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Abstract: The use of land surface temperature and vertical temperature profile data from 

Moderate Resolution Imaging Spectroradiometer (MODIS), to estimate high spatial 

resolution daily and monthly maximum and minimum 2 m above ground level (AGL) air 

temperatures for regions with limited in situ data was investigated. A diurnal air 

temperature change model was proposed to consider the differences between the MODIS 

overpass times and the times of daily maximum and minimum temperatures, resulting in 

the improvements of the estimation in terms of error values, especially for minimum air 

temperature. Both land surface temperature and vertical temperature profile data produced 

relatively high coefficient of determination values and small Mean Absolute Error (MAE) 

and Root Mean Square Error (RMSE) values for air temperature estimation. The correction 

of the estimates using two gridded datasets, National Centers for Environmental 

Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis and 

Climate Research Unit (CRU), was performed and the errors were reduced, especially for 

maximum air temperature. The correction of daily and monthly air temperature estimates 

using the NCEP/NCAR reanalysis data, however, still produced relatively large error 

values compared to existing studies, while the correction of monthly air temperature 

estimates using the CRU data significantly reduced the errors; the MAE values for 

estimating monthly maximum air temperature range between 1.73 °C and 1.86 °C. 

Uncorrected land surface temperature generally performed better for estimating monthly 

minimum air temperature and the MAE values range from 1.18 °C to 1.89 °C. The suggested 
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methodology on a monthly time scale may be applied in many data sparse areas to be used 

for regional environmental and agricultural studies that require high spatial resolution air 

temperature data. 

Keywords: air temperature; land surface temperature; vertical temperature profile; 

remote sensing; MODIS; data sparse areas 

 

Acronyms 

AIRS Atmospheric Infrared Sounder 
ANOVA Analysis of Variance 

AP 
Atmospheric Profile; air temperature estimates based on vertical temperature data  
in this article 

AP_shift 
Air temperature estimates based on vertical temperature data shifted using a diurnal  
air temperature change model in this article 

APHRODITE 
Asian Precipitation Highly Resolved Observational Data Integration  
Towards Evaluation 

ASOS Automatic Synoptic Observation System 
AVHRR Advanced Very High Resolution Radiometer 
BADC British Atmospheric Data Center 
CRU Climate Research Unit 
DEM Digital Elevation Model 
DJF December, January, and February (winter season) 
EOSDIS Earth Observing System Data and Information System 
GHCN Global Historical Climatology Network 
IGBP International Geosphere-Biosphere Programme 
ITPP International TOVS Processing Package 
JJA June, July, and August (summer season) 

LST 
Land Surface Temperature; air temperature estimates based on land surface  
temperature data in this article 

MAE Mean Absolute Error 
MAM March, April, and May (spring season) 
MODIS Moderate Resolution Imaging Spectroradiometer 
NASA National Aeronautics and Space Administration 
NCAR National Center for Atmospheric Research 
NCEP National Centers for Environmental Prediction 
NOAA National Oceanic and Atmospheric Administration 
PRISM Parameter-elevation Regressions on Independent Slopes Model 
PSD Physical Sciences Division 
RMSE Root Mean Square Error 
SON September, October, and November (autumn season) 
TIROS Television Infrared Observation Satellite 
TOVS TIROS Operational Vertical Sounder 
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TVX temperature-vegetation index 
USGS United States Geological Survey 
WMO World Meteorological Organization 

1. Introduction 

Air temperature is one of the most important variables in environmental and agricultural studies. It 

can be used to examine other environmental variables, such as evapotranspiration, based on empirical 

or physically-based methods [1–5], and used as an input to many hydrological and crop models that 

require spatially and temporally continuous temperature information. Climate and land surface models 

also need observed temperature data to set boundary conditions for future simulations [6]. Maximum 

and minimum air temperature data may be obtained from the Global Historical Climatology Network 

(GHCN) with over 75,000 stations located in 180 countries [7]. The density of observing stations of 

GHCN is sometimes sparse in many parts of the world compared to some developed countries. 

Spatially distributed high spatial resolution air temperature datasets, such as the Parameter-elevation 

Regressions on Independent Slopes Model (PRISM) [8], exist only in a few developed countries. 

In data sparse areas, gridded climate datasets or remotely sensed satellite data may provide valuable 

information [9]. Useful gridded climate datasets include the Climate Research Unit (CRU) time-series 

dataset and the National Centers for Environmental Prediction/National Center for Atmospheric 

Research (NCEP/NCAR) reanalysis data. Atmospheric Infrared Sounder (AIRS), onboard the Aqua 

satellite also produces gridded standard retrieval products of air temperature. However, the coarse 

spatial resolutions of the datasets, which are typically 2.5° × 2.5° to 0.5° × 0.5°, may not always satisfy 

regional studies, such as detailed drought monitoring and agricultural applications. 

