rice, irrigable land, fish ponds and grasslands) and non-wetland types (dry 

land and roads). Note that in this area, most of the grasslands are located on a farm and were classified 

as “artificial grasslands” (planted grass for grazing) in the second land survey in China. Therefore, the class 

was grouped into artificial wetlands here. The land cover in this area is diverse; some land cover types 

exhibit similar scattering mechanisms, which make them difficult to identify. 

L-band fully polarimetric ALOS PALSAR data acquired in April, 2009, were used in this study.  

The incidence angle of the image was 23.858°, and the resolution was 9.37 m and 3.57 m in the range 

and azimuth directions, respectively. The original data were in single-look complex (SLC) format; thus, 

multi-look processing was completed with 6 looks in the azimuth direction and 1 look in the range 

direction to improve the image readability. To reduce noise, the refined Lee filter was employed in a  

3 × 3 window [20,21]. ALOS multispectral image obtained in May 2008, and a satellite image from Google 

Earth were chosen as supplementary data to interpret the data visually and to facilitate the collection of 

ground-truth data during the field investigation.  

Fieldwork was conducted on a date close to the image acquisition (March 2009) to collect ground-truth 

data. A total of 4610 samples of 10 land cover types were selected across the entire study area, and 

photographs of typical land cover were taken during the field investigation to assist in the image 
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interpretation and analysis (Figure 2). Global positioning system (GPS) equipment was employed to record 

the coordinates of the collected samples. Hundreds of field plots for each class were collected. All of the 

field plots were randomly divided into two groups: one group included 2567 samples for building the 

decision tree, while the other group included 2043 samples for validating the classification results. 

Figure 1. Map of the study area (left) and Pauli RGB image (right). The region of interest 

is shown in the black dashed rectangle. 

 

Figure 2. Photographs of eight typical land cover types taken in the study area. (a) Grassland; 

(b) river; (c) sand; (d) paddy rice; (e) irrigable land; (f) wetland vegetation; (g) dry land; and 

(h) fish pond. 

 

3. Methodology 

3.1. Polarimetric Decomposition and Parameter Extraction 

Polarimetric decomposition is an important and continually developing information-extracting approach 

in PolSAR data analysis [22,23]. As one of the most popular decomposition methods, Pauli decomposition 

expresses the measured scattering matrix S in the so-called Pauli basis: 
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σଵ = ቂ1 00 1ቃ , σଶ = ቂ1 00 −1ቃ , σଷ = ቂ0 11 0ቃ , σସ = ቂ 0 i−i 0ቃ (1)

The 2 × 2 observed scattering matrix S can be vectorized to ૂ with the Pauli basis. S = ܵ ܵ௩ܵ௩ ܵ௩௩൨ ૂ = ܸ(S) = 1√2 ሾܵ + ܵ௩௩, ܵ − ܵ௩௩, ܵ௩ + ܵ௩, ݅(ܵ௩ − ܵ௩)ሿ் (2)

With the reciprocity theorem and ܵ௩ = ܵ௩, the last element of vector ૂ is zero. The remaining three 

elements, ܵ + ܵ௩௩, ܵ − ܵ௩௩  and 2ܵ௩,  are associated with three physical scattering mechanisms, 

which are odd-bounce scattering, double-bounce scattering and volume scattering, respectively. Thus, 

the Pauli RGB image (|ܵ + ܵ௩௩|ଶ(Blue), |ܵ − ܵ௩௩|ଶ(Red) and 2|ܵ௩|ଶ(Green)) can be utilized to 

interpret the physical information from a qualitative point of view. 

In addition to the Pauli decomposition, many other polarimetric decompositions exist. The RGB 

composition images that correspond with several decompositions are displayed in Figure 3. However, as 

discussed in the references for Table 1, each decomposition has unique limitations. In addition, different 

polarimetric decompositions are sensitive to different land cover types [20]. Therefore, the method might 

be more effective in a study area with complex and diverse land cover types, such as wetland ecosystems, 

to integrate several different decompositions. In this study, 92 polarimetric parameters derived from 20 

decompositions were explored for the LULC classification (Table 1 [22,24–39]). The parameters were 

merged with 6 coherency matrix elements to form a multi-layer image on which subsequent processing 

steps, including object-based analysis and feature extraction, operated. 

