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Abstract: Aquatic vegetation plays an important role in maintaining the balance of  

lake ecosystems. Thus, classifying and mapping aquatic vegetation is a priority for lake 

management. Classification tree (CT) approaches have been used successfully to map 

aquatic vegetation from spectral indices obtained from remotely sensed images. However, 

due to the effects of extrinsic and intrinsic factors, applying a CT model developed for 

imagery from one date to imagery from another date or a different dataset likely would 

reduce the classification accuracy. In this study, three spectral features (SFs) were selected 

to develop a CT model for identifying aquatic vegetation in Taihu Lake. Three traditional 

CT models with three SFs were developed using CT analysis based on satellite images 

acquired on 11 July, 16 August and 26 September 2013, and corresponding ground-truth 

samples, from the Huangjing-1A/B Charge-Coupled Device (HJ-CCD) images, environment 

and disaster reduction small satellites that were launched by China Center for Resources 

Satellite Data and Application (CRESDA). The overall accuracies of traditional CT models 

were 82%, 80% and 84%. We then tested two methods to modify CT model thresholds  

to adjust the traditional CT models based on image date to determine if the results would 

enable us to map and classify aquatic vegetation for periods when no ground-based data 
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were available. We assessed the results with ground-truth samples and area agreement with 

traditional CT models. Results showed that CT models modified from a linear adjustment 

based on the relationship between ranked values of SFs between two image dates produced 

map accuracies comparable with those obtained from the traditional CT models and suggest 

that the method we proposed is feasible for mapping aquatic vegetation types in lakes when 

ground data are not available. 

Keywords: aquatic vegetation; wetlands; remote sensing; classification tree; spectral feature 

 

1. Introduction 

Aquatic macrophytes play an important role in maintaining the balance of lake ecosystems  

and supporting socioeconomic functions [1]. For example, macrophytes stabilize sediments, regulate 

the nutrient cycle [2], slow water currents and maintain fishery production [3]. Studies have indicated 

that aquatic vegetation has a significant and positive effect on pollutant removal and thereby  

purifies water, which makes aquatic ecosystems shift from a turbid algal-dominated state to a  

clear-water, plant-dominated state [4,5]. In the eutrophic Taihu Lake of China (30°55′40″–31°32′58″N, 

119°52′32″–120°36′10″E), it therefore is important to accurately map the distribution of and detect 

changes in aquatic vegetation for lake management. 

At a large scale or across the whole lake, it is laborious and difficult to survey types and distribution 

of aquatic vegetation by traditional and conventional methods. Developing efficient, large-scale monitoring 

strategies is helpful for effectively tracking and mitigating harmful changes in the lake. Remote 

sensing has proven to be an effective tool for mapping the distribution of aquatic vegetation over such a 

large area. Aerial photographs commonly were used in the past to map aquatic vegetation [6,7]. With the 

rapid development of satellite sensors, multispectral and hyperspectral remote sensing have become 

more feasible for mapping and monitoring aquatic vegetation. For example, researchers have used high 

spatial resolution satellite images (e.g., IKONOS and QuickBird images) to illustrate fine-level habitat 

discrimination [8,9] and to identify submerged vegetation [10]. High resolution imagery also has been 

used to identify and detect plant communities in wetland settings [11]. Considering availability and 

accessibility, moderate spatial resolution multispectral satellite data, such as from the Landsat 

Multispectral Scanner (MSS), Thematic Mapper (TM) and Enhanced Thematic Mapper (ETM+) [12,13], 

and Satellite Pour l’Observation de la Terre (SPOT) imagery [14], have been widely used for  

mapping distribution of aquatic macrophytes and assessing spatial and temporal dynamics of aquatic 

vegetation [15,16]. Meanwhile, a variety of methods and algorithms based on remote sensing data have 

been applied to automatically identify aquatic vegetation, such as unsupervised isoclustering, supervised 

maximum likelihood classifiers [17], and tasseled-cap classification [18]. Supervised classification and 

classification trees have been the most widely and successfully used for classifying aquatic vegetation. 

For example, Ma et al. [19] developed a transparency-assisted classification tree to classify the aquatic 

vegetation in Taihu Lake and Zhao et al. [20] developed a CT model for mapping aquatic vegetation in 

Taihu Lake based on spectral indices. These studies have demonstrated that an accurate CT model for 

mapping aquatic vegetation could probably be developed using remote sensing imagery for a specific 
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time, given enough ground-truth samples [21,22]. Ground-based data are expensive and often difficult 

to acquire. Thus, an important question is if aquatic vegetation can be mapped well without ground-truth 

samples, such as for mapping past conditions in lakes using historical archived satellite data for which 

corresponding ground-truth samples are unavailable. 

