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Abstract: A large number of vegetation indices have been developed and widely applied 
in terrestrial ecosystem research in the recent decades. However, a certain limitation was 
observed while applying these indices in research in dry areas due to their low sensitivity 
to low vegetation cover. In this context, the objectives of this study are to develop a new 
vegetation index, namely, the Generalized Difference Vegetation Index (GDVI), and to 
examine its applicability to the assessment of dryland environment. Based on the field 
investigation and crop Leaf Area Index (LAI) measurement, five spring and summer 
Landsat TM and ETM+ images in the frame with Path/Row number of 174/35, and 
MODIS (Moderate Resolution Imaging Spectroradiometer) LAI and vegetation indices 
(VIs) data (MOD15A2 and MOD13Q1), of the same acquisition dates as the Landsat 
images, were acquired and employed in this study. The results reveal that, despite the same 
level of correlation with the fractional vegetation cover (FVC) as other VIs, GDVI shows a 
better correlation with LAI and has higher sensitivity and dynamic range in the low vegetal 
land cover than other vegetation indices, e.g., the range of GDVI is higher than Normalized 
Difference Vegetation Index (NDVI),Soil-Adjusted Vegetation Index (SAVI), Enhanced 
Vegetation Index (EVI), Wide Dynamic Range Vegetation Index (WDRVI), and  
Soil-Adjusted and Atmospherically Resistant Vegetation Index (SARVI), by 164%–326% 
in woodland, 185%–720% in olive plantation, and 190%–867% in rangeland. It is, hence, 
concluded that GDVI is relevant for, and has great potential in, land characterization, as 
well as land degradation/desertification assessment in dryland environment. 
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1. Introduction 

Spectral vegetation indices (VIs) are mathematical combinations of different spectral bands, mostly in 
the visible and near infrared regions of the electromagnetic spectrum [1,2], and are optical measures of 
vegetation canopy greenness, a composite property of leaf chlorophyll, leaf area, canopy cover, and 
canopy architecture [3]. Since the development of the Simple Ratio Index (SR) [4–6] and the Normalized 
Difference Vegetation Index (NDVI) [1,7], a number of vegetation indices, such as the Transformed 
Vegetation Index (TVI) [8], Perpendicular Vegetation Index (PVI) [9], Weighted Difference Vegetation 
Index (WDVI) [10,11], Non-Linear Vegetation Index (NLI) [12]), Green Red Vegetation Index 
(GRVI) [13,14], and Wide Dynamic Range Vegetation Index (WDRVI) [15], have been proposed. In 
addition, a certain number of indices taking the atmospheric effects and/or soil influence into account, 
namely, the Global Environmental Monitoring Index (GEMI) [16], Soil-Adjusted Vegetation Index 
(SAVI) [17], Transformed SAVI (TSAVI) [18], Modified SAVI (MSAVI) [19], Optimized SAVI 
(OSAVI) [20], Generalized SAVI (GeSAVI) [21], Green SAVI (GSAVI) [22], Modified Non-Linear 
Vegetation Index (MNLI) [23], Atmospherically Resistant Vegetation Index (ARVI), and Soil-Adjusted 
and Atmospherically Resistant Vegetation Index (SARVI) [24], SARVI2 [25], and later renamed as the 
Enhanced Vegetation Index (EVI) [26], and its two-band version (EVI2) [3], Green Atmospherically 
Resistant Index (GARI) [27], Visible Atmospherically Resistant Index (VARI) [13], etc., have been 
developed; and those frequently applied are listed in Table 1. 

As well as these two-band and three-band indices, Kauth and Thomas [28], and Crist and  
Cicone [29,30], have developed the Tasseled Cap (TC) Transformation respectively for Landsat MSS 
(Multispectral Scanner System) and TM (Thematic Mapper) data. Recently, Huang et al. [31]  
have produced the TC coefficients for the ETM+ (Enhanced Thematic Mapper Plus) data. TC 
Transformation can provide different thematic information of land surface, namely, the Brightness 
(TCB), Greenness (TCG), and Wetness (TCW). The TCG is, in fact, an indicator of vegetation vigor or 
greenness, and was termed the Green Vegetation Index, a multiple linear spectral combination,  
e.g., four bands for MSS and six bands for TM and ETM+ data. 

In terms of their development rationale, all of these indices, either ratio-based (SR, NDVI, SAVI, 
OSAVI, MSAVI, ARVI, GRVI, EVI, EVI2, etc.) or in the form of linear combination (PVI, WDVI, 
TVI, and TCG), were formulated on the basis of the strong contrast in reflectance between the near 
infrared (NIR) and red (R) bands as vegetation has strong reflection of the incident radiation in  
NIR band while a strong absorption in R band [1,15]. Considering the limitation or shortcoming of the 
most frequently applied NDVI, e.g., its saturation in densely vegetated area and its sensitivity to 
atmospheric effects and soil influence [13,15,17,24–26,32], a number of improved variants, such as 
SAVI, OSAVI, ARVI, SARVI, EVI, EVI2, and MNLI, have been derived to avoid the mentioned 
limitation by introducing either an adjustment factor (e.g., L in SAVI, SARVI, EVI, MNLI, EVI2), 
based on the soil line information or the blue band to correct the aerosol effect (e.g., ARVI, SARVI, 
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and EVI) or both the blue band and L (e.g., SARVI and EVI) to reduce both soil influence and 
atmospheric effects. All these vegetation indices have been widely applied and contributing to the 
ecosystem research and characterization by remote sensing, e.g., land cover classification, biomass and 
net primary production (NPP) quantification, crop yield estimation, land degradation monitoring, soil 
mapping, vegetation-climate interaction assessment, etc. 

Table 1. Frequently applied vegetation indices developed in the past decades. 