Figure 3. RGB composition images of different polarimetric decompositions. 
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Table 1. Polarimetric parameters extracted from 20 polarimetric decompositions. 

Decomposition Method Polarimetric Parameters 

Pauli [22]  Pauli_a Pauli_b Pauli_c 

Krogager [24] Krogager_KS Krogager_KD  Krogager_KH 

Huynen [25]  Huynen_T11 Huynen_T22  Huynen_T33 

Barnes1 [26]  Barnes1_T11 Barnes1_T22 Barnes1_T33 

Barnes2 [26]  Barnes2_T11 Barnes2_T22 Barnes2_T33 

Holm1 [27] Holm1_T11 Holm1_T22  Holm1_T33 

Holm2 [27]  Holm2_T11 Holm2_T22  Holm2_T33 

VanZyl3 [28]  VanZyl3_Vol VanZyl3_Odd  VanZyl3_Dbl 

Cloude [22]  Cloude_T11 Cloude_T22  Cloude_T33 

H/A/Alpha [29] 

H/A/A_T11 H/A/A_T22  H/A/A_T33 

Entropy  Anisotropy  Shannon Entropy  

DERD  Polarization Asymmetry  Polarization Fraction 

SERD  Radar Vegetation Index  Anisotropy12 

Pedestal Height Alpha (ߙത, α1, α2, α3) Anisotropyluenebury

Pseudo Probabilities (p1, p2, p3) 

Freeman2 [30]  Freeman2_Vol  Freeman2_Ground  

Freeman3 [31]  Freeman_Vol  Freeman_Odd  Freeman_Dbl 

Yamaguchi3 [32]  Yamaguchi3_Vol Yamaguchi3_Odd  Yamaguchi3_Dbl 

Yamaguchi4 [33]  
Yamaguchi4_Vol Yamaguchi4_Odd  Yamaguchi4_Dbl 

Yamaguchi4_Hlx   

Neumann [34] Neumann_delta_mod Neumann_delta_pha Neumann_tau 

Touzi [35] 

TSVM_alpha_s TSVM_alpha_s1  TSVM_alpha_s2 

TSVM_alpha_s3 TSVM_tau_m  TSVM_tau_m1 

TSVM_tau_m2 TSVM_tau_m3 TSVM_phi_s1 

TSVM_phi_s2 TSVM_phi_s3 TSVM_phi_s 

TSVM_psi1 TSVM_psi2 TSVM_psi3 

TSVM_psi   

An_Yang3 [36]  An_Yang3_Vol An_Yang3_Odd An_Yang3_Dbl 

An_Yang4 [37]  
An_Yang4_Vol An_Yang4_Odd An_Yang4_Dbl 

An_Yang4_Hlx   

Arii3_NNED [38]  Arii3_NNED_Vol Arii3_NNED_Odd Arii3_NNED_Dbl 

Arii3_ANNED [39]  Arii3_ANNED_Vol Arii3_ANNED_Odd Arii3_ANNED_Odd

3.2. Object-Based Image Analysis and Feature Calculation 

Object-based analysis of meaningful image objects with adjacent pixels and homogeneous values, rather 

than single pixels, can improve the accuracy of LULC classification [13,15,40]. A perfect meaningful image 

object represents exactly one specific category. The image object is expected to be as large as possible 

and to exhibit the typical shape of the land cover type. Thus, the performance of object-based 

classification depends on the quality of the image segmentation [18]. In this study, the multi-resolution 

segmentation module provided in eCognition [41] was employed to perform the object-based segmentation 

and analysis. 
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Too many layers in the segmentation can greatly increase the computations and distort the segmentation 

performance. As noted, a Pauli RGB image can represent all polarimetric information embedded in 

polarization measurements and retain subtle details in the features; thus, this image is always employed 

when qualitatively interpreting the physical meanings of the land cover. Therefore, we opted to employ 

the Pauli RGB image for segmentation. Each channel of the Pauli RGB image was equally weighted during 

the segmentation, as they were equally sensitive to the three scattering mechanisms. 