It has been shown that the classification trees developed for one time period or image might not  

be adequate when applied to other periods or dates due to influences of various intrinsic and extrinsic 

factors [23]. To investigate this, we developed traditional CT models for mapping aquatic vegetation 

using ground-truth samples and corresponding HJ-CCD images from China’s HJ-1A/1B of the 

Environment and Disasters Monitoring Microsatellite Constellation Charge-Coupled Device (CCD) 

camera. We then tested a new approach to modify thresholds of spectral features in the traditional CT 

model to generate model that could be effectively applied to HJ-CCD images for different dates. 

2. Materials and Methods 

2.1. Study Area 

Taihu Lake (30°55′40″–31°32′58″N, 119°52′32″–120°36′10″E) is one of the five largest freshwater 

lakes in China, located in Jiangsu province (Figure 1). It is a typical large, shallow lake, with a maximal 

depth of less than 3 m and an average depth of 1.9 m, and covers an area of about 2338 km2. Across Taihu 

Lake, there are large difference in water parameter values, with Secchi depths ranging from 0 to 2.5 m, pH 

from 6.81 to 9.58, total nitrogen from 0.37 to 86.30 mg/L and total phosphorus from 0.01 to 6.48 mg/L. 

Figure 1. Location of our study area within Taihu Lake, China, the six sections relating  

to environmental characteristics and human activities and the distribution of sample 

collection sites. 
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Taihu lake can be divided into six sections according to spatial variability in the relative influence 

of human activities and environmental factors [15] (Figure 1). Section I consists of Meiliang Bay  

and Zhushan Bay, where algae blooms occur frequently because of high concentrations of nitrogen and 

phosphorus. Section II is mainly situated in Gongshan Bay, where a large number of tributaries of  

the Yangtze River have been flowing into the lake since 2001. Section III consists of Zhenhu Bay, 

Guangfu Bay, Xukou Bay and Dongshan Bay, which are the main and traditional distribution areas of 

aquatic vegetation in Taihu. Section IV is the East Bay, which is covered with submerged vegetation, 

characteristic of good water quality and rich fishery production. Section V is located in the southeast 

area, which is the traditional distribution area of floating-leaved vegetation. Section VI is located in  

the central area and the western shores, making up more than 50% of the Lake and belonging to the 

algae-type zone. Lu et al. [24] divided the Taihu Lake into an algae-type zone (algal-dominated zone) 

and a grass-type zone (grass-dominated zone). Sections I and VI belong to the algae-type zone, and the 

other sections belong to the grass-type zone. According to field surveys, water quality in grass-type 

zone is significantly higher than in algae-type zone. We conducted the current study in the grass-type 

zone, in which exists three types of aquatic vegetation (Table 1). 

Table 1. Aquatic vegetation types and dominant species in the grass-type zone of Taihu Lake. 

Type Dominant Species 

Emergent vegetation Phragmites communis, Zizania latifolia 

Submerged vegetation 
Vallisneria spiralis, Ceratophyllum demersum, Potamogeton malaianus,  

P. maackianus, Hydrilla varticillata, Potamogeton maackianus 

Floating-leaved vegetation Eichhornia crassipes, Lemna minor, Nymphoides peltata, Trapa bicornis 

2.2. Field Data Collection 

Field surveys were carried out on 10–13 July (sample group I), 17–22 August (sample group II)  

and 23–26 September in 2013 (sample group III). A total of 434 ground-truth samples (112 samples in 

July, 143 samples in August and 179 samples in September) were collected for open water and aquatic 

vegetation in the grass-type Zone of Taihu Lake (Figure 1). Sampling plots for aquatic vegetation were 

limited to areas measuring at least 60 × 60 m (i.e., four pixels of a HJ-CCD image) with a relatively 

uniform distribution of vegetation. We used a portable GPS receiver with an accuracy of 3 m to record 

the center coordinates for each sample, along with recording the type and percent coverage of aquatic 

vegetation. We also used the GPS to record the boundary extent of the representative sample regions 

for emergent, floating-leaved and submerged vegetation to generate a polygon vector file. 

