Multi-Sensor Imaging and Space-Ground Cross-Validation for 2010 Flood along Indus River, Pakistan
Abstract
:1. Introduction
2. Datasets and Methodology
2.1. Multispectral Data for Flood Extent Mapping
2.2. Radar Remote Sensing for Flood Monitoring
2.3. Microwave Remote Sensing for Flood Detection
3. Results
3.1. MODIS and ASAR for Inundation Mapping
3.2. Passive Microwave Satellite Based Discharge Estimation
3.3. Satellite Precipitation Estimates
4. Conclusion and Future Work
- (1)
- To delineate the extent of the 2010 flood along the Indus River, the MODIS sensor data is used, based on the advantage of frequent revisits and large areal coverage. Moreover, the all-weather and all-time capability of higher resolution imagery from the ASAR is utilized to detect floods over the lower Indus river basin. This binary approach to flood prediction will be very useful to providing simple flood vs. no flood estimates to any basin where in-situ observations are scarce.
- (2)
- Satellite based surface water change signal is supplemented with the sparse gauge runoff observations to observe the evolution of the 2010 flood throughout the Indus River. Moreover, long-term, consistent, and sustained observation of discharge observation from selected gauge stations are used to cross-validate the AMSR-E based flood signals. It is concluded that the passive microwave sensor was able to detect flood (M/C signal) and corresponds very well with gauge discharge data (CC 0.7–0.8). There are ongoing efforts to assimilate this river discharge signal with other satellite data into hydrologic models for flood monitoring in ungauged basins [6,7]. These studies revealed that microwave sensors can be used to evaluate distributed hydrological models for predicting floods in ungauged basins. The attractive feature of this approach is that it can reduce the dependency on gauged runoff and precipitation data to calibrate hydrologic models. Moreover, models are typically calibrated at point locations in the watershed; in contrast, the geo-spatio-temporal passive microwave data allows monitoring of the watershed at every pixel throughout the river reach.
- (3)
- Remote sensing precipitation estimates are uniquely suited to provide timely and uniform information during the monsoon season that are needed to evaluate flood hazards triggered by intense precipitation over upper Indus basin. The 2010 Monsoon that occurred over the northeastern region of the Indus river basin is captured by the TMPA’s latest version products. The overall precipitation pattern and intensity during the monsoon season was captured by the latest satellite precipitation estimates. It is anticipated that the planned successor mission to TRMM, the Global Precipitation Mission (GPM) is designed to improve measurement of light rainfall, and snowfall through improved radiometric capacities.
- (4)
- The study has further demonstrated that the capability to detect ongoing flooding situations in its upper reaches can be valuable for spatially distributed flood monitoring and even prediction in the lower reaches of the Indus river basin. This is particularly practical and imperative in providing major improvements to river flow forecasts downstream in Pakistan, a region with limited availability of ground based rain gauges and river discharge measurements.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Pelling, M.; Maskrev, A.; Ruiz, P.; Hall, L. Reducing Disaster Risk: A Challenge for Development. In UNDP Global Report; United Nations Development Program: New York, NY, USA, 2004. [Google Scholar]
- Brakenridge, G.R.; Nghiem, S.V.; Anderson, E.; Mic, R. Orbital microwave measurement of river discharge and ice status. Water Resour. Res 2007, 43. [Google Scholar] [CrossRef]