Scale parameters of 5, 15 and 25 were set to test the segmentation (Figure 4). With a scale of 5, the 

land parcels were too fragmented to reflect the shape of the land cover, and with a scale of 25, the image 

objects were so large, that many details were lost. The optimal segmentation scale in this experiment 

was 15 according to a visual inspection. Furthermore, according to our tests, a weight of 0.5 was given 

to the shape and compactness criterion to optimally fit the objects. 

Figure 4. Determining the optimal scale for the Pauli RGB image segmentation. 

 

Statistical (layer values), geometric, textural and class-related features of image objects were extracted 

to build the decision tree. Four indicators were related to the statistical values of each object: the minimum, 

maximum, mean and standard deviation of each layer. We used 57 geometric features, including area, 

length/width, shape index, border length and density. Eight textural features were extracted by a grey-level 

co-occurrence matrix (GLCM) algorithm, including entropy, dissimilarity, contrast, homogeneity, second 

moment, mean, standard deviation and correlation. Seven class-related indicators were obtained, such 

as the existence of neighbor objects, the number of neighbor objects and the distance to neighbor objects. 

The total number of features extracted from the combined multi-layer image was 1919. Commonly-used 

features are the mean value ܥതതത and the standard deviation σ, which can be calculated by the layer value ܥ of n pixels contained in an object. ܥതതത = 1݊ ×ܥ
ୀଵ  (3)
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σ = ඩ1݊ × (ܥଶ −
ୀଵ

1݊ܥܥ)
ୀଵ


ୀଵ  (4)

The shape index, which is used to describe the compactness of an object’s boundary, is particularly 

useful for distinguishing land cover with different shapes. The shape index is defined as: S = (5) ܣ√4݁

where ݁ and A are the perimeter and the area of an object, respectively. 

3.3. Decision Tree Algorithm 

The decision tree model, also known as a rule-based model, builds a classification tree by learning 

via training samples; the model completes the classification based on the developed rules [42]. Decision 

tree learning has been one of the most successful techniques for supervised classification. The technique 

is used to find the optimal solution of a Bayesian decision problem, i.e., to select an optimal solution from 

several decision alternatives. In this research, 1919 features were extracted from the PolSAR data; thus, 

how to select the optimal features for the LULC classification was a challenge. Here, QUEST [43], which 

is a binary-split and relatively automatic “machine learning” decision tree method, was employed for optimal 

feature selection and decision tree building. QUEST can be employed with univariate or linear combination 

splits, and the attribute selection method has negligible bias. Each attribute has an approximately equal 

chance of being selected to split a node if all attributes are uninformative with respect to the class. 

Compared with other tree-building techniques, QUEST can easily handle categorical predictor variables 

with many categories, and the built trees are relatively simple to interpret by non-statisticians. 

3.4. Methods for Comparison 

To demonstrate the efficiency of the proposed method and the contributions of polarimetric parameters 

and object-based analysis to the classification performance, a series of comparisons were conducted with 

five other methods: the Wishart supervised classification (WSC), the proposed method without 

polarimetric parameters (PWPP), the proposed method without an object-based segmentation (PWOS), 

the proposed method without textural and geometric information (PWTG) and the proposed method using 

the nearest-neighbor classifier instead of the decision tree algorithm (PNNC). The Wishart supervised 

method is a frequently-used PolSAR classification. It is a Bayes maximum likelihood classifier that is 

based on the complex Wishart distribution for the polarimetric coherency matrix [44]. The PWPP method 

was applied based on the coherency matrix elements using the processes of object-based analysis and 

the decision tree algorithm. In the PWOS method, polarimetric decomposition and the decision tree 

algorithm were applied to the PolSAR data without an object-based analysis. The PWTG method invoked 

similar processes to the proposed method; however, textural and geometric features were not incorporated. 