2.3. Remote Sensing Data Pre-Processing 

HJ-1A and HJ-1B satellites were launched by the China Center for Resources Satellite Data and 

Application (CRESDA) on 6 September 2008. They are sun-synchronous circular orbit satellites with 

an orbital altitude of 649 km. Charge-coupled device (CCD) sensors onboard the two satellites have 

similar spectral range and spatial resolution to the first four bands of Landsat TM/ETM+ (Table 2). 

However, the HJ-1A and HJ-1B satellite constellation provides a more frequent revisit time (2 days), 

and a wider swath width (360 km), which are considered of great importance for vegetation monitoring 
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and observation, especially for wet summers (i.e., between June and September) in southern China. 

We used three cloudless HJ-CCD images acquired on 11 July, 18 August, and 26 September 2013. 

Table 2. Band wavelengths (nm) of the Environment and Disaster Reduction Small Satellite 

Charge-Coupled Devices (HJ-1A/1B CCD) compared with those of Landsat sensors 

(TM/ETM+). 

Sensor Type 
Blue Band  
(Band 1) 

Green Band  
(Band 2) 

Red Band  
(Band 3) 

Near-Infrared Band 
(Band 4) 

HJ-1A/1B 
CCD 

430–520  520–600 630–690 760–900 

TM/ETM+ 430–520  520–600 630–690 760–900 

All processing of remote sensing images were conducted with ENVI 4.5 software. Radiometric 

calibrations were made using coefficients provided with the image (e.g., gains and offsets). The FLAASH 

module in ENVI software was applied for atmospheric correction [25]. The input parameters were  

set based on the location, sensor type and ground weather conditions observed on the day the image 

was acquired. The atmospherically corrected images were geometrically corrected against a historical 

LandsatTM image with geometric accuracy of <0.5 pixel. Considering no aquatic macrophyte vegetation 

occurs in the algae-type zone except for emergent vegetation (mostly reeds) near the shore, the algae-type 

zone, including sections I and VI, was masked. 

2.4. Methods 

2.4.1. Classification Tree (CT) Model 

Classification tree (CT) analysis is based on dichotomous partitioning of data at certain thresholds 

of the value of explanatory variables, which determine the branch a particular sample will follow [26], 

and is considered robust with limited samples of remotely-sensed data [27]. The steps in our analysis 

for developing a CT model for mapping aquatic vegetation include: (1) selecting appropriate spectral 

variables according to spectral characteristics of aquatic vegetation; (2) determining the structure of  

the CT model and correct thresholds of the variables by unsupervised classification; and (3) assessing  

the classification accuracy of the resulting CT model. It can be difficult to identify water and types of 

aquatic vegetation with only a single reflectance band as shown in Figure 2. Spectral indices from band 

combination have been determined to be more suitable for vegetation classification than a single band 

for vegetation classification. In addition, studies have indicated that some image transform methods, 

such as principal components (PC) and tasseled cap (TC), can extract and strengthen some image 

information [28,29], and can be used to map wetlands [18]. Therefore, we used four PC bands and  

four TC bands, along with PC and TC transforms which were generated with the transform module of 

ENVI software, and additional spectral features (SFs) obtained from HJ-CCD images, and their potential 

for identifying emergent vegetation, floating-leaved vegetation and submerged vegetation. We conducted 

preliminary exploratory analyses to select a set of variables (Table 3) as input to develop a CT model. 
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Figure 2. Band reflectance from HJ- CCD imagery of emergent, floating-leaved, submerged 

vegetation and water. 

 

Table 3. Spectral features (SFs) in this study. 

Spectral Features (SFs)  Description 
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 ) B1–4 are the four reflectance bands (j = 1, 2, …, 4). 

SF2: PC2 
PC2 is the second principal component of the principal  
component transform.  

SF3: TC1–TC2 
TC1 and TC2 are the greenness index and brightness index of the  
tasseled-cap transform. 

2.4.2. Developing a Modified CT Model 

The feature values from remotely sensed data can vary for different aquatic vegetation types as  

a growing season progresses, but it remains true that the between-class differences are far greater than 

within-class differences. Therefore, the hierarchic, structure and spectral features of a classification 

tree should be the same across different image dates, but with fluctuating value of spectral features [15,19]. 