Index Formula Full Name References
SR ேூோ/ோ Simple Ratio Index [4–6] 

NDVI ሺேூோ − ோሻ/ሺேூோ  ோሻ Normalized Difference 
Vegetation Index 

[1,7] 

PVI 
sin(α)(ேூோ) − cos(α)(ோ) 

α = the angle between the soil line and NIR axis 
Perpendicular  
Vegetation Index 

[9] 

TVI (NDVI + 0.5)1/2 Transformed Vegetation Index [8] 

WDVI 
ேூோ − ܽோ ܽ = the slope of the soil line 

Weighted Difference 
Vegetation Index 

[10,11] 

SAVI 
ሺ1  ሻሺேூோܮ − ோሻ/ሺேூோ  ோ   ሻܮ

Low vegetation, L = 1, intermediate, 0.5, and high 0.25 
Soil-Adjusted  
Vegetation Index 

[17] 

TSAVI 
ܽሺேூோ − ܽோ − ܾሻ/ሾሺܽேூோ  ோ − ܾܽ  ܺሺ1  ܽଶሻሿ 

a = slope of the soil line, b = soil line intercept, and  
X = adjustment factor to minimize soil noise 

Transformed Soil Adjusted 
Vegetation Index 

[18] 

OSAVI ሺேூோ − ோሻ/ሺேூோ  ோ  0.16ሻ Optimized Soil-Adjusted 
Vegetation Index 

[20] 

ARVI 
ሺேூோ − ோሻ/ሺேூோ  ோሻ 
ோ ൌ 	ோ	 −  × ሺோ −  ሻ 

	 ൌ 	1,  = reflectance of blue band 

Atmospherically Resistant 
Vegetation Index 

[24] 

SARVI 
ሺ1  ሻሺேூோܮ − ோሻ/ሺேூோ  ோ   ሻܮ

ோ is the same as that in ARVI,  
L is a correction factor similar to those of SAVI 

Soil Adjusted and 
Atmospherically Resistant 
Vegetation Index 

[24] 

SARVI2 
or EVI 

ܩ × ൫ሺேூோ − ோሻ/ሺேூோ  1ܥ × ோ − 2ܥ × 	    ሻ൯ܮ
	= reflectance of blue band,  

G = 2.5, C1 = 6, C2 =7.5 and L = 1 

Soil Adjusted and 
Atmospherically Resistant 
Vegetation Index 2 or 
Enhanced Vegetation Index 

[25,26] 

EVI2 
2.5ሺேூோ−ோሻ/ሺேூோ  2.4ோ   ሻܮ

L = 1 
Enhanced Vegetation  
Index 2 

[3] 

NLI ሺேூோଶ − ோሻ/ሺேூோଶ  ோሻ Non-Linear Vegetation Index [12] 

MNLI 
ሺ1  ሻሺேூோଶܮ − ோሻ/ሺேூோଶ  ோ   ሻܮ

L is a correction factor similar to those of SAVI 
Modified Non-linear 
Vegetation Index 

[23] 

VARI 
ሺீ − ோሻ/ሺீ  ோ − ሻ 

ீ= reflectance of the green band 
Visible Atmospherically 
Resistant Index 

[13] 

WDRVI 
ሺܽ × ேூோ − ோሻ/ሺܽ × ேூோ  ோሻ 

a = 0.05–1, usually, 0.1–0.2 
Wide Dynamic Range 
Vegetation Index 

[15] 

The main biophysical character of the dryland environment is its low vegetation cover (despite that 
it may be locally dense, e.g., in low-lying lands, riparian plains) due to aridity. According to the United 
Nations (UN) [33], the aridity index, the ratio of precipitation to potential evapotranspiration (denoted 
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as P/PET), of drylands, is between 0.05 and 0.65 (<550–600 mm of annual rainfall). Hence, such 
aridity (or water scarcity) affects food security, and, at the same time, makes land susceptible to 
degradation [33]. For this reason, a number of authors have conducted studies on monitoring of the 
vegetation condition and its change trend of and the impacts of anthropogenic activity on the 
vulnerable dryland environment either by using albedo [34,35] or by VIs, such as NDVI in 
combination with rainfall [36–40]. 

However, it was noted that even though some of these VIs have taken the soil and atmospheric 
influences into consideration, they are mostly sensitive to moderately and densely vegetated land 
cover, such as forests and croplands rather than to low vegetal drylands. Taking SAVI as an instance, 
Qi et al. [19] noted that, after introduction of the adjustment factor, L, the dynamic range of SAVI is 
reduced, which is not favorable for study in sparsely vegetated areas. In fact, not only SAVI, but also 
other indices, such as NDVI, EVI, and ARVI have low dynamic range in these areas. While 
conducting an assessment on the effectiveness of sand-control and land degradation in the Ordos 
Desert rangelands in China, using Landsat imagery, it came to the attention of the authors [40] that it 
was almost impossible to discern the subtle increase in greenness in the newly controlled areas  
(e.g., <4–5 years) based on the available vegetation indices due to their low dynamic range and 
insensitivity. Such insensitivity constitutes the limitation of these indices when applied to dryland 
research. Therefore, there is a need to develop another new vegetation index relevant for such low 
vegetation dryland environment. 

The main objectives of this paper are to propose a new vegetation index and investigate its 
relevance for, sensitivity to, and applicability in low vegetation land cover in arid and semi-arid 
environment. A test site, located in the northwest of Syria, was selected to demonstrate the 
development and evaluation of the new index. 