The nearest-neighbor classifier is commonly used in object-based analysis. In this study, the PNNC 

method was employed for a comparison by using the nearest-neighbor classifier instead of the decision 

tree algorithm. The feature space optimization function provided in eCognition was utilized for the 

optimal feature selection in the nearest-neighbor classifier.  
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4. Results and Discussion 

4.1. Constructed Decision Tree and Selected Polarimetric Parameters 

In this study, 2567 training samples for 10 land cover types (wetland vegetation, rivers, sea, sand, 

paddy rice, dry land, irrigable land, fish ponds, grasslands and roads) were used to build the decision 

tree (see Supplemental Table S1). During the tree development, the depth was set to five to avoid  

over-fitting. To generate a simple tree, the method of “cost-complexity” pruning was employed based 

on 10-fold cross-validation. The structure of the final decision tree is shown in Figure 5. As presented 

in the figure, the layer mean values for the Shannon entropy, Krogager_Kd, Barnes2_T33, Alpha, 

HAAlpha_T11, polarization fraction, VanZyl3_Vol, Derd, Barnes1_T33, Neuman_delta_mod, the standard 

deviation of entropy, the shape index and the distance to neighbor objects were selected for the decision tree. 

The optimal polarimetric parameters selected by the QUEST algorithm are displayed in Figure 6. 

Figure 5. Structure of the decision tree. SE, Shannon entropy; KG, Krogager_Kd; B2, 

Barnes2_T33; HAA, HAAlpha_T11; PF, Polarization Fraction; VZ, VanZyl3_Vol; B1, 

Barnes1_T33; NDM, Neuman_delta_mod; SD, the standard deviation of entropy; DS, the 

distance to the neighbor objects. 

 

The radar signals returned from the vegetation-covered area, such as paddy rice, irrigable land, dry land 

and wetland vegetation, include the vegetation canopy backscatter (volume scattering) and trunk-water or 

trunk-ground backscatter (double-bounce scattering). The backscatter from grasslands and sand is mainly 

single-bounce scattering, which is greatly influenced by the soil surface. Water bodies, such as fish ponds, 

rivers and the sea, generally exhibit low return scattering; these areas are mostly dark on the PolSAR 

image. The scattering on roads is mainly double-bounced due to the interaction with telegraph poles and 

trees on either side, so they are shown as bright lines on radar imagery. Overall, the land cover types in 

this study area are complex, and some of them exhibit similar physical scattering mechanisms; thus, it is 

difficult to distinguish land cover classes accurately by using polarimetric scattering information alone. 
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Figure 6. Polarimetric parameters selected in the decision tree. 

 

Shannon entropy is a measurement that was introduced by Morio et al. [45]; it is the sum of two 

contributions related to intensity and polarimetry. The intensity contribution depends on the total 

backscattering power, and the polarimetric contribution depends on the Barakat degree of polarization. 

The training samples could be classified into two groups by the mean value of the Shannon entropy with 

a threshold of −3.01. Crop fields that are near water bodies could not be differentiated from water. 

Corresponding to the contribution of the di-plane component in the Krogager decomposition [24], the 

mean value of Krogager_Kd was helpful in distinguishing water bodies and vegetation. In the right branch 

of the mean value of Krogager_Kd, vegetation could be identified, as it had stronger double-bounce 

scattering (trunk-water or trunk-ground backscatter) than the water bodies in the left branch. Representing 

the averaged scattering mechanisms from surface scattering to double-bounce scattering, the mean value 

of Alpha with the threshold of 31.511 was used to divide the water bodies into two groups. The left branch 

included grasslands and water, the dominant scattering of which should be single bounce. However, the 

trails across fish ponds presented a slight volume scattering. Thus, the mean value of VanZyl_Vol could 

be used to distinguish water bodies from nearby grasslands. The entropy (H) represents the randomness 
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of a scattering medium, from isotropic scattering (H = 0) to totally random scattering (H = 1) [44].  