CT model thresholds developed for one image might be inappropriate for an image acquired at a 

different time due to intrinsic and extrinsic factors. We developed a traditional classification CT model 

for each image date with the respective ground-based training samples corresponding to that date. We 

then developed modified CT modes based on two hypotheses: 

Hypothesis I: The effects of intrinsic and extrinsic factors were the same for every pixel or changed 

in a linear fashion over time. With this hypothesis we assumed there was a good linear relationship 

between SFs from the two image dates and could develop a modified CT model for one image based 

on a linear adjustment of thresholds from a traditional CT model developed for the other date image [30]. 

We defined modified model as:  

- -m
n m i n iaMCT SF k TCT SF h→ = × +  (1)

where ܥܯߙ ܶ→ ܨܵ-  is the threshold of spectral feature i in the modified CT model based on 

hypothesis I for date m, calculated using the linearly adjusted traditional CT model for date n; SFi is 
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spectral feature i (i = 1, 2, or 3) (see Table 3); k is the slope of a linearly fitted line between the SFs of 

a given aquatic cover type on images for dates m and n; TCTn-SFi is the threshold of spectral feature i 

from the traditional CT developed for image date n; and h is the intercept of a linearly fitted line 

between the values of SFs for a given aquatic cover type on images for dates m and n. 

Hypothesis II: the ranked value for spectral feature i in one date image would be linearly related  

to the ranked values for that feature in a different date image [31]. With this hypothesis we assumed 

we could developed modified CT thresholds based on a linear model developed from the ranked SF 

values for the two image dates. We define this modified model as: 

- -m
n m i n ibMCT SF p TCT SF q→ = × +  (2)

where ܾܥܯ ܶ→ ܨܵ-  is the threshold of spectral feature i in the modified CT model based on 

hypothesis II for date m, calculated using the linearly adjusted traditional model for date n; p is the 

slope of a linearly fitted line between the SFs of a given aquatic cover type on images for dates m and 

n; TCTn-SFi is the threshold of spectral feature i from the traditional CT model developed for image 

date n; q is the intercept of a linearly fitted line between the values of SFs for a given aquatic cover 

type on images for dates m and n. 

To develop the methods for modifying the models under hypotheses I and II, we created three regions 

of interest as representative sample regions for different aquatic vegetation types (Table 4). 

Table 4. Numbers of pixels and types of vegetation of three regions of interest. 

Region of Interest (ROI) Number of Pixels Class 

ROI 1 1090 Emergent vegetation 
ROI 2 2813 Floating-leaved vegetation 
ROI 3 4228 Submerged vegetation 

2.5. Model Validation 

We evaluated three traditional CT models with the corresponding three groups of ground-truth samples. 

We used two methods to assess the modified CT models: (1) we quantified accuracy relative to the 

actual ground-truth samples and (2) we looked at area agreement between the classified maps created 

using modified and traditional CT models. For the former method, we applied a confusion matrix to 

compare agreement between ground-truth samples and classification results. We calculated producer’s, 

user’s and overall accuracy, and assumed the modified CT model having the highest accuracy was the 

best model. For the latter method, the distribution areas of three vegetation types in sections II, III, IV 

and V from classification maps obtained with modified CT models were compared with the result 

obtained with traditional CT models. The best modified CT model would be the one yielding area 

results most similar to the traditional CT model in the four sections of the classification map. 
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3. Results 

3.1. Traditional CT Models Based on Measured Samples and Validation 

Classification trees constructed for the three image dates all based the first split on SF1 to identify 

emergent vegetation, the second split on SF2 to identify floating-leaved vegetation, and the third  

split on SF3 to identify submerged vegetation and water (Figure 3). The thresholds of SFs in the 

traditional CT models for July, August, and September were determined based on field data from these 

months, respectively. 

Figure 3. Traditional classification tree (TCT) model structure and thresholds of spectral 

features (SFs) resulting from the three image dates. TCT1 model is the model developed for 

the July image using field data from July (group I). TCT2 and TCT3 models were similarly 

developed for August and September images and their respective ground sample groups 

(sample groups II and III). TCT1-SF1, TCT1-SF2 and TCT1-SF3 are SF1, SF2 and SF3 
values (see Table 3) obtained from the July image. TCT2-SF1, TCT2-SF2 and TCT2-SF3 
are SF1, SF2 and SF3 values obtained from the August image. TCT3-SF1, TCT3-SF2 and 

TCT3-SF3 are SF1, SF2 and SF3 values obtained from the September image. 