Some studies have successfully estimated high spatial resolution air temperature using satellite remote 

sensing [10–16]. Prihodko and Goward [8] used the temperature-vegetation index (TVX) from the 

Advanced Very High Resolution Radiometer (AVHRR) to estimate air temperature during the growing 

season of 1987 in Kansas, and found a strong correlation (r = 0.93) with a mean error of 2.92 °C.  

Jang et al. [11] also used data from AVHRR to estimate air temperature during the growing season of 

2000 in the southern region of Quebec, Canada, using multilayer feed-forward neural networks. Surface 

altitude, solar zenith angle, and Julian day, were used along with five bands of AVHRR, and the 

differences between the observed and estimated temperatures were within 2 °C. Air temperature in East 

China was estimated by Yan et al. [12] with the accuracy of Root Mean Square Error (RMSE) = 3.23 °C, 

using land surface temperature, latitude, longitude, and altitude data. Lin et al. [13] found that only 

elevation could be adequately used to estimate air temperature in East Africa with Mean Absolute 

Error (MAE) ~1.9 °C. 

The existing studies typically require, either densely vegetated areas in order to use the TVX 

method, or more generally observed air temperature data in study areas. The observation data are used 

to provide training data for predictions using artificial intelligence or to derive relationships between 

air temperature and other variables such as vegetation indices, solar zenith angle and altitude. In order 

to estimate air temperature for regions with limited in situ data regardless of land cover type, empirical 

modeling between air temperature and other variables might not work well. Miliaresis and Tsatsaris [17] 

showed that elevation and proximity to water bodies affect the relationship between air temperature 
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and surface temperature. A method to estimate high spatial resolution air temperature is desirable for 

ungauged regions enabling regional environmental and agricultural studies without requiring 

observation data or preexisting conditions, such as highly vegetated areas. 

In this study, the use of land surface temperature, as well as vertical temperature profile data from 

the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor, was investigated to estimate 

daily and monthly maximum and minimum air temperature. The purpose of this study was to estimate 

high spatial resolution daily and monthly maximum and minimum air temperatures, without the direct 

use of observation data for regions with limited in situ data. The effect of air temperature data shift 

using a diurnal air temperature change model and the correction, based on the gridded datasets were 

also examined. The estimated high spatial resolution daily and monthly maximum and minimum air 

temperature data can be used for environmental and agricultural studies including drought monitoring 

for regions with limited observation data. 

2. Study Area and Data 

2.1. Study Area 

The study area of this study is South Korea, and sixty Automatic Synoptic Observation System 

(ASOS) weather stations located in South Korea (approximately within 124.3°E–131.3°E, 33°N–39°N) 

were used for analyses in this study (Figure 1). The study area experiences four distinct seasons over 

the course of the year and has complex topography with various land cover types. Such conditions 

allow the analysis of the effect of various factors, including seasonality, elevation, and land cover type, 

on air temperature estimation. Hourly temperature data are available for the 60 ASOS weather stations 

in the study area, which were used for the validation of the air temperature estimates. 

2.2. Data 

The Land Surface Temperature and Emissivity level-3 data products with daily (MYD11A1,  

Version 5) and eight-day (MYD11A2, Version 5) temporal resolutions and 1 × 1 km spatial resolution, as 

well as the Atmospheric Profile level-2 data product with 5-minute temporal resolution and 5 × 5 km 

spatial resolution (MYD07_L2, Version 5) from MODIS sensor onboard the Aqua satellite, were used 

to estimate daily and monthly air temperature in the study. The MYD11A2 eight-day data are the 

average of clear-sky values. The data were obtained from the Earth Observing System Data and 

Information System (EOSDIS) [18] of National Aeronautics and Space Administration (NASA), USA. 

The MODIS Aqua data are available from July 2002, thus, all data from July 2002 to December 2011 

were used in the study. The MYD11A1 and MYD11A2 data products include daytime and nighttime 

land surface temperature data, and the MYD07_L2 data product includes temperature and moisture 

data for 20 geopotential heights. The vertical temperature profile data are based on a regression 

algorithm with the Television Infrared Observation Satellite (TIROS) Operational Vertical Sounder 

(TOVS) data and derived using the International TOVS Processing Package (ITPP) [19,20]. Data from 

Aqua were used since the overpass times of the satellite are relatively closer to the times of daily 

maximum and minimum temperature. The air temperature data shift, based on a diurnal air temperature 

change model to overcome the time differences, was also examined in the following section. 
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Figure 1. Sixty ASOS weather stations’ locations in South Korea; the stations were 

grouped into (a) four land cover classes; and (b) four elevation classes. 