2. Materials and Methods 

2.1. Rationale 

While other authors use soil line information in the NIR−R space to derive vegetation  
indices [3,9–11,17,18,20,21,25,32], this paper attempts to generate a new index from the already 
popularized and frequently applied NDVI and SR. As Pinty and Verstraete [16] and Jackson and  
Huete [41] revealed, NDVI and SR can be converted from each other, that is, 

NDVI = (SR − 1)/(SR + 1) (1)

where SR = ߩேூோ/ߩோ ேூோߩ ,  and ߩோ are respectively reflectance of the NIR and R bands. Clearly,  
Equation (1) can be considered as a function of NDVI with respect to the variable SR, that is, any 
change in SR will lead to change in NDVI. However, for a given land cover, SR is fixed to certain 
extent and so is NDVI. If one wants to augment the value, i.e., the dynamic range of NDVI of the 
given land cover type, the only possibility is to increase SR through certain operation, e.g., power 
operation, in the form of SRn (n is an integer >0). A simple experiment using Landsat images reveals 
that through power operation (when n = 2, 3, and 4, for example), SRn is to a varying degree amplified 
depending on land cover types and power number n (see Table 2). This implies that power operation 
on SR can lead to an amplification of the dynamic range of the new derivatives of NDVI (Table 2, 
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when n > 1). To facilitate the description, we term the new derivatives of NDVI the Generalized 
Difference Vegetation Index (GDVI), and mathematically, Equation (1) can be, thus, generalized as: 

GDVI^n = (SRn − 1)/(SRn + 1) = (ேூோ − ோ)/( ேூோ  + ோ) (2)
where n is power, an integer of the values of 1, 2, 3, 4... n. The global dynamic range of GDVI is the 
same as NDVI, from −1 to 1; and, when n = 1, GDVI = NDVI. For facilitating the description, GDVI 
is denoted respectively GDVI^2, GDVI^3, and GDVI^4 when n = 2, 3, and 4. 

In order to understand the characteristics of the new index, GDVI was projected against its origin, 
NDVI, taking the same images from which Table 2 was derived, as an example. The projection is 
shown in Figure 1. Two features of GDVI can be easily observed: (1) amplification of the dynamic 
range in the low and moderate vegetation cover with respect to NDVI, e.g., for a typical low vegetal 
rangeland/desert, NDVI is 0.2 but GDVI^2, GDVI^3, and GDVI^4 are respectively about 0.38, 0.54, 
and 0.67, a clear increase in the dynamic range (h in Figure 1a, 1b and 1c); and (2) saturation of the 
high power GDVI in the densely vegetated areas, e.g., GDVI^3 and GDVI^4 get saturated, 
respectively, when NDVI is >0.65 and >0.5 (the S point in Figure 1b,c). 

Table 2. Atmospherically corrected and reflectance-based Simple Ratio Index (SR) and its 
derivatives (n > 1). 

N Wheat Forests Woodlands Olive Plantations Rangelands Bare Soil

SRn 

1 7.3547 3.5546 2.0720 1.4717 1.6564 1.3056 
2 52.9660 12.5400 4.2465 2.1771 2.7352 1.7012 
3 372.3832 43.7906 8.7200 3.2358 4.5014 2.2126 
4 2,805.4020 157.2514 18.0323 4.7398 7.4812 2.8942 

(SRn − 1)/ 
(SRn + 1) 

1 0.7606 0.5609 0.3490 0.1908 0.2471 0.1325 
2 0.9629 0.8523 0.6188 0.3705 0.4645 0.2596 
3 0.9946 0.9553 0.7942 0.5278 0.6365 0.3775 
4 0.9993 0.9874 0.8949 0.6516 0.7642 0.4864 

Figure 1. Characteristics of GDVI vs. NDVI ((a) GDVI^2 vs. NDVI, (b) GDVI^3 vs. 
NDVI and (c) GDVI^4 vs. NDVI). 

 

As Goel and Qin [12], Pinty and Verstraete [16], and Gong et al. [23] have explained, the 
relationships between different surface biophysical features often tend to be non-linear. Thus, the 
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objective of the non-linear operation is to linearize the relationships between the biophysical 
parameters [23]. However, the non-linear power operation in GDVI is not for such a linearization but 
for an enlargement of the contrast between the reflection in NIR (vegetation signal) and absorption in 
R bands. This is the reason that GDVI has a wider dynamic range in the low vegetation biome than 
NDVI and other ratio-based indices. 

2.2. Test Site 

To test and demonstrate the applicability and sensitivity of GDVI, an area located in northwestern 
Syria including a part of the governorates of Aleppo, Idleb, and Lattakia, covered by the Landsat 
frame/scene with Path/Row number 174/35 was selected (Figure 2). The landform in the test site is 
coastal slope and mountains with peak altitude of 1,500–1,710 m in the west, depression/valley in the 
middle (about 160–170 m in altitude), and plateau/plain with interspersed hills with an altitude range 
of 310–550 m (locally reaching 870 m) in the east. The area is dominated by Mediterranean climate 
with mean annual rainfall from 600 mm in the northwest to 200 mm in the southeast. The precipitation 
is mostly concentrated in winter and spring. These landscape and climatic characteristics constrain 
largely the diversity of land cover types and land use in agriculture, e.g., forest (mainly coniferous) and 
maquis (Mediterranean shrubland) in the mountainous chain, and on the slope, in the west, irrigated 
and rainfed croplands (wheat, barley, and vegetables) in spring, and irrigated cropland (e.g., cotton, 
maize, sesame, sunflower, watermelon) in summer in the valley and plateau, and rangeland/bare land 
in the low rainfall areas in the east. Permanent tree crops (mainly perennial olive tree crops, 
citrus/orchard including lemon, orange, fig, cherry, peach, and other fruit trees) are widely grown in 
rainfed areas crossing from the coastal slope to the depression/valley and then to the plateau in the 
east. The test site is one of the most important agricultural production areas in Syria, especially, known 
for its products of olive and wheat. 

2.3. Data 

Five spring and summer Landsat images, and MODIS LAI and EVI/NDVI including the reflectance 
of the B (blue), R, NIR, and MIR (middle infrared) bands corresponding to the acquisition dates of 
Landsat images were obtained and are listed in Table 3. 

MODIS LAI was produced based on vegetation index, such as NDVI, directional spectral 
reflectance and radiative transfer models proposed by Myneni et al. [42], Knyazikhin et al. [43], and 
Myneni et al. [44]. The LAI products of collections 3 and 4 (C003 and C004) were generally found to 
have an overestimate compared to in situ observations [45,46], but the C005 product seems much more 
realistic, especially, for coniferous forest [47]. Land use/cover data were obtained, based on four field 
investigations, in the spring of 2007, 2009, 2010, and 2011, in the test site. 