For smoother surfaces, such as the ocean, surface scattering dominates and H is near zero. As mentioned, 

fish ponds presented a slight volume scattering in this study area, so compared with the sea, fish ponds 

had higher entropy values. The standard deviation of entropy is calculated from the entropy and is more 

sensitive to the variation in surface roughness. Thus, the standard deviation of entropy was helpful in 

further classifying the sea and fish ponds. With a relatively compact shape, a fish pond could be easily 

distinguished from a river by using the shape index. The mean value of Alpha and the distance to the sea 

could successfully differentiate herbaceous wetland vegetation from artificial grasslands. According to 

knowledge, wetland vegetation grows on the coast near the sea, and the artificial grasslands are located 

on farms far from the sea, so the distance to the sea can be regarded as an important spatial indicator to 

reduce the confusion between artificial grasslands and wetland vegetation. When the distance between 

an object and the sea was less than 70 pixels, the object was regarded as wetland vegetation; otherwise, the 

object was grassland. The double-bounce eigenvalue relative difference (Derd), which was introduced by 

Allain et al. [46], is very sensitive to surface roughness. In the study, the mean value of Derd was used 

twice to classify paddy rice, irrigable land and dry land, all of which had similar dominant scattering 

mechanisms, but different surface roughness. 

The classes in the right branch of the Shannon entropy node, such as roads, sand and paddy rice, could 

be divided into two groups according to the mean value of Barnes2_T33. The parameter, polarization 

fraction (PF), ranged between zero and one [47]. When the third eigenvalue (λଷ) of the coherency matrix 

was zero, the entire radar return was polarized. When λଷ was greater than zero, the value of PF dropped. 

As shown in Figure 6 (PF), roads exhibited lower PF than paddy rice and dry land. As a result, the mean 

value of PF could be used to reduce the confusion between farmland and roads. With similar scattering 

mechanisms, but different surface roughness and soil moisture, paddy rice and dry land could be 

distinguished by employing the mean value of Derd. Figure 6 shows that the sand and paddy rice were 

relatively homogeneous in the HAAlpha_T11 image, so the mean value of HAAlpha_T11 could be used 

to separate roads from paddy rice and sand. Corresponding to pure targets, Barnes1_T33 was useful in 

further distinguishing sand from paddy rice. The Neumann decomposition, which is a simple vegetation 

model for polarimetric covariance or coherency matrix elements, was originally intended for volumetric 

distributed targets in terms of second-order statistics. As a general scattering mechanism indicator, 

Neumann_delta_mod was helpful in identifying some paddy fields, which typically had stronger volume 

scattering than roads. 

4.2. LULC Classification Results 

The LULC classification results from the proposed method and five other methods are displayed in 

Figure 7 and Table 2 (and see Supplemental Tables S2–S7 for detailed results from individual methods). 

A total of 2043 field samples were collected to calculate the classification accuracy (Table S1), including 

overall accuracy (OA), producer’s accuracy (PA) and user’s accuracy (UA). The analysis and discussion 

are based on visual interpretations and quantitative comparisons. As seen from the comparison between 

the proposed method and WSC method, the overall accuracy for the latter method was 66.6%, which 

was lower than that of the proposed method (87.3%). In addition, the producer’s and user’s accuracies 

for most classes decreased with the WSC method. In particular, fish ponds, the sea and rivers were 
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grouped into one class due to their similar backscatter values (Figure 7b). Given that soil moisture is a 

crucial factor that generally affects the land cover scattering type, grasslands have lower soil moisture 

than paddy rice. In Figure 7b, however, some artificial grasslands could not be differentiated from paddy 

rice by only using scattering mechanisms, perhaps because the PolSAR data were acquired in April when 

little water was present in the paddy fields. Furthermore, some bare lands that exhibited dominant  

single-bounce scattering were observed in the paddy rice during the fieldwork. As a result, some of the 

paddy rice showed similar scattering to artificial grasslands. This comparison demonstrated the effects 

of integrating the polarimetric decomposition, object-based analysis and decision tree algorithm. 

Figure 7. Classification results from: (a) the proposed method; (b) the Wishart supervised 

classification; (c) the proposed method without polarimetric parameters; (d) the proposed 

method without an object-based segmentation; (e) the proposed method without textural and 

geometric information; and (f) the proposed method using the nearest neighbor classifier 

instead of the decision tree algorithm. 