 

Hourly, daily, and monthly, 2 m above ground level (AGL) air temperature data for the 60 ASOS 

weather stations were obtained from the Korea Meteorological Administration. Air temperature is 

measured at 2 m AGL as recommended by the World Meteorological Organization. The hourly data 

were used to examine the differences between the times of maximum and minimum air temperature 

and the times of solar noon and sunrise for use with the diurnal air temperature change model. The 

daily and monthly air temperature data were used to validate the estimated air temperature. 

Two gridded datasets were used to test the correction of the air temperature estimates. The CRU 

TS3.20 dataset with monthly temporal resolution and 0.5° × 0.5° spatial resolution were obtained from 

the British Atmospheric Data Center (BADC) [21] and were used to correct the monthly air 

temperature estimates. The gridded NCEP/NCAR reanalysis data (Version 1), with daily temporal 

resolution and 2.5° × 2.5° spatial resolution, were obtained from the Physical Sciences Division (PSD) 

of the Earth System Research Laboratory of the National Oceanic and Atmospheric Administration 

(NOAA), USA, and used to correct the daily and monthly air temperature estimates. 

Land cover type data from 2010 from MODIS (Terra and Aqua combined, MCD12Q1, Version 5) 

with a 500 × 500 m spatial resolution were obtained from EOSDIS. The dataset provides four types of 

land cover classifications; the International Geosphere-Biosphere Programme (IGBP) classification 

was used among them. Elevation was retrieved from the United States Geological Survey (USGS) 

Digital Elevation Model (DEM) GTOPO30 with 1 × 1 km spatial resolution. Land cover type and 

elevation data were used to examine their effect on the differences between the CRU dataset and the 

ASOS observation data, as well as on the monthly air temperature estimation. 
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3. Methodology 

3.1. Data Processing 

3.1.1. Land Surface Temperature Data 

The daily daytime and nighttime land surface temperature data were obtained from the first and the 

fifth layers of the daily product (MYD11A1), respectively. The 8-day daytime and nighttime land 

surface temperature data were also obtained from the first and the fifth layers of the 8-day product 

(MYD11A2), respectively. The 8-day land surface temperature data are the composite of clear-sky 

days’ daily land surface temperature data. The daytime and nighttime, 8-day data were converted into 

monthly daytime and nighttime data using the number of days of each 8-day period as weights. 

Although the actual dates used for the composite can be obtained from metadata provided with data 

files, the information was not used to avoid such cases that the converted monthly data only represent a 

certain part of the month. The monthly daytime and nighttime land surface temperature values, as well 

as the daily daytime (descending) and nighttime (ascending) data (daytime LST and nighttime LST, 

hereafter) of the nearest pixels to the 60 ASOS weather stations were derived. 

3.1.2. Vertical Temperature Profile Data 

The Atmospheric Profile data include vertical moisture (Retrieved_Moisture_Profile) and 

temperature profile data (Retrieved_Temperature_Profile) for 20 geopotential heights 

(Retrieved_Height_Profile), from 5 hPa to 1000 hPa. Jocik [20] suggested a method to estimate 2 m 

AGL air temperature, based on a linear interpolation between the bottom profile level (1000 hPa) and 

ground level (2 m AGL). He used the pressure difference between 1000 hPa and 620 hPa levels, 

considering the vertical properties of the atmosphere, and calculated the ground level air temperature 

as the temperature of the 1000 hPa plus the adiabatic lapse rate, which resulted in a strong agreement 

with the observed data (R2 = 0.84) for the study area [20]. 

In this study, a similar approach was applied and the 2 m AGL air temperature data were obtained, 

based on the linear interpolation/extrapolation, using the geopotential height and air temperature data 

of 620 hPa and 1000 hPa and the GTOPO30 elevation. The linear relationship between the 

geopotential height and air temperature in the lower levels is assumed in Equation (1), where T is air 

temperature and z is geopotential height. Slope a and intercept b may be obtained using data at  

620 hPa and 1000 hPa levels (Equations (2) and (3)), where T1000 hPa, T620 hPa, z1000 hPa, and z620 hPa are 

air temperature at 1000 hPa level, air temperature at 620 hPa level, geopotential height at 1000 hPa 

level, and geopotential height at 620 hPa level, respectively. The 2 m AGL air temperature can then be 

calculated using the height above mean sea level (AMSL), which is elevation AMSL plus 2 meters. ܶ = ܽ ∙ ݖ + ܾ (1)ܽ = ଵܶ − ܶଶݖଵ − ଶݖ  
(2)ܾ = ଵܶ  − ଵݖ  ∙ ܽ (3)
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For missing 1000 hPa level data, 950 hPa level data were used instead. Linear regression was also 

tested but showed little difference to linear interpolation/extrapolation. Since the Atmospheric Profile 

(AP) data are obtained with 5-min temporal resolution, the MODIS overpasses each location about 2 to  

5 times a day. The 2 m AGL air temperature estimates were averaged for each day but for daytime and 

nighttime separately. The data were also converted to monthly, and the daily and monthly daytime and 

nighttime 2 m AGL air temperature estimates (daytime AP and nighttime AP, hereafter) of the nearest 

pixels to the 60 ASOS weather stations were then derived. 