A limited number of LAI measurements, using AccuPAR Ceptometer (LP-80, Decagon Devices, 
Inc.) for wheat under supplemental irrigation and rainfed barley, were conducted in the campus of 
ICARDA (International Center for Agricultural Research in the Dry Areas), near Aleppo in Syria (see 
Figure 2 for location), during the peak growing period of wheat and barley from 10 to 15 April 2010, 
and from 21 to 31 March 2011. 
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Figure 2. Location of the test area. 

 

Table 3. Satellite data used in the study. 

Acquisition Date of Landsat Images MODIS Production Date (Including Day Of Year (DOY)) 

(Path/Row: 174/35, 30 m) 
LAI (C005) 

(MOD15A2, 8-day, 1,000 m) 
NDVI/EVI (C005) 

(MOD13Q1, 16-day, 250 m) 
27 March 2003 (ETM+) 22 March (81), and 29 March (89), 2003 81 (22 March), 97 (7 April) 

1 May 2007 (TM) 
23 April (113), 1 May (121)  

and 9 May (129), 2007 
113 (23 April), 129 (09 May) 

21 August 2007 (TM) 
13 August (225), 21 August (233),  

and 29 August (241), 2007 
225(13 August), 241 (29 August)

12 July 2010 (TM) 
4 July (185), 12 July (193),  

and 20 July (201), 2010 
193 (12 July) 

29 August 2010 (TM) 
21 August (233), 29 August (241),  

and 6 September (249), 2010 
241 (29 August) 

As experiment fields in the campus, cultivation of wheat, barley, and other crops, such as lentil, 
faba bean, oat, and coriander were interleaved from each other and often different from year to year for 
the same parcel of land due to rotation practices. The size of different cropland patches varies from  
0.1 to 3 ha depending on the slope and location. 

The AccuPAR readings were made in 12 plots (1 × 1 m2 in size) distributed, respectively, in  
two parcels of wheat land where crop performance was visually distinguished good (two plots), 
intermediate (two plots), and relatively poor (two plots) in each parcel (<2 ha in size). Another 12 plots 
were measured in two tracts of rainfed barley (for harvesting), based on the same sampling scheme as 
wheat (six plots for each tract). Some sporadic measurements (five plots in total) were also made in 
irrigated barley, which is not common in Syria. All these measurements were undertaken during  
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noon-time, from 11:00 am to 1:30 pm, while it was sunny (cloud-free) in the spring 2010, and repeated 
in wheat and rainfed barley lands in 2011, but in different locations due to crop rotation. 

It was noted that the maximum MODIS LAI of the ICARDA Campus dated 1 May 2007 was only 
1.07–1.1, much lower than the measured values, 2.6 for irrigated wheat, 5.4 and 1.9, respectively, for 
irrigated and rainfed barley. It was, hence, considered better to use the average values of the measured 
LAI of the irrigated wheat (2.01) and rainfed barley for harvesting (1.46) to represent these two 
croplands in spring images for this study. However, there were no field measurement for other biomes, 
such as forest, woodland, and rangeland. To use MODIS LAI for other biomes in the successive 
calibration is the only choice despite of its coarse resolution. 

2.4. Evaluation Procedure 

As Gitelson [15], Gong et al. [23] and Richardson et al. [48], have demonstrated, to test the 
reliability and the efficiency of a vegetation index, a common approach is to calibrate the index with 
LAI crossing different biomes to ascertain their relationship. 

Carlson and Ripley [49] reported that the scaled NDVI, i.e., (NDVI-NDVI0)/(NDVIS-NDVI0), where 
NDVI0 and NDVIS are, respectively, the NDVI values of bare soil and full vegetation cover (100%), is 
out of the influence of atmospheric effects. They recommended using its square to represent the 
fractional vegetation cover (FVC) for land surface studies. Gutman and Ignatov [50] proposed to use 
directly the scaled NDVI as FVC; and this was followed by Jiménez-Muñoz et al. [51], Zhang et al. [52], 
and Kallel et al. [53]. One of the advantages of FVC lies in its simplicity to be derived from satellite 
images, e.g., from NDVI [49,50,52], or from Spectral Mixing Analysis (SMA) [51], or from isoline 
parameterization in the NIR-R space [53]. 

Based on the above understanding, both LAI and FVC were used for evaluation of the relevance of 
GDVI. Moreover, Sirikul [54] found that the relation between the field measured LAI and MODIS 
NDVI/EVI is poor in semi-arid areas and broadleaf forest biomes. It will be interesting for us to 
examine the relationships between MODIS GDVI/NDVI/EVI with MODIS LAI for the observed 
biomes in the test area. The procedure to assess the relevance, sensitivity and applicability of GDVI is 
demonstrated as follows: 

2.4.1. Atmospheric Correction 

This correction was conducted for Landsat images using FLAASH (Fast Line-of-sight Atmospheric 
Analysis of Spectral Hypercubes) Model [55,56], which was developed based on the MODTRAN 
(MODerate resolution atmospheric TRANsmission) theory by the Air Force Research Laboratory, 
USA. This model can correct both additive and multiplicative atmospheric effects. The FLAASH 
reflectance of each band was rescaled to normal reflectance range from 0 to 1. 

2.4.2. Calculation of Different Vegetation Indices and FVC 

A number of vegetation indices namely NDVI, EVI, SAVI, OSAVI, SARVI, VARI, WDRVI, NLI, 
MNLI, and GDVI (n = 2, 3 and 4) were transformed from the multispectral bands. As Wu et al. [57] 
noted, most of the pixel values of VARI and WDRVI (e.g., a = 0.1 and 0.2) were negative in woodland 
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and rangeland. Similarly, it was found that not only VARI and WDRVI, but also NLI and MNLI  
(L = 0.5 for intermediate vegetation cover in semi-arid areas) have negative values in almost all 
biomes except for wheat cropland. For this reason, only the Landsat image dated 1 May 2007, was 
used to derive these indices for comparison. 