 

The results of the proposed method and PWPP method were compared to verify the improvement 

after polarimetric parameters were included in the LULC classification. From Table 2, the producer’s 

and user’s accuracies for almost all land cover types decreased when the polarimetric parameters were not 

used in the classification. Moreover, the overall accuracy decreased by 13.3% compared with the proposed 

method. Specifically, as observed in Figure 7c and Table 2, fish ponds achieved rather low accuracies due 

to their confusion with the sea. The user’s accuracy of fish ponds with the PWPP method was 24.6%, and 

the producer’s accuracy of the sea was 49.2%; in the proposed method, these accuracies increased to 89.5% 

and 88.8%, respectively. Entropy, which is a polarimetric parameter derived from the Cloude–Pottier 

decomposition, was useful in identifying fish ponds and the sea (Figure 5). The mean value of Derd 



Remote Sens. 2014, 6 12587 

 

 

helped distinguish paddy rice and dry land. In the proposed method, the producer’s and user’s accuracies 

of dry land were 88.8% and 87.1%, respectively, while in the PWPP method, the two indicators 

decreased to 79.4% and 84.3%, respectively. For paddy rice, the two indicators were 84.9% and 90.9%, 

respectively, in the proposed method, but decreased to 75.7% and 71.6%, respectively, with the PWPP 

method. The improvement in the accuracies for roads and paddy rice indicated that the mean value of 

Neumann_delta_mod was useful in separating these classes. Overall, the polarimetric parameters 

selected by the QUEST algorithm were highly important in reducing land cover confusion and improving 

the classification performance in the coastal wetlands. 

Table 2. Classification accuracy. SA, sand; DL, dry land; FP, fish pond; GL, grassland; IL, 

irrigable land; PR, paddy rice; RI, river; RO, road; S, sea; W, wetland vegetation; WSC, 

Wishart supervised classification; PWPP, proposed method without polarimetric parameters; 

PWOS, proposed method without object-based segmentation; PWTG, proposed method 

without textural and geometric information; PNNC, proposed method with the  

nearest-neighbor classifier. 

Method Accuracy 
Class 

SA DL FP GL IL PR RI RO S W 

Proposed 
method 

PA (%) 83.2 88.8 86.0 84.6 80.3 84.9 95.3 92.0 88.8 93.5
UA (%) 89.2 87.1 89.5 86.4 87.4 90.9 85.5 85.2 90.0 80.7
OA (%) 87.3 

WSC 
PA (%) 84.3 77.9 42.8 75.4 76.1 74.1 30.3 89.3 52.3 94.6
UA (%) 83.4 87.2 6.6 78.8 87.4 71.6 80.7 87.9 17.3 72.5
OA (%) 66.6  

PWPP 
PA (%) 88.6 79.4 73.6 74.4 67.9 75.7 73.4 91.1 49.2 89.3
UA (%) 83.0 84.3 24.6 67.6 90.6 71.6 80.7 92.1 79.6 72.5
OA (%) 74.0  

PWOS 
PA (%) 90.6 78.8 92.6 72.8 69.4 82.4 51.6 90.7 55.6 92.1
UA (%) 79.6 84.8 82.5 67.6 90.6 78.8 23.4 93.2 89.0 77.6
OA (%) 77.1  

PWTG 
PA (%) 87.8 79.9 61.6 71.8 71.2 75.7 75.6 90.1 47.6 84.5
UA (%) 84.4 87.1 14.0 65.6 87.4 71.7 80.8 92.1 84.1 72.5
OA (%) 73.2  

PNNC 
PA (%) 87.6 80.5 94.6 70.7 65.5 89.5 65.7 90.3 82.6 94.4
UA (%) 79.5 83.8 69.7 67.1 91.7 81.2 81.8 88.4 84.6 77.8
OA (%) 80.5  

The PWOS method was used for the LULC classification by applying similar operations to the 

proposed method, including polarimetric decomposition and the decision tree algorithm; however, the 

object-based segmentation was not employed. Regarding the comparison between the object-based (the 

proposed method) and pixel-based (the PWOS method) classifications, Figure 7d and the accuracy 

evaluation in Table 2 show that the performance of the proposed method was generally enhanced. The 

overall accuracy of the PWOS method had an accuracy of 77.1%, which was 10.2% lower than the 

proposed method. Specifically, the PWOS method failed to correctly distinguish rivers, roads and 

grasslands due to the limitation of using only single-pixel information. More importantly, there was a  
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mass of isolated points in Figure 7d compared with Figure 7a, which provided powerful evidence that 

the object-based method was less affected by noise in the SAR image. Figure 7a had lower spatial 

heterogeneity compared with Figure 7d, and the proposed method represented reality more accurately 

than the pixel-based method. These results proved the importance of the object-based method in PolSAR 

LULC classification. 