3.2. Diurnal Air Temperature Change Model 

The local equatorial crossing time of the Aqua satellite is about 1:30 p.m. in an ascending mode and 

about 1:30 a.m. in a descending mode. The overpass time over the study area is about the same local 

time. Since the daily air temperature reaches its maximum about a couple of hours after solar noon, 

and reaches its minimum just before [22] or after [23] sunrise, there exist time gaps between the times 

for daily maximum and minimum air temperature and the MODIS overpass times. In this study, 

a diurnal air temperature change model was proposed to estimate the maximum and minimum air 

temperature using the daytime and nighttime AP and the MODIS overpass times. 

Lagouarde and Brunet [22] proposed a diurnal surface temperature change model with part of a sine 

function during the day, and part of a parabola during the night. Parton and Logan [24] proposed a 

diurnal air temperature change model using part of a sine function during the day and part of an 

exponential function during the night. A model with sine and exponential functions was initially 

considered in this study, but it requires the time between maximum and minimum air temperatures 

being longer than the time between sunset and maximum temperature (Figure 2a). A model with two 

sine functions for ascending and descending temperatures was proposed (Figure 2b) and it produces 

similar results with the model that uses sine and exponential functions, while representing the 

generally slowly decreasing air temperature after reaching maximum temperature [23]. 

Sunrise, sunset, and solar noon times for each day were calculated for each of the 60 ASOS weather 

stations using astronomical algorithms in the pyephem library of Python, and used, as is, for daily 

analysis or averaged for each month for monthly analysis. The times for maximum and minimum air 

temperatures were derived as functions of sunrise and solar noon times, based on the data from the weather 

stations to be used with the proposed diurnal air temperature change model (Equations (4) and (5)). ்ݐ = ೝೞ்ݐ − ݐ(4) 1 ்ೌೣ = ݐ ் + 2 (5)

where T is temperature and t is local time; thus tTmin, tTrise, tTmax, tTnoon are local times for daily 

minimum temperature, sunrise, daily maximum temperature, and solar noon, respectively. Using the 

following equations representing air temperature, based on two sine functions for ascending and 

descending temperatures proposed in this study (Equations (6) to (8)), daily and monthly daytime and 

nighttime APs can be shifted to daily and monthly maximum and minimum temperatures, respectively 

(AP_shift, hereafter). As there were little seasonal differences observed in the shape of the diurnal air 

temperature change when analyzed with hourly air temperature data, the same type of model could be 

used for all months, only with different amplitudes and frequencies of sine functions. 
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T = ሺ ܶ௫ − ܶሻ sin ቊగଶ ቀ௧ି௧ቁቀ௧ೌೣି௧ቁቋ + ܶ, ்ݐ ≤ t < ݐ ்ೌೣ (6)

T = −ቀ ்ೌೣି்ଶ ቁ sin ቐగቆ௧ିೌೣశషమరమ ቇ௧ି௧ೌೣାଶସ ቑ + ቀ ்ೌೣା்ଶ ቁ, 0 < ݐ ≤  (7)்ݐ

T = −ቀ ்ೌೣି்ଶ ቁ sin ቐగቆ௧ିೌೣశశమరమ ቇ௧ି௧ೌೣାଶସ ቑ + ቀ ்ೌೣା்ଶ ቁ, t ≥ ݐ ்ೌೣ (8)

Figure 2. Diurnal temperature change models (a) using a sinusoidal (thin-line) and 

exponential (thick-line) functions for daytime and nighttime air temperature, respectively; 

and (b) using two sinusoidal functions for ascending (thin-line) and descending (thick-line) 

air temperature. T is for Temperature, and t is for local time. 
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3.3. Correction Using Gridded Datasets 

The correction of the estimated air temperature using gridded climate datasets by fitting linear 

regression models (Equation (9)) for each ASOS location was tested to examine the  

possible improvements. ݀݁ݐܿ݁ݎݎܥ	ݏ݁ݐܽ݉݅ݐݏܧ = ݀݁ݐܿ݁ݎݎܷܿ݊ ݏ݁ݐܽ݉݅ݐݏܧ × c + d (9)

In Equation (9), the coefficients c and d indicate slope and intercept of the regression model. The 

CRU dataset was selected for correcting monthly estimates since it includes monthly maximum and 

minimum air temperature and it is available over the globe. The NCEP/NCAR reanalysis dataset was 

selected for correcting daily and monthly estimates since it has daily maximum and minimum air 

temperature, and it is also available all over the globe. 