FVC [50–53] was also derived from the NDVI of Landsat image, dated 1 May 2007, after fixing the 
values of NDVI0 (=0.11) and NDVIS (=0.96). 

For MODIS LAI (eight-day interval), taking that of 1 May 2007 as an instance, three dates of LAI, 
DOY (Day of Year) 113 (24 April), 121 (1 May) and 129 (9 May), were combined to compose a  
multi-band image. Then, a multi-band maximization algorithm [57] was applied to get the maximum 
value of each pixel from the three LAI images in order to have a cloud-free or cloud influence 
minimized LAI image. 

For MODIS NDVI/EVI (16-day interval), only two dates (113 and 129) of data were available for  
1 May. After combination, the same procedure as for MODIS LAI was followed to derive the  
cloud-free NDVI, EVI data for 1 May (121). 

Apart from these two indices, the cloud-free GDVI^2 was also produced from the NIR and R 
reflectance bands of the same dataset as NDVI and EVI (MOD13Q1). 

2.4.3. Selection of Sampling Areas 

Based on the field investigation, the identified land cover types are forest, maquis (Mediterranean 
shrubland), woodland, spring croplands (irrigated wheat, rainfed barley for harvesting, rainfed barley 
for grazing), summer irrigated croplands (maize, cotton, and water melon), residue of spring crop after 
harvesting, permanent tree croplands (citrus, orchard, and olive plantation), rangelands, stone 
pits/mining sites, fallow, and bareland. Sampling areas in the form of polygons were first randomly 
defined in each land cover class in the color composites of Landsat images in making reference to the 
ground observation and Google Earth. They were defined as many as possible for each biome in order 
to have enough spatial representativeness, e.g., >3%–5% of the whole land cover class. Then, these 
polygons were adjusted and reshaped against MODIS LAI to avoid mixed and bad pixels 
(underestimation or no data) in MODIS LAI data. The adjusted polygons were considered as the 
sampling areas for the Landsat-MODIS image pair. The location of the polygons of the same biome 
may be slightly different from image pair to image pair due to the difference in acquisition dates, land 
use change (between spring and summer, and among different years), and due to mixed or bad pixels 
in MODIS LAI data. More concretely, each Landsat-MODIS pair has its own sampling areas for each 
land cover class. 

The sampling areas take up about 3.6% on average in each biome class. The location and pixel 
number of the sampling areas before resizing (see next section) are shown in Figure 3 and Table 4 
taking the image pair of 1 May 2007, as an example. 

2.4.4. Calculation of the Mean Values and the Random Point Values of Different VIs in the  
Sampling Areas 

In order to have more comparability between Landsat and MODIS data, a pixel resizing from 30 m 
to 250 m for Landsat VIs and from 1,000 m to 250 m for MODIS LAI was conducted using nearest 
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neighbor resampling. After importation of these images into ArcGIS, 890 random points were 
generated in the defined polygons in which samples were assigned to each land cover type, based on 
its importance in the test site (see Table 4); and the point values and biome mean values of all VIs 
including GDVI derived from different Landsat images and cloud-free LAI, NDVI, GDVI, and EVI 
from MODIS data were calculated for each land cover class, namely forest, maquis, woodland, 
rangeland, rainfed barley for grazing, and bare soil for the spring image pairs. In the summer image 
pairs, irrigated crops (cotton, watermelon, and sunflower) and spring crop residue left after harvesting 
were included, instead of wheat, rainfed barley for harvesting and grazing. 

Figure 3. Distribution of the sampling areas taking the Landsat-MODIS image pair of  
1 May 2007 as an example. 

 

The mean FVC of 1 May 2007 was calculated for all biomes without pixel resizing as it will be 
directly calibrated with the VIs from the same Landsat images. 
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Table 4. Sampling areas before pixel resizing and random sample number in each land 
cover type taking the Landsat-MODIS pair of 1 May 2007 as an example. 

Land Cover Types 
Sampling Areas (in Pixels) 

Randomly 
Sampling No

Landsat TM/ETM+ 
(30 m) 

MOD15A2 LAI 
(1,000 m) 

MOD13Q1 NDVI/EVI 
(250 m) 

Forest 89,355 94 1,507 100 
Maquis 54,410 75 918 50 
Woodland 32,562 50 549 50 
Olive 156,904 230 2,563 100 
White Soil Olive 7,203 13 121 50 
Citrus/Orchard 60,826 87 1,174 100 
Irrigated Wheat 161,627 230 2,726 100 
Barley for Harvesting 128,500 178 2,167 100 
Barley for Grazing 24,979 34 421 50 
Rangeland 80,799 63 1,163 100 
Stone Mining 793 1 13 10 
Grasslands 5,500 8 93 30 
Bare Soil 71,078 94 1,199 50 

2.4.5. Calibration 

Landsat VIs vs. MODIS LAI: The studies conducted by Myneni et al. [42], Richardson et al. [48], 
Price and Bausch [58], and Gitelson et al. [59] revealed allometric relations between LAI and other 
vegetation indices, such as NDVI and WDRVI, which can be calibrated by either logarithmic or 
exponential or polynomial function. To compare the results, this calibration was conducted in  
two ways: (1) Random samples of LAI (from MODIS LAI without integration of field measured LAI) 
were linked with their corresponding VIs across all different land cover types; (2) the mean LAI values 
of different land cover were coupled with the mean VIs (using the measured mean LAI for wheat and 
rainfed barley). Both calibrations were conducted by simple linear regression model (least-square) at 
the confidence level of 95% after the conversion of LAI into different variants such as ln(LAI)  
and exp(LAI). 

Landsat VIs vs. Landsat FVC: The mean VIs and GDVI of Landsat images dated 1 May 2007 
were also coupled with the mean FVC and its exponential and logarithmic variants across all land 
cover types to check whether GDVI is better correlated with FVC than other indices. 

MODIS VIs vs. MODIS LAI: The mean MODIS NDVI, EVI, and GDVI^2 were linked to the 
mean LAI from MOD15A2 across different land cover to check whether GDVI has better correlation 
with LAI than that of NDVI and EVI. 