 

Classification accuracies for the three models are shown in Table 5. Overall accuracies for traditional 

CT models for July, August and September were 82.1%, 79.7% and 84.4%, respectively. Among the 

misclassified samples, 83% were floating-leaved and submerged vegetation, the areal coverage of which 

was less than 20% in areas of occurrence and resulted in them being interpreted as water. These results 

suggest that it might be difficult to identify areas with low density of submerged and floating-leaved 

vegetation with moderate resolution images, such as from HJ-CCD and Landsat sensor data. 

Figure 4 shows the classified maps resulting from models for the three images dates. The maps show 

little emergent vegetation, primarily distributed along the eastern shore of Taihu Lake. Floating-leaved 

was mainly distributed in sections IV and V and submerged vegetation was most prevalent in sections II 

and III (Figure 5). From 11 July to 16 August to 26 September, the area of floating-leaved vegetation 

was stable. Submerged vegetation in section II increased in extent from 11 July to 16 August and 
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decreased in extent from 16 August to 26 September. In section III, the extent of floating-leaved vegetation 

increased while extent of submerged vegetation decreased over time. Floating-leaved vegetation in 

section IV increased from 11 July to 16 August, then decreased from 16 August to 26 September; 

Floating-leaved vegetation in section V decreased in extent over time while area of submerged vegetation 

increased from 11 July to 16 August, then stabilized (Figure 5). These results were consistent with 

information from the field survey. 

Table 5. Confusion matrix for the traditional classification tree models developed from the 

three image dates. 

Models  
Predicted 

OW EV SV FV CA (%) OA (%) 

Traditional CT 
model for July 

Measured 

OW 17 0 0 0 100.00 

82.14 
EV 0 10 0 1 90.91 

SV 6 0 38 5 77.55 

FV 3 0 5 27 77.14 

Traditional CT 
model for August 

Measured 

OW 30 0 0 3 90.91 

79.72 
EV 0 9 0 2 81.82 

SV 21 0 46 0 68.66 

FV 2 0 1 29 90.63 

Traditional CT 
model for September 

Measured 

OW 40 0 0 0 100.00 

84.36 
EV 0 9 0 2 81.82 

SV 21 0 75 2 76.53 

FV 3 0 0 27 90.00 

Note: OW = open water; EV = emergent vegetation; SV = submerged vegetation; FV = floating-leaved 

vegetation; CA = classification accuracy; OA = overall accuracy. 

Figure 4. Maps of aquatic vegetation types in Taihu Lake resulting from traditional 

classification tree models constructed for image acquired on 11 July (A), 16 August (B) 

and 26 September (C). 

(B)(A) 
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Figure 4. Cont. 

Figure 5. Areal extent of floating-leaved and submerged vegetation mapped from traditional 

classification tree models for 11 July, 16 August and 26 September 2013, for the four study 

sections in Taihu Lake. 

 

3.2. Performance and Test of Methods Applied for Hypotheses I and II 

Scatterplots for SFs for the two regions of interest with different types from the image acquired on 

11 July and 16 August under hypothesis I (Figure 6A,C,E) show little support for a linear correlation 

for either emergent or submerged vegetation types, but moderate support for floating-leaved vegetation. 

Scatterplots for the ranked SF values for the two regions under hypothesis II (Figure 6B,D,F) show 

strong support for a linear relation for all types, though a linear model seems less appropriate for 

emergent and submerged vegetation types in the tails of their SF distributions. Ranked SF values for 

all three vegetation types had overall R2 > 0.90. Equations for calculating modified threshold for SFs 

under the hypotheses I and II are shown in Tables 6 and 7. 

0

10

20

30

40

50

60

70

II III IV V II III IV V

Floating-leaved vegetation Submerged vegetation

A
re

a 
(K

m
2 )

11-Jul

16-Aug

26-Sep

(C) 



Remote Sens. 2014, 6 7452 

 

 

Figure 6. Correlations between Spectral features (SFs) of ROIs for image T1 (11 July 2013) 

and image T2 (16 August 2013) under hypothesis I and hypothesis II. Correlation between 

SF1 of ROI 1 for image T1 and image T2 under hypothesis I (A) and hypothesis II (B); 

Correlation between SF2 of ROI 2 for image T1 and image T2 under hypothesis I (C) and 

hypothesis II (D); Correlation between SF3 of ROI 3 for image T1 and image T2 under 

hypothesis I (E) and hypothesis II (F). See Table 3 for descriptions of SF1, SF2 and SF3; See 

Table 4 for descriptions of ROI 1, ROI 2 and ROI 3. 
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Table 6. Equations and resulting modified thresholds for spectral features (SFs) for models 

developed under hypothesis I. Note we did not include an equation for emergent vegetation, 

as there was no correlation between image dates (see Figure 6A) and therefore no support 

for generating modified CT model thresholds with this approach. See Equation (1) for 

definitions of mathematical terms. See Table 4 for descriptions of ROIs. 