3.4. ANOVA for Land Cover and Elevation 

The 60 ASOS weather stations’ locations include six IGBP land cover classes; similar classes were 

grouped together to create three distinct classes of Forest (17 stations with Evergreen needle leaf forest 

and Mixed forest land cover types), Cropland (25 stations with Grasslands, Croplands, and 

Cropland/Natural vegetation mosaic land cover types), and Urban (15 stations with Urban and built-up 

land cover type, Figure 1). The remaining three stations, with majority land cover type of Water, 

Permanent wetlands, and Open shrublands (Other land cover type in Figure 1), were not included in 

the analysis. Quartiles of the elevation data of the 60 ASOS weather stations were calculated and the 

weather stations were grouped into four elevation classes: CL1 (from minimum elevation = 2.3 m to 

Q1 = 33.85 m), CL2 (from Q1 to Q2 = 53.25 m), CL3 (from Q2 to Q3 = 98.94 m), and CL4 (from Q3 

to maximum = 772.6 m, Figure 1). 

One-way Analysis of Variance (ANOVA) tests were performed to examine the effect of land cover 

and elevation classifications, respectively, on the differences between the CRU dataset and the ASOS 

observation data, as well as on the estimation of air temperature. Null hypotheses are that there is no 

difference in the estimated air temperature between land cover classes and between elevation  

classes, respectively. 

4. Results and Discussion 

4.1. Maximum and Minimum Air Temperature Estimation 

Observation data from the 60 ASOS weather stations were used to validate the estimated air 

temperature from LST and AP. Although the grid data represent the average of an area and the weather 

station data represent a point, the comparisons between the 60 ASOS weather stations’ locations and 

the nearest pixels to the stations were made as the gridded data could be considered the best estimates 

for regions without observation data for any location of interests. Coefficient of determination (R2) 

values show how much variance of the predictand can be explained by the predictor. For daily 

estimation, AP showed a better agreement with observation data than LST in spring (March, April, and 

May; MAM) and summer (June, July, and August; JJA) for maximum temperature, and in all seasons 

for minimum temperature (Table 1). In autumn (September, October, and November; SON) and winter 
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(December, January, and February; DJF), LST produced slightly higher R2 values for maximum 

temperature (Table 1). For monthly estimation, LST outperformed AP in all seasons except during JJA 

(Table 1). The R2 values during MAM and SON were very high; daytime LST explains 93% of 

variance of monthly maximum air temperature during MAM and 96% during SON. On the other hand, 

the R2 values were quite low during DJF and, especially, JJA; LST explains only 12% of variance of 

monthly maximum air temperature during JJA. AP showed better performance than LST; it explains 

41% of variance for the same season (Table 1). 

Table 1. Coefficient of determination (R2) values averaged for 60 Automatic Synoptic 

Observation System (ASOS) weather stations’ locations for estimating daily and monthly 

air temperature (unitless). 

Variable Season 
Daily Estimation Monthly Estimation 

AP AP_Shift LST AP AP_Shift LST 

Maximum 
Temperature 

ALL 0.87 0.87 0.84 0.95 0.95 0.94 
MAM 0.77 * 0.76 0.75 0.89 0.89 0.93 
JJA 0.64 0.63 0.28 0.41 0.43 0.12 

SON 0.84 0.84 0.89 0.92 0.92 0.96 
DJF 0.67 0.67 0.74 0.62 0.57 0.72 

Minimum 
Temperature 

ALL 0.92 0.92 0.87 0.94 0.94 0.97 
MAM 0.85 0.85 0.71 0.89 0.89 0.96 
JJA 0.83 0.82 0.65 0.77 0.76 0.75 

SON 0.90 0.89 0.81 0.92 0.91 0.95 
DJF 0.57 0.57 0.45 0.35 0.30 0.52 

* Values in bold indicate high coefficient values. 

When the performance of daily LST was compared with that of monthly LST, the latter showed 

higher R2 values than the former for both maximum and minimum temperature in most seasons. It is 

possibly due to larger temperature variations of daily LST than monthly LST. Similarly, the poor 

estimation of maximum air temperature by monthly LST during JJA may be explained by the large 

variation of maximum air temperature, resulting in the monthly averaging being inappropriate. The R2 

values of daily and monthly LST during JJA were especially low, indicating the high usability of daily 

and monthly APs that resulted in much higher R2 values. 

Since the purpose of the study is to estimate daily and monthly air temperature for regions with 

limited in situ data, the estimates are supposed to be used without observation data. In this case, the 

error values, such as MAE and RMSE, become very important criteria. The MAE and RMSE values of 

LST and AP were calculated for daily (Figures 3 and 4) and monthly estimations (Figures 5–8). 

Uncorrected LST produced smaller MAE and RMSE than AP in all seasons for both daily maximum 

and minimum temperature, except during MAM for daily minimum temperature and during JJA for 

monthly maximum temperature (Figures 3–6). 