2.4.6. Sensitivity Analysis 

Gitelson [15] has evaluated the sensitivity of WDRVI vs. NDVI. By following his approach, the 
sensitivity of the new vegetation index, GDVI, against other referenced VI can be quantitatively 
analyzed using the following expression: 

Sr(GDVI) = [d(GDVI)/d(VI)]×[∆(GDVI)/∆(VI)]−1 (3)
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where Sr(GDVI) is the relative sensitivity of GDVI vs. the referenced VI (such as NDVI, EVI,  
SAVI and SARVI); d(GDVI)/d(VI) are the first derivative of GDVI with respect to VI or the 
infinitesimal change in GDVI corresponding to that of VI; and ∆(GDVI) = GDVImax − GDVImin and 
∆(VI) = VImax − VImin are the ranges of GDVI and VI, i.e., the difference between the maximum and 
minimum GDVI and VI values of the same land cover observed in the image. In operation, d(GDVI) 
and d(VI), the tiny change in GDVI and VI can be obtained by measuring the GDVI and VI in the 
adjacent pixels, which have very tiny differences in values in the same land cover type. 

According to Gitelson [15], if Sr > 1, the observed index, in our case, GDVI, is more sensitive than 
the referenced VI; if Sr = 1, they have the same sensitivity; and if Sr < 1, GDVI is less sensitive than 
the referenced VI. 

3. Results and Discussions 

Following the above procedures, the most relevant relationships either in logarithmic or exponential 
function between vegetation indices and LAI of the observed five pairs of images were established. It 
was noted that logarithmic functions, i.e., VI−ln(LAI), have much higher correlation coefficients than 
those of exponential ones; so the former are listed in Tables 5 and 6. Those of the image pairs of  
12 July 2010 and 1 May 2007 are presented in Figures 4 and 5; and the values of vegetation indices of 
some typical dryland biomes are presented in Table 7. 

Table 5. Calibrated logarithmic relationships between vegetation indices (VIs) and Leaf 
Area Index (LAI) from 890 random samples across all land cover types taking the image 
pair of 1 May 2007 as an example. 

Logarithmic Function Estimation Error Multiple R2 
GDVI^2 = 0.251ln(LAI) + 0.639 ±0.113 0.793 
GDVI^3 = 0.228ln(LAI) + 0.764 ±0.110 0.769 
GDVI^4 = 0.188ln(LAI) + 0.836 ±0.101 0.729 
NDVI = 0.242ln(LAI) + 0.514 ±0.119 0.762 
SAVI = 0.094ln(LAI) + 0.212 ±0.064 0.626 
SARVI = 0.151ln(LAI) + 0.213 ±0.079 0.739 
OSAVI = 0.132ln(LAI) + 0.276 ±0.070 0.734 
MNLI = 0.095ln(LAI) − 0.071 ±0.053 0.711 
EVI = 0.183ln(LAI) + 0.352 ±0.115 0.660 
WDRVI = 0.217ln(LAI) − 0.32 ±0.119 0.721 

Table 6. Calibrated biome mean-based logarithmic relationships between the vegetation 
indices and LAI. 

Image Date Logarithmic Function Multiple R2 

27 March 2003 

NDVI = 0.2146ln(LAI) + 0.4448 0.7426 
GDVI^2 = 0.2431ln(LAI) + 0.6941 0.7881 
GDVI^3 = 0.1965ln(LAI) + 0.82 0.7600 
GDVI^4 = 0.1438ln(LAI) + 0.8878 0.7036 
EVI = 0.1912ln(LAI) + 0.3885 0.5178 
SAVI = 0.1083ln(LAI) + 0.2732 0.4915 
SARVI = 0.1915ln(LAI) + 0.2919 0.6642 
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Table 6. Cont. 

Image Date Logarithmic Function Multiple R2 

1 May 2007 

NDVI = 0.1784ln(LAI) + 0.4071 0.8729 
GDVI^2 = 0.2346ln(LAI) + 0.6457 0.8830 
GDVI^3 = 0.2209ln(LAI) + 0.7687 0.8572 
GDVI^4 = 0.1873ln(LAI) + 0.8375 0.8199 
EVI = 0.1492ln(LAI) + 0.3528 0.7410 
SAVI = 0.0935ln(LAI) + 0.2514 0.7302 
SARVI = 0.1623ln(LAI) + 0.2574 0.8521 

21 August 2007 

NDVI = 0.1939ln(LAI) + 0.4185 0.9307 
GDVI^2 = 0.2737ln(LAI) + 0.6587 0.9547 
GDVI^3 = 0.2812ln(LAI)+ 0.7768 0.9432 
GDVI^4 = 0.2619ln(LAI) + 0.8404 0.9135 
EVI = 0.1729ln(LAI) + 0.374 0.7707 
SAVI = 0.1118ln(LAI) + 0.2627 0.8000 
SARVI = 0.1865ln(LAI) + 0.2729 0.8938 

12 July 2010 

NDVI = 0.1648ln(LAI) + 0.3878 0.8702 
GDVI^2 = 0.2274ln(LAI) + 0.6166 0.8758 
GDVI^3 = 0.2261ln(LAI) + 0.7356 0.8591 
GDVI^4 = 0.2013ln(LAI) + 0.8048 0.8334 
EVI = 0.146ln(LAI) + 0.3541 0.6227 
SAVI = 0.0967ln(LAI) + 0.2579 0.6405 
SARVI = 0.1595ln(LAI) + 0.2435 0.7598 

29 August 2010 

NDVI = 0.1761ln(LAI) + 0.3955 0.8983 
GDVI^2 = 0.248ln(LAI) + 0.6268 0.9319 
GDVI^3 = 0.2538ln(LAI) + 0.7454 0.9255 
GDVI^4 = 0.2338ln(LAI) + 0.8105 0.8921 
EVI = 0.1527ln(LAI) + 0.3459 0.7365 
SAVI = 0.0989ln(LAI) + 0.2469 0.7568 
SARVI = 0.1698ln(LAI) + 0.2461 0.8656 

Table 7. Values of vegetation indices of some typical biomes (Landsat image dated  
1 May 2007). 