Region of Interest 

(ROI) 
R2 Equation 

Thresholds of  ܾܥܯ ଵܶ→ଶଶ  ܨܵ-
ROI 2 0.4350 

2

1 2 1 22 0.6938 0.0851- -aMCT SF TCT SF→ = − × −  
2

1 2 2-aMCT SF→  −0.0608 

ROI 3 0.2337 
2

1 2 13 30.3112  0.0331- -aMCT SF TCT SF→ = +×  
2

1 2 3-aMCT SF→  0.7044 

Table 7. Equations and resulting modified thresholds for spectral feature (SFs) for models 

developed under hypothesis II. See Equation (2) for definitions of mathematical terms. See 

Table 4 for descriptions of ROIs. 

Region of 

Interest (ROI) 
R2 Equation 

Threshold of  ܾܥܯ ଵܶ→ଶଶ   ܨܵ-
ROI 1 0.9290 

2

1 2 1 11 0.4703 0.2232- -bMCT SF TCT SF→ = × +  
2

1 2 1-bMCT SF→  0.2467 

ROI 2 0.9937 
2

1 2 1 22  1.0485 0.0378- -bMCT SF TCT SF→ =− × −  
2

1 2 2-bMCT SF→  −0.0745 

ROI 3 0.9797 
2

1 2 1 33 0.6372 0.0067- -bMCT SF TCT SF→ = × +  
2

1 2 3-bMCT SF→  0.1290 

Figure 7. Maps of aquatic vegetation developed from the image acquired on 16 August 

2013, based on thresholds modified from the traditional CT model for 11 July under hypothesis 

I (A) and thresholds modified from tradition CT model of 11 July under hypothesis II  

(B). Note we did not map the emergent in graph A, as there was no correlation between 

image dates (see Figure 6A) and therefore no support for generating modified CT model 

thresholds with this approach. 

(A) 
(B) 
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We applied the traditional and modified classification tree models developed under each hypothesis 

to generate maps for 16 August 2013 (Figure 7). There was little similarity in the distributions of aquatic 

vegetation types mapped with modified models developed under hypothesis I with the results from the 

traditional CT model (Figure 4B) developed with the image acquired for 16 August and corresponding 

field samples (sample group II). The spatial distributions of aquatic vegetation types based on hypothesis 

II, however, were consistent with the results from the traditional CT model (Figure 4B). Areal extents 

of aquatic vegetation types in the four sections mapped with the modified CT model under hypothesis I 

were substantially larger than the areas of aquatic vegetation types mapped with the traditional CT model, 

confirming that this approach was not appropriate for adjusting a CT model to map aquatic vegetation 

types for a point in time. Spatial extents of vegetation types mapped with CT thresholds modified 

under hypothesis II were fairly consistent with the areas mapped with the traditional CT model (Figure 8). 

Figure 8. Total areas of emergent, floating-leaved and submerged vegetation in the grass-type 

sections of Taihu Lake on 16 August 2013, as estimated from these maps based on 

thresholds modified from the traditional CT model for 11 July under hypothesis I (aMCT2 

model), traditional CT model developed for 16 August from imagery and synchronous 

ground-truth samples (TCT2) and thresholds modified from the traditional CT model for 

11 July under hypothesis II (bMCT2). Note we did not include emergent vegetation in aMCT2 

model, as this vegetation feature was uncorrelated between image dates (see Figure 6A) 

and provided no support for generating modified CT model thresholds under hypothesis I. 

 

Table 8. Overall accuracies of classification results for 16 August from traditional 

CT model (TCT2) and modified CT models based on hypothesis I (ܥܯߙ ଵܶ→ଶଶ ) and 

hypothesis II (ܾܥܯ ଵܶ→ଶଶ ). UA = user’s accuracy; PA = producer’s accuracy; OA = overall 

accuracy. See Equations (1) and (2) for definitions of mathematical terms. 