4.2. Data Shift Based on the Diurnal Air Temperature Change Model 

The coefficient of determination values of uncorrected AP_shift were slightly higher only during 

JJA for monthly maximum air temperature compared to AP, while the values were slightly lower or 
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the same in other cases (Table 1). The MAE and RMSE values of uncorrected AP_shift were 

somewhat smaller than AP in all seasons for daily maximum air temperature, and during MAM, SON, 

and DJF for monthly maximum air temperature (Figures 3–6). Larger differences were observed for 

minimum air temperature; uncorrected AP_shift showed smaller MAE and RMSE than AP in all 

seasons for daily minimum air temperature, and during JJA, SON, and DJF, for monthly minimum air 

temperature (Figures 3–6). The improvements from the shift were not large for maximum air 

temperature because the MODIS overpass time, in an ascending mode, is quite close to the time that 

the air temperature reaches its maximum. On the other hand, the MODIS overpass time in a 

descending mode (about 1:30 a.m.) is quite apart from the time the air temperature reaches its 

minimum (about one hour before sunrise), thus, the improvements by the data shift were more 

obvious. However, the error values of AP_shift are larger than those of LST for both maximum and 

minimum temperatures in most seasons, except during MAM (and also during JJA for RMSE) for 

daily minimum temperature and during JJA for monthly maximum temperature (Figures 5–8). 

Figure 3. MAE values averaged for 60 ASOS weather stations’ locations for estimating 

daily air temperature with or without the correction using the NCEP/NCAR reanalysis data 

(unit: °C). 

 

Figure 4. RMSE values averaged for 60 ASOS weather stations’ locations for estimating 

daily air temperature with or without the correction using the NCEP/NCAR reanalysis data 

(unit: °C). 
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Figure 5. MAE values averaged for 60 ASOS weather stations’ locations for estimating 

monthly air temperature with or without the correction using the CRU data (unit: °C). 

 

Figure 6. RMSE values averaged for 60 ASOS weather stations’ locations for estimating 

monthly air temperature with or without the correction using the CRU data (unit: °C). 

 

Figure 7. MAE values averaged for 60 ASOS weather stations’ locations for estimating 

monthly air temperature with or without the correction using the NCEP/NCAR reanalysis 

data (unit: °C). 
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Figure 8. RMSE values averaged for 60 ASOS weather stations’ locations for estimating 

monthly air temperature with or without the correction using the NCEP/NCAR reanalysis 

data (unit: °C). 

 

4.3. Correction Using the Gridded Datasets 

The correction using the gridded datasets did not affect the coefficient of determination values 

because the correction was based on a linear transformation, as shown in Equation (9), while the MAE 

and RMSE values were significantly reduced (Figures 3–8). When daily air temperature estimates 

were corrected using the NCEP/NCAR reanalysis data, MAE and RMSE values were reduced in all 

seasons for daily maximum air temperature (Figures 3 and 4, ∆MAE = −0.28 to −1.93, ∆RMSE = −0.16 to 

−1.82), except LST during DJF. For daily minimum air temperature, MAE and RMSE were improved 

only for AP and AP_shift during JJA. The correction of LST using the gridded datasets improved the 

estimation of maximum temperature better than minimum temperature, because surface temperature is 

known to be higher than air temperature during the day, while it is close to air temperature during the 

night [11,13]. The difference between surface temperature and air temperature depends on a complex 

surface energy balance during the day, but the effect of solar radiation is minor during the night [13]. 

The MAE and RMSE values also decreased in all seasons when monthly maximum air temperature 

was corrected using the CRU dataset (Figures 5 and 6, ∆MAE = −0.01 to −2.73, ∆RMSE = −0.11  

to −2.66). For monthly minimum air temperature, the error values of AP decreased during JJA, SON, 

and DJF (Figures 5 and 6; ∆MAE = −0.16 to −1.75, ∆RMSE = −0.14 to −1.84) when corrected using 

the CRU dataset, and the error values of AP_shift decreased during JJA and DJF (Figures 5 and 6; 

∆MAE = −0.56 to −1.33, ∆RMSE = −0.72 to −1.48). The LST showed reduced error values during JJA 

(Figures 5 and 6, ∆MAE = −0.01, ∆RMSE = −0.09). 

The decrease of MAE and RMSE values of monthly maximum air temperature was larger when 

corrected using the CRU dataset compared to the NCEP/NCAR reanalysis dataset (Figures 5–8). The 

MAE and RMSE of daily and monthly air temperature after the correction using the NCEP/NCAR 

reanalysis dataset remained quite large, compared to results from existing studies, due to the coarse 

spatial resolution of the dataset. 