- Schumann, G.; Bates, P.; Horritt, M.; Matgen, P.; Pappenberger, F. Progress in integration of remote sensing-derived flood extent and stage data and hydraulic models. Rev. Geophys 2009, 47. [Google Scholar] [CrossRef]
- Hirpa, F.A.; Hopson, T.M.; de Groeve, T.; Brakenridge, G.R.; Gebremichael, M.; Restrepo, P.J. Upstream satellite remote sensing for river discharge forecasting: Application to major rivers in south Asia. Remote Sens. Environ 2013, 131, 140–151. [Google Scholar]
- Zhang, Y.; Hong, Y.; Wang, X.; Gourley, J.J.; Gao, J.; Vergara, H.J.; Yong, B. Assimilation of passive microwave streamflow signals for improving flood forecasting: A first study in Cubango river basin, Africa. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens 2013, 6, 2375–2390. [Google Scholar]
- Khan, S.I.; Hong, Y.; Vergara, H.J.; Gourley, J.J.; Brakenridge, G.; de Groeve, T.; Flamig, Z.L.; Policelli, F.; Yong, B. Microwave satellite data for hydrologic modeling in ungauged basins. IEEE Geosci. Remote Sens. Lett 2012, 9, 663–667. [Google Scholar]
- Robert Brakenridge, G.; Cohen, S.; Kettner, A.J.; de Groeve, T.; Nghiem, S.V.; Syvitski, J.P.M.; Fekete, B.M. Calibration of satellite measurements of river discharge using a global hydrology model. J. Hydrol 2012, 475, 123–136. [Google Scholar]
- Khan, S.I.; Hong, Y.; Wang, J.; Yilmaz, K.K.; Gourley, J.J.; Adler, R.F.; Brakenridge, G.R.; Policelli, F.; Habib, S.; Irwin, D. Satellite remote sensing and hydrologic modeling for flood inundation mapping in lake victoria basin: Implications for hydrologic prediction in ungauged basins. IEEE Trans. Geosci. Remote Sens 2011, 49, 85–95. [Google Scholar]
- Huang, C.; Chen, Y.; Wu, J. Mapping spatio-temporal flood inundation dynamics at large river basin scale using time-series flow data and modis imagery. Int. J. Appl. Earth Observ. Geoinf 2014, 26, 350–362. [Google Scholar]
- Blasco, F.; Bellan, M.F.; Chaudhury, M.U. Estimating the extent of floods in Bangladesh using spot data. Remote Sens. Environ 1992, 39, 167–178. [Google Scholar]
- Byun, Y. A texture-based fusion scheme to integrate high-resolution satellite SAR and optical images. Remote Sens. Lett 2014. [Google Scholar] [CrossRef]
- Li, P.; Xu, H.; Guo, J. Urban building damage detection from very high resolution imagery using OCSVM and spatial features. Int. J. Remote Sens 2010, 31, 3393–3409. [Google Scholar]
- Brakenridge, R. MODIS-Based Flood Detection, Mapping and Measurement: The Potential for Operational Hydrological Applications. In Transboundary Floods: Reducing Risks through Flood Management; Springer Verlag: Houten, The Netherlands, 2006; Volume 1, pp. 1–12. [Google Scholar]
- Jensen, J. Introductory Digital Image Processing: A Remote Sensing Perspective; Prentice Hall: Upper Saddle River, NJ, USA, 2005. [Google Scholar]
- Di Baldassarre, G.; Schumann, G.; Bates, P.D. A technique for the calibration of hydraulic models using uncertain satellite observations of flood extent. J. Hydrol 2009, 367, 276–282. [Google Scholar]
- Horritt, M.S.; Di Baldassarre, G.; Bates, P.D.; Brath, A. Comparing the performance of a 2-D finite element and a 2-D finite volume model of floodplain inundation using airborne SAR imagery. Hydrol. Process 2007, 21, 2745–2759. [Google Scholar]
- Schumann, G.; Hostache, R.; Puech, C.; Hoffmann, L.; Matgen, P.; Pappenberger, F.; Pfister, L. High-resolution 3-D flood information from radar imagery for flood hazard management. IEEE Trans. Geosci. Remote Sens 2007, 45, 1715–1725. [Google Scholar]
- Bartsch, A.; Doubkova, M.; Pathe, C.; Sabel, D.; Wagner, W.; Wolski, P. River Flow & Wetland Monitoring with Envisat ASAR Global Mode in the Okavango Basin and Delta. Proceedings of the Second IASTED African Conference Water Resource Management (AfricaWRM 2008), Gaborone, Botswana, 8–10 September 2008; pp. 8–10.