Class 
TCT2 ܥܯߙ ଵܶ→ଶଶ ܥܯܾ  ଵܶ→ଶଶ  

UA (%) PA (%) UA (%) PA (%) UA (%) PA (%) 

OW 56.60 90.91 33.33 84.85 43.08 84.85 
FL 97.87 68.66 86.36 28.36 87.80 53.73 
SV 85.29 90.63 60.00 65.63 75.00 65.63 

OA (%) 79.72 48.95 65.73 
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We assessed the accuracy of the three classification maps with the ground-truth samples from 

sample group II (Table 8). Results were highest for the traditional CT model generated for August, and 

the overall accuracy of modified CT model based on hypothesis II is higher than that based on 

hypothesis I. 

3.3. Further Validation of Method II 

We verified that our approach under hypothesis II also would work for other combinations of image 

dates by developing modified thresholds for the 26 September image based on SF relationships with 

the 11 July image (Table 9) and 16 August image (Table 10). Resulting modified thresholds had small 

differences with those of the traditional CT model for 26 September (Figure 4C) and resulted in similar 

maps, as well (Figure 9, and see Figure 5C for area estimates). 

Table 9. Equations and thresholds of spectral features (SFs) in a CT model for 26 September 

modified under hypothesis II from the traditional CT model developed for 11 July. 

See Table 4 for description of ROI. See Equations (1) and (2) for definitions of mathematical 

terms. See Table 4 for descriptions of ROIs. 

Region of 
Interest (ROI) 

R2 Equation Modified Threshold 

ROI 1 0.9738 
3

1 3 11 1 0.6794 0.1241- -bMCT SF TCT SF→ = × +  
3

1 3 1-bMCT SF→  0.1581 

ROI 2 0.985 
3

1 3 1 22 0.8809 0.0322- -bMCT SF TCT SF→ = × −  
3

1 3 2-bMCT SF→  −0.0630 

ROI 3 0.9649 
3

1 3 1 33 0.5353 0.0715- -bMCT SF TCT SF→ = × +  
3

1 3 3-bMCT SF→  0.1743 

Table 10. Equations and thresholds of spectral features (SFs) in a CT model for 26 September 

modified under hypothesis II from the traditional CT model developed for 16 August. 

See Table 4 for descriptions of ROIs. 

Region of 
Interest (ROI) 

R2 Equation Modified Threshold  

ROI 1 0.9444 
3

2 3 2 11 1.3716 0.1708- -bMCT SF TCT SF→ = × −   0.1310 

ROI 2 0.9612 
3

2 3 2 22- -0.8363 0.0008bMCT SF TCT SF→ = × −   −0.0677 

ROI 3 0.9796   0.1786 

We calculated areal extents of aquatic vegetation types in the four sections based on the maps developed 

for 26 September (Figure 10). Results show close agreement among three maps in total area calculated 

by vegetation type and sections. The greatest difference in area measurements was less than five square 

kilometers. We used ground-truth samples from September (sample group III) to assess user’s, producer’s, 

and overall accuracies for the maps generated for 26 September (Table 11). Overall accuracies ranged 

from 80% to 84%, corroborating earlier indication that the approach used for hypothesis II was effective 

and feasible for modifying a traditional CT model to accommodate other image dates. 

3

2 3 1-bMCT SF→

3

2 3 2-bMCT SF→

3

2 3 2 33- -0.8493 0.0767bMCT SF TCT SF→ = × + 3

2 3 3-bMCT SF→
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Figure 9. Maps of aquatic vegetation developed for image on 26 September 2013, based 

on thresholds modified from the traditional CT model of 11 July (A) and 16 August (B) 

under hypothesis II. 

 Figure 10. Total area of emergent, floating-leaved and submerged vegetation in the  

four sections of Taihu Lake, estimated from maps developed for 26 September 2013, based 

on the traditional CT model for September (TCT3) and on thresholds modified from the  

11 July (MCT3A) and August 16 (MCT3B) models under hypothesis II. 

 

Table 11. Accuracies calculated from ground-truth samples (sample group III) from 

September for results from the traditional CT model for 26 September and from thresholds 

modified from the July 11and August 16 models under hypothesis II. UA = user’s accuracy; 

PA = producer’s accuracy; OA = overall accuracy. 