When textural and geometric information were not employed in the classification, the overall accuracy 

of the PWTG method was 73.2%, which was 14.1% lower than the proposed method. As displayed in 

Figure 7e, some rivers could not be separated from fish ponds by merely using polarimetric information, 

because both were dominated by single-bounce scattering. Because the shapes of these two land cover 

types are significantly different, the shape index could be used to distinguish them. The producer’s and 

user’s accuracies of fish ponds were 61.6% and 14.0% with PWTG, respectively; after the shape index 

was added to the classification, the two indicators increased to 86.0% and 89.5%, respectively. Some 

wetland vegetation areas were confused with grasslands when using the PWTG method, because their 

scattering mechanisms were similar. Based on knowledge and reference maps, wetland vegetation grows 

on the beach near the sea and grasslands are located on farms far from the sea, so the distance to the sea 

can be regarded as an important criterion for discriminating herbaceous vegetation-covered wetlands and 

grasslands (Figure 5). The accuracies of the two land cover types displayed in Table 2 also demonstrate 

this point. This comparison noted that the spatial relationships of the segmented objects could be used 

to improve the classification accuracies. 

A comparison was also made between the proposed method and the PNNC method. In the latter method, 

the nearest-neighbor classifier replaced the decision tree algorithm, and the feature selection method was 

the feature space optimization function provided in eCognition. From Table 2, the overall accuracy of 

the PNNC method was 80.5%, which decreased by 6.8% compared with the proposed method. The 

classification results of irrigable land and roads using the PNNC method were slightly higher than those 

using the proposed method. However, for most of the land cover types, the proposed method obtained 

higher producer’s and user’s accuracies than the PNNC method. 

5. Conclusions 

An object-based classification scheme that integrates polarimetric decomposition and a decision tree 

algorithm was developed for land cover classification in coastal wetlands using fully polarimetric ALOS 

PALSAR data. The comparisons and analyses indicated that each component of the proposed method 

was highly important to the final classification results. 

Compared with the Wishart supervised classification, the proposed method achieved higher producer’s 

and user’s accuracies for almost all of the land cover types. Moreover, the overall accuracy of the proposed 

method improved by 20.7%. The polarimetric parameters derived from the different decompositions 

were helpful in LULC classifications in coastal wetland areas. The parameter Derd was very useful in 

separating paddy rice from dry land. Entropy, which is decomposed from the Cloude–Pottier method, 

played a key role in distinguishing the sea and fish ponds. VanZyl_Vol and Alpha could be used to reduce 

the confusion between grasslands and other land cover types. Object-based analysis was robust, even with 

noise in the data, and produced more realistic results than pixel-based methods. The comparison between 

the proposed method and PWOS method strongly proved the advantages of object-based segmentation 
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in classification of PolSAR data. Because the object-based analysis considered meaningful objects, it fully 

utilized statistical characteristics, textural features and geometric relationships. The comparison between 

the proposed method and PWTG method showed that the extracted geometric features greatly improved 

the classification performance. For instance, the shape index could differentiate rivers from fish ponds, 

both of which had the same return-scattering mechanism, but different shapes. The distance to the sea 

reduced the confusion between herbaceous vegetation-covered wetlands and grasslands. Although the 

PNNC method yielded satisfactory results with an overall accuracy of 80.5%, our analysis showed that 

the proposed method had the best performance. Moreover, the optimal features selection approach based 

on the QUEST algorithm was efficient, and the decision tree algorithm provided clear rules for implementing 

the LULC classification. 

Overall, the findings in this study demonstrated that various polarimetric parameters and the object-based 

approach significantly contribute to coastal LULC classification when using fully polarimetric ALOS 

PALSAR data. Future studies should include testing the applicability of the proposed method in other study 

areas, employing other novel classification algorithms and mining the potential of alternative-frequency 

PolSAR images (C- and P-bands) in LULC classification. 
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