- Matgen, P.; Hostache, R.; Schumann, G.; Pfister, L.; Hoffmann, L.; Savenije, H.H.G. Towards an automated sar-based flood monitoring system: Lessons learned from two case studies. Phys. Chem. Earth Parts A/B/C 2011, 36, 241–252. [Google Scholar]
- Schumann, G.; di Baldassarre, G.; Bates, P.D. The utility of spaceborne radar to render flood inundation maps based on multialgorithm ensembles. IEEE Trans. Geosci. Remote Sens 2009, 47, 2801–2807. [Google Scholar]
- Gstaiger, V.; Huth, J.; Gebhardt, S.; Wehrmann, T.; Kuenzer, C. Multi-sensoral and automated derivation of inundated areas using TerraSAR-X and Envisat ASAR data. Int. J. Remote Sens 2012, 33, 7291–7304. [Google Scholar]
- Kuenzer, C.; Guo, H.; Huth, J.; Leinenkugel, P.; Li, X.; Dech, S. Flood mapping and flood dynamics of the Mekong delta: Envisat-ASAR-WSM based time series analyses. Remote Sens 2013, 5, 687–715. [Google Scholar]
- De Groeve, T. Flood monitoring and mapping using passive microwave remote sensing in Namibia. Geomat. Nat. Hazards Risk 2010, 1, 19–35. [Google Scholar]
- Kugler, Z.; de Groeve, T. The Global Flood Detection System; Office for Official Publications of the European Communities: Ispra, Italy, 2007. [Google Scholar]
- Behrangi, A.; Imam, B.; Hsu, K.; Sorooshian, S.; Bellerby, T.J.; Huffman, G.J. Refame: Rain estimation using forward-adjusted advection of microwave estimates. J. Hydrometeorol 2010, 11, 1305–1321. [Google Scholar]
- Hsu, K.-L.; Gao, X.; Sorooshian, S.; Gupta, H.V. Precipitation estimation from remotely sensed information using artificial neural networks. J. Appl. Meteorol 1997, 36, 1176–1190. [Google Scholar]
- Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J.; Wolff, D.B.; Adler, R.F.; Gu, G.; Hong, Y.; Bowman, K.P.; Stocker, E.F. The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeorol 2007, 8, 38–55. [Google Scholar]
- Joyce, R.J.; Janowiak, J.E.; Arkin, P.A.; Xie, P. CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeorol 2004, 5, 487–503. [Google Scholar]
- Ushio, T.; Sasashige, K.; Kubota, T.; Shige, S.; Okamoto, K.I.; Aonashi, K.; Inoue, T.; Takahashi, N.; Iguchi, T.; Kachi, M. A Kalman filter approach to the Global Satellite Mapping of Precipitation (GSMaP) from combined passive microwave and infrared radiometric data. J. Meteorol. Soc. Jpn 2009, 87, 137–151. [Google Scholar]
- Khan, S.I.; Hong, Y.; Yong, B.; Gourley, J.J.; Khattak, U.K.; Vergara, H.J. Evaluation of three high-resolution satellite precipitation estimates: Potential for monsoon monitoring over Pakistan. Adv. Space Res 2013, in press. [Google Scholar]
Gauge Station | Lat. | Long. | Elevation (m) | 2008–2009 Discharge (m3/s) | 2010 Discharge (m3/s) | Correlation b/t AMSR-E and Gauge Discharge | ||
---|---|---|---|---|---|---|---|---|
Monsoon | Pre-Monsoon | Monsoon | Pre-Monsoon | |||||
Tarbela | 34.12 | 72.75 | 430 | 5297 | 2410 | 7773 | 1595 | 0.7 |
Kalabagh | 32.92 | 71.50 | 200 | 5909 | 3331 | 8989 | 2506 | 0.72 |
Chashma | 32.43 | 71.39 | 180 | 6329 | 3354 | 10,020 | 2377 | 0.7 |
Taunsa | 30.50 | 70.86 | 120 | 5664 | 2861 | 9677 | 1995 | 0.82 |
Guddu | 28.41 | 69.71 | 75 | 4838 | 1987 | 11,476 | 1294 | 0.84 |
Sukkur | 27.69 | 69.71 | 60 | 3222 | 1506 | 10,488 | 1017 | 0.88 |
Kotri | 25.47 | 68.31 | 22 | 1644 | 328 | 7606 | 156 | 0.83 |
© 2014 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Khan, S.I.; Hong, Y.; Gourley, J.J.; Khattak, M.U.; De Groeve, T. Multi-Sensor Imaging and Space-Ground Cross-Validation for 2010 Flood along Indus River, Pakistan. Remote Sens. 2014, 6, 2393-2407. https://doi.org/10.3390/rs6032393
Khan SI, Hong Y, Gourley JJ, Khattak MU, De Groeve T. Multi-Sensor Imaging and Space-Ground Cross-Validation for 2010 Flood along Indus River, Pakistan. Remote Sensing. 2014; 6(3):2393-2407. https://doi.org/10.3390/rs6032393
Chicago/Turabian StyleKhan, Sadiq I., Yang Hong, Jonathan J. Gourley, Muhammad Umar Khattak, and Tom De Groeve. 2014. "Multi-Sensor Imaging and Space-Ground Cross-Validation for 2010 Flood along Indus River, Pakistan" Remote Sensing 6, no. 3: 2393-2407. https://doi.org/10.3390/rs6032393
APA StyleKhan, S. I., Hong, Y., Gourley, J. J., Khattak, M. U., & De Groeve, T. (2014). Multi-Sensor Imaging and Space-Ground Cross-Validation for 2010 Flood along Indus River, Pakistan. Remote Sensing, 6(3), 2393-2407. https://doi.org/10.3390/rs6032393