Class 

Traditional CT Model for 
26 September 

Modified Model from 11 July 
Thresholds 

Modified Model from 
16 August Thresholds 

UA (%) PA (%) UA (%) PA (%) UA (%) PA (%) 

OW 62.50 100.00 58.82 100.00 58.82 100.00 
EV 100.00 81.82 100.00 81.82 100.00 81.82 
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Figure 11. Cont. 

Class 

Traditional CT Model for 
26 September 

Modified Model from 
11 July Thresholds 

Modified Model from 
16 August Thresholds 

UA (%) PA (%) UA (%) PA (%) UA (%) PA (%) 

SV 100.00 76.53 97.30 73.47 95.95 72.45 
LV 87.10 90.00 85.71 80.00 85.71 80.00 

OA (%) 84.35 81.01 80.45 

4. Discussion 

4.1. Intrinsic and Extrinsic Influences on Model Performance 

Past research indicated that traditional CT models developed for one time period or image date could 

be inadequate when applied directly to other dates [20,22]. This is because the classification accuracy 

of CT models can be influenced substantially by intrinsic factors, such as aquatic vegetation conditions, 

and extrinsic factors, such as environmental or physical conditions. The intrinsic factors affecting  

the performance of a CT model can be related to changes in plant structural characteristics and foliar 

pigment content associated with phenological development. The extrinsic factors affecting the performance 

of a CT model are related to atmospheric conditions, water transparency, sun-view angle and other 

factors that vary with time and influence the remote sensing signal in ways independent of the condition 

of the aquatic vegetation [32,33]. Atmospheric conditions, which have a direct impact on remotely sensed 

reflectance, exhibits significant differences over time, especially in the wet season when atmospheric 

water vapor remains high [34]. The study by Zhao et al. [20] indicated also that 71.1% and 28.9% of 

the instability of traditional CT models originated from extrinsic and intrinsic factors, respectively, 

when applied to different time periods. Overall, there are many uncertainties and errors involved in 

applying the same CT model to identify aquatic vegetation types for different time periods. 

We were unable to find any previous research studying whether each pixel is affected by the same 

intrinsic and extrinsic factors from one image date to another. If the effects of intrinsic and extrinsic 

factors on each pixel were the same or similar, there would be a good linear relationship between the 

SFs of two images dates, and the thresholds of SFs in a CT model generated from one image date 

could be linearly adjusted to fit another date (hypothesis I). However, our analysis showed that  

this assumption could not always be established (see Figure 6A,C,E) and we conclude: (1) that such  

an approach should be considered only when there is strong correlation between the SFs of two date 

images for a vegetation class of interest and (2) there are differences in the effects of intrinsic and 

extrinsic factors on each pixel over time that challenge the use of a modified model with an approach 

based on hypothesis I. 

4.2. Influence of Vegetation Type on the Performance of CT Model Modified under Hypothesis II 

Our study indicated the approach developed under hypothesis II was effective for modifying model 

thresholds of SFs for mapping aquatic vegetation types in Taihu Lake with HJ-CCD imagery for all 

tested date combinations. With the approach it is crucial to select good representative sample regions 

for each vegetation type to modify model thresholds. For example, we selected five regions of interest 
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for floating-leaved vegetation from the map classified for 11 July to test effects on a modified model 

for 16 August. The regions were equivalent in size, but had different percent cover by floating-leaved 

vegetation (Figure 11 and Table 12). SF2 values for pixels in the five regions of interest for images for 

11 July and 16 August were extracted and sorted in descending order and five linear models were 

established to adjust SF2 values for modeling August aquatic vegetation classes. We also calculated 

differences between SF2 values for pixels from the traditional and modified models (Table 12). 

The results suggested that regions of interest covered by larger proportions of floating-leaved 

vegetation would lead to smaller difference between SF2 values in the modified and traditional CT 

models. Therefore, we should select sample regions with pure pixels of the target vegetation type to 

the extent possible to develop a better modified CT model with the approach under hypothesis II. 

Figure 11. Representative sample regions for floating-leaved vegetation selected from  

the classification map of 11 July. Blocks from left to right correspond with regions A–E in 

Table 12. 

 

Table 12. Proportions of each representative sample region covered by floating-leaved 

vegetation, the associated modified threshold for calculating August SF2 based on the 

traditional July CT model, and resulting difference between modified and traditional 

August values for SF2. Note, training regions correspond with the blocks shown in Figure 11. 

Training Regions % of Training  Threshold of  