Although the errors were generally reduced thanks to the correction using the gridded datasets 

especially for maximum air temperature, the correction introduced a new source of error. The MAE 

and RMSE values for each ASOS weather station’s location were examined and it was found that the 
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stations with relatively large errors were the same stations with larger differences between the ASOS 

observation data and the gridded dataset (Figure 9 with CRU data), implying that the discrepancy 

between the ASOS observation data and the gridded dataset is the new source of error. The 

discrepancy may be larger if applied for regions with limited in situ data compared to the study area 

where a moderately dense observation network exists, which must have improved the quality of the 

gridded dataset for the area. However, the correction using the gridded dataset especially the CRU, 

helped error values to decrease for many stations as previously mentioned. 

Figure 9. Scatter-plots comparing MAE values averaged for 2002–2011 for (a) monthly 

maximum air temperature during JJA (unit: °C); and (b) monthly minimum air temperature 

during JJA (unit: °C). The x-axis is for MAE between AP corrected using CRU versus 

ASOS observation data, y-axis is for MAE between CRU gridded dataset versus ASOS 

observation data; each point represents ASOS weather station’s location. 

 

4.4. Effect of Land Cover and Elevation 

Results of the correction of the estimated monthly air temperature using the CRU dataset, which 

produced the smallest error values, indicated that five ASOS weather stations showed especially large 

differences between the CRU dataset and ASOS observation data (MAE of maximum and minimum 

air temperature > 3.0 °C for all seasons); although they were located in the southern part of the study 

area (not shown), there was no common distinct characteristic found, such as the distance from 

shoreline, land cover type, and elevation. 

One-way ANOVA tests were performed to see the differences in error values due to different land 

cover and elevation classes, respectively. For both maximum and minimum air temperature, no 

difference between land cover and elevation classes was observed in the error values between the CRU 

dataset and ASOS observation data, and the null hypotheses could not be rejected (Tables 2 and 3). 

The discrepancy between the CRU dataset and the ASOS weather station data may be due to the coarse 

spatial resolution of the CRU dataset. 

Estimation errors of air temperature from AP and LST varied by land cover and elevation classes: 

differences were observed between land cover classes for uncorrected LST during MAM, JJA, and 
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SON, when estimating maximum air temperature and also for uncorrected AP during JJA and SON 

(null hypothesis rejected with significance level of 0.05). When estimating minimum air temperature, 

differences were observed for uncorrected AP during JJA, SON, and DJF (Table 2). Such differences 

were not observed for corrected LST and AP, except during MAM when estimating minimum air 

temperature (Table 2). 

Table 2. Test statistics for one-way ANOVA testing differences between land cover 

classes of Mean Absolute Error (MAE) values between ASOS observation data vs. the 

Climate Research Unit (CRU) dataset and monthly air temperature estimates with or 

without the correction using the CRU data. Values in bold indicate that there is a 

significant difference at the 95% confidence level. 

Variable Season CRU Dataset 
Uncorrected Corrected 

AP LST AP LST 

Maximum 
Temperature 

ALL 0.15 0.03 <0.0001 0.14 0.16 
MAM 0.13 0.06 0.0001 0.06 0.14 
JJA 0.12 0.003 <0.0001 0.16 0.34 

SON 0.12 0.02 <0001 0.10 0.12 
DJF 0.40 0.13 0.06 0.50 0.39 

Minimum 
Temperature 

ALL 0.07 <0.0001 0.68 0.34 0.16 
MAM 0.06 0.09 0.37 0.05 0.04 
JJA 0.07 0.0005 0.62 0.09 0.23 

SON 0.11 0.001 0.91 0.43 0.19 
DJF 0.13 <0.0001 0.12 0.21 0.36 

Table 3. Test statistics for one-way ANOVA testing differences between elevation classes 

of MAE values between ASOS observation data vs. the CRU dataset and monthly air 

temperature estimates with or without the correction using the CRU data. Values in bold 

indicate that there is a significant difference at the 95% confidence level. 

Variable Season CRU Dataset 
Uncorrected Corrected 

AP LST AP LST 

Maximum 
Temperature 

ALL 0.33 0.06 0.03 0.34 0.34 
MAM 0.12 0.06 0.03 0.12 0.15 
JJA 0.24 0.13 0.04 0.44 0.71 

SON 0.36 0.07 0.10 0.32 0.42 
DJF 0.78 0.12 0.36 0.84 0.81 

Minimum 
Temperature 

ALL 0.67 0.03 0.26 0.91 0.83 
MAM 0.73 0.42 0.35 0.85 0.75 
JJA 0.60 0.0006 0.10 0.74 0.67 

SON 0.31 0.05 0.47 0.53 0.45 
DJF 0.62 0.04 0.28 0.83 0.74 

The station-averaged MAE values between different land cover classes were examined for 

uncorrected LST during JJA (Figure 10a) and uncorrected AP during DJF (Figure 10b). The major 

differences appear in urban areas; the averaged error value was larger in stations with the urban land 



Remote Sens. 2014, 6 7375 

 

 

cover class for uncorrected LST while it was smaller for uncorrected AP (Figure 10a,b). The larger 

error of uncorrected LST in urban areas for estimating air temperature is due to the high percentage of 

impervious areas, which exacerbate the discrepancy between the surface and air temperature, 

especially during the day. The urban areas are also affected by the urban heat island effect, which 

increases the air temperature especially during the night. It is likely that the error values between 

uncorrected AP and ASOS observation data are smaller in urban areas due to the increased air 

temperature caused by the heat island effect, leading to better estimation of 2 m AGL air temperature 

from the vertical temperature profile data. 