VIs Forest Woodland Citrus Wheat Barley Olives Grassland Range-Land Bare Land
GDVI^2 0.815 0.745 0.819 0.916 0.721 0.398 0.674 0.366 0.257 
GDVI^3 0.933 0.890 0.930 0.975 0.865 0.550 0.838 0.511 0.375 
GDVI^4 0.976 0.953 0.971 0.991 0.933 0.670 0.922 0.624 0.480 
NDVI 0.522 0.453 0.536 0.678 0.440 0.212 0.390 0.193 0.131 
EVI 0.399 0.353 0.512 0.674 0.349 0.145 0.337 0.169 0.120 

SAVI 0.267 0.254 0.341 0.457 0.268 0.120 0.246 0.134 0.109 
SARVI 0.350 0.292 0.395 0.521 0.273 0.093 0.255 0.072 −0.023 
OSAVI 0.322 0.295 0.373 0.487 0.300 0.138 0.271 0.141 0.104 

NLI −0.227 −0.262 −0.025 0.282 −0.214 −0.557 −0.266 −0.434 −0.370 
MNLI −0.041 −0.060 −0.006 0.094 −0.058 −0.143 −0.080 −0.175 −0.208 

WDRVI 
(a = 0.20) −0.216 −0.302 −0.191 0.042 −0.307 −0.526 −0.372 −0.541 −0.587 
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Figure 4. Logarithmic relationships between vegetation indices and LAI (image pair dated 
12 July 2010). 

 

Figure 5. Logarithmic relationships between vegetation indices and LAI (image pair dated 
1 May 2007. (a) GDVI vs. LAI, (b) VIs with positive range vs. LAI, and (c) VIs with 
negative range vs. LAI). 
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Figure 5. Cont. 

 

3.1. GDVI vs. LAI 

3.1.1. Advantages 

Better correlation with LAI than other indices: It is evident that both random point-based (Table 5) 
and biome mean-based (Table 6, Figures 4 and 5) calibrations illustrate that GDVI^2 is better 
correlated with LAI than any other index, such as NDVI, EVI, SAVI, OSAVI, SARVI, NLI, MNLI, 
and WDRVI across all land cover types. GDVI^3 and GDVI^4 are more or less at the same level as 
NDVI and SARVI, depending on images. Moreover, the correlation with LAI resulted from biome 
mean-based calibration (1 May 2007, in Table 6) is higher than that from random point-based 
calibration (Table 5), probably resulting from the sample mixing among different biomes in the latter 
while modeling was conducted. 

As mentioned earlier, despite of the consideration of the “non-linear” factor in WDRVI  
(i.e., ܽ × ேூோ), NLI and MNLI (i.e., square of ேூோ), their values in most dryland biomes are negative 
(Figure 5c and Table 7). These indices are more applicable to study of densely vegetated areas, for 
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example, forests and croplands, rather than dryland areas, as one may not be used to seeing all negative 
values of a vegetation index crossing all land cover types. 

Amplification of the dynamic range: As already discerned in Section 2.1, this advantage of GDVI, 
i.e., amplification of the dynamic range in the low vegetated areas is obvious. As revealed in Table 7, 
the values of GDVI are magnified respectively by 164%–326%, 185%–720%, 190%–867%, and 
196%–2,088% for the biomes namely woodland, olive plantation, rangeland, and bareland, in 
comparison with NDVI, SAVI, EVI, SARVI, NLI, MNLI, and WDRVI. This implies that GDVI gains 
more dynamic range for low vegetal biomes than other vegetation indices. 

3.1.2. Sensitivity 

Based on the measurements, such as tiny change, maximum, and minimum values of VIs and GDVI 
in the image dated 1 May 2007, the relative sensitivity of GDVI vs. other VIs across different biomes 
were calculated and are presented in Figure 6. 

Figure 6. Sensitivity of GDVI vs. other vegetation indices for different biomes (image 
dated 1 May 2007. (a) GDVI^2 vs. VIs, (b) GDVI^3 vs. VIs, and (c) GDVI^4 vs. VIs).  
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Figure 6. Cont. 

 

It is easily seen in Figure 6 that, for the biomes wheat and forest, the relative sensitivity, Sr(GDVI), 
with respect to other vegetation indices is <1, implying that all power GDVI is less sensitive than other 
vegetation indices in the densely vegetated biomes. For rainfed barley, GDVI^2 has more or less 
similar sensitivity to others (Figure 6a). However, for the biomes rangeland, bareland, and olive 
groves, Sr(GDVI) > 1, indicating that GDVI has higher sensitivity than other vegetation indices in the 
sparsely vegetated areas. 

3.2. GDVI vs. FVC 

Together with other vegetation indices, GDVI was checked against FVC across all land cover types, 
and the results are listed in Table 8. 

It is seen that, among the VI-FVC relationships, GDVI^2 is at the same level of correlation as 
NDVI, SARVI, EVI, WDRVI, among which, OSAVI is the best. As for VI-ln(FVC), GDVI^2 is the 
same as NDVI but GDVI^4 is the best. Among the VI-exp(FVC) functions, WDRVI, show better 
correlation than GDVI. 
 

Table 8. Pearson correlation coefficients (R2) between VIs/Generalized Difference 
Vegetation Index (GDVI) and fractional vegetation cover (FVC) from Landsat imagery 
dated 1 May 2007. 