Figure 10. Box plots comparing MAE values averaged for 60 ASOS weather stations’ 

locations (a) between uncorrected monthly daytime LST and ASOS monthly maximum air 

temperature during JJA for each land cover class; (b) between uncorrected monthly 

nighttime AP and ASOS monthly minimum air temperature during DJF for each land cover 

class; (c) between uncorrected monthly daytime LST and ASOS monthly maximum air 

temperature during MAM for each elevation class; and (d) between uncorrected monthly 

nighttime AP and ASOS monthly minimum air temperature during JJA for each elevation 

class (boxes for Q3, median, Q1 and whiskers for max and min from the top). 

 

For elevation classes, the null hypothesis could be rejected for uncorrected LST during MAM and 

JJA when estimating maximum air temperature and for uncorrected AP during JJA, SON, and DJF, 

when estimating minimum air temperature implying differences in error values between elevation 

classes (Table 3). However, no increasing or decreasing trend of errors with elevation was observed 

(Figure 10c,d). Such differences were also not observed for corrected LST and AP (Table 3). 
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5. Conclusions 

Both land surface temperature and vertical temperature profile data could be successfully used to 

estimate the 2 m AGL daily and monthly maximum and minimum air temperature in most seasons. 

They showed quite large coefficient of determination values and produced relatively smaller or 

comparable errors to existing studies, even though observation data from the weather stations were not 

used for the estimation. Daily and monthly LST outperformed AP in most seasons for both maximum 

and minimum temperature in terms of error values, but AP showed much higher coefficient of 

determination values during JJA. AP_shift based on the diurnal air temperature change model 

improved the estimation by producing smaller error values in most cases, but LST still outperformed 

AP_shift in most seasons for both maximum and minimum air temperatures. 

Corrections based on gridded datasets improved the estimation, especially for maximum air 

temperature. The use of the NCEP/NCAR reanalysis data for the correction, however, still produced 

somewhat large error values despite the significant decrease of the error values. When corrected using 

the CRU dataset, the MAE values for estimating monthly maximum air temperature range from 1.73 °C 

to 1.86 °C (AP or AP_shift for JJA, and LST for other seasons). Uncorrected LST generally performed 

better for estimating monthly minimum air temperature and the MAE values range from 1.18 °C to  

1.89 °C. The spatial resolutions of the estimates are 1 × 1 km for LST and 5 × 5 km for AP and AP_shift. 

A methodology for creating high spatial resolution air temperature data for regions with limited  

in situ data was developed in this study. It can be used for many environmental and agricultural studies 

requiring air temperature data at the daily or monthly resolution. The error values of daily air 

temperature estimates using LST and AP were slightly larger compared to monthly estimates. 

Although the correction using the gridded dataset for estimating maximum air temperature may 

introduce a different source of error, the discrepancy between the gridded dataset and the observation 

data, the correction still can improve the estimation considerably even for daily air temperature. Such a 

discrepancy, possibly due to the coarse spatial resolution of the gridded dataset, typically increases 

uncertainties in estimating maximum and minimum temperatures especially at the daily temporal 

resolution. In order to reduce uncertainties and errors associated with the performance of LST and AP 

for estimating daily or monthly maximum and minimum temperatures, finer resolution gridded climate 

datasets, such as the Asian Precipitation Highly Resolved Observational Data Integration Towards 

Evaluation (APHRODITE) dataset for the Asia region, can be used. The use of NCEP/NCAR 

reanalysis data produced rather large error values due to its coarser spatial resolution. 

For estimating maximum air temperature, it may be generally recommended to use corrected LST 

during MAM and SON (also during DJF with monthly data) and to consider AP or AP_shift during 

JJA. For minimum air temperature, uncorrected LST during SON and DJF (also during MAM with 

monthly data), and corrected AP or AP_shift during JJA may be used. 

There are some limitations to be resolved in further studies. In order to use the diurnal air 

temperature change model, the times for maximum and minimum air temperature were derived as 

functions of solar noon and sunrise based on the observation data, which needs more case studies. The 

air temperature for cloudy days and the effect of soil moisture on air temperature should be considered 

in further studies. Remotely sensed data based on microwave sensors may resolve the issues, and will 

also ease the estimation of daily air temperature. Although the study area is located in a temperate 
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climate region, the findings may be applied in many data sparse areas since the study area has complex 

topography and a wide range of temperature over the course of the year. 
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