SARVI SAVI OSAVI EVI NLI MNLI NDVI WDRVI GDVI^2 GDVI^3 GDVI^4
FVC 0.9663 0.9120 0.9821 0.9428 0.8172 0.9526 0.9683 0.9781 0.9683 0.9044 0.8336 

ln(FVC) 0.7674 0.6496 0.7465 0.6626 0.4543 0.7500 0.8761 0.6773 0.8761 0.9332 0.9624 
exp(FVC) 0.9624 0.9370 0.9841 0.9663 0.8686 0.9624 0.9197 0.9980 0.9197 0.8336 0.7534 

3.3. MODIS GDVI vs. MODIS LAI 

The evaluation of MODIS GDVI, EVI and NDVI vs. MODIS LAI (without integration of the field 
measurement), taking again the cloud-free MODIS data of 1 May 2007 as an example, reveals that all 
three vegetation indices are well correlated with the logarithmic variant of MODIS LAI if all observed 
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land cover types are taken into account; and NDVI is the best one followed by GDVI^2 (Figure 7). 
MODIS NDVI and EVI are poorly correlated with the field measured LAI [53], but MODIS GDVI, 
NDVI, and EVI are highly correlated with MODIS LAI, especially NDVI and GDVI. 

Figure 7. Relationships between MODIS Normalized Difference Vegetation Index 
(NDVI), Enhanced Vegetation Index (EVI) and GDVI and MODIS LAI (1 May 2007). 

 

3.4. Discussion on Limitation and Problems Encountered 

Despite of the advantages, the limitation of GDVI is also clear. Apart from the saturation, as raised 
in Section 2.1 and Table 7, GDVI has low sensitivity in the densely vegetated biomes, e.g., forest, 
maquis, irrigated croplands (e.g., wheat), as shown in Figure 6. The applicability of GDVI of different 
power is summarized in Table 9. 

Problems were encountered in this study. Due to limited field measurements, MODIS LAI data 
have to be used for the non-measured biomes. As concerned by some authors [45–47,53], the quality 
of MODIS LAI eight-day product relies heavily on the weather condition in subtropical areas; 
especially, it is difficult to have completely cloud-free condition during the crop-growing period in 
spring. For this reason, underestimation may arise. Another factor influences the quality of MODIS 
LAI data lies in, perhaps, its biome mapping [44]. If a higher-resolution biome map is available, we 
believe that more relevant MODIS LAI product will be made available. In this study, the multi-date 
LAI maximization procedure can minimize, more or less, the problem related to cloud cover or bad 
pixels but cannot remove that resulted from biome mapping. Another shortcoming of MODIS LAI for 
such calibration is its coarse resolution. Clearly, it is not ideal to match VIs of 30 m resolution to LAI 
of 1,000 m resolution. Both degradation of 30 m VIs to 1000 m resolution and upgrading of 1000 m 
LAI to 30 m resolution will lead to either a loss or an unrealistic improvement in quality of the data. A 
feasible compromise is to degrade 30 m data to 250 m, and to upgrade 1,000 m LAI to 250 m as done 
in this study. It is worthy of mentioning that, for such study involving multi-resolution and  
multi-source data, selection of a reasonable resampling approach is also important. It is known that 

GDVI^2 = 0.2345ln(LAI) + 0.7283
R² = 0.9357

NDVI = 0.2591ln(LAI) + 0.4928
R² = 0.9853

EVI = 0.1827ln(LAI) + 0.3283
R² = 0.8268
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both bilinear and cubic convolution resampling will change the original value of pixel due to an 
averaging of the observed pixel with its adjacent pixels. Thus, the best choice is to use the nearest 
neighbor resampling, in which the original values of pixels can be kept after pixel resizing. 

Table 9. Applicability of GDVI. 

GDVI 
Land Cover Types 

Forest/ 
Maquis 

Irrigated  
Cropland 

Wood-Lands
Citrus/ 

Orchard 
Rainfed  

Cropland 
Olive  

Plantation
Rangeland Desert

Bare 
Land

GDVI^2 Partly, Yes Partly, Yes Yes Yes Yes Yes Yes Yes Yes 
GDVI^3 No No Yes Yes Yes Yes Yes Yes Yes 
GDVI^4 No No Partly, Yes Partly, Yes Partly, Yes Yes Yes Yes Yes 

Moreover, limited field measurements do not allow us to assess whether field LAI is better than 
MODIS LAI for such calibration. The equations in Table 5 were obtained from 890 random samples 
but their correlation is lower than that of biome mean-based equations presented in Table 6, which are 
a result of the mixed LAI (field measured ones were used for wheat and rainfed barley while MODIS 
LAI for other land cover types). With the increase of the field measurement, field LAI-based 
calibration will be made possible. This can be a follow-up topic of research in the future. 

FVC is a choice for calibration. As it is derived directly from NDVI and has a good linear 
correlation with most of the vegetation indices; and GDVI shows a better correlation with it only in 
logarithmic function. 

4. Conclusions 

This paper presented the development of the new vegetation index, GDVI, and explored its 
relevance for and applicability in dryland ecosystem research. Although more additional work, e.g., 
calibration and verification with more field measurements in different areas, is still needed, based on 
the conducted random sample-based and biome mean-based calibrations, we can already see that the 
proposed index has its uniqueness different from and advantages over other vegetation indices, i.e., 
higher sensitivity and dynamic range in the low vegetal biomes in spite of its disadvantage and 
limitation (e.g., low sensitivity and saturation) in densely vegetated areas. Additionally, GDVI^2 
seems able to catch better LAI than other VIs across different land cover types. Broadly speaking, 
GDVI^2 is mainly operational for land characterization in dryland biomes but, if applied to forest, 
shrubland, and cropland studies, care has to be taken due to its low sensitivity to these biomes. The 
higher power GDVI (n = 3, 4) is only applicable in sparsely vegetated areas, e.g., for monitoring land 
degradation and desertification in dryland ecosystems. After an extensive validation, GDVI can serve 
as a complement of the other vegetation indices for research in the dry areas. In the future, it is also 
possible to integrate GDVI into MODIS products and serve for dryland system research. 

In this study, atmospheric effects have been considered in image preprocessing; however, soil 
influence has not been yet. As well as calibration in different dry areas, future work should take this 
correction into account as either done by Wang et al. [60] by applying the FFT (Fast Fourier Transform) 
to remove the background noise, or by Huete [17], Rondeaux et al. [20], and Gong et al. [23], by using 
a self-correction factor in different magnitude adapted to the power of GDVI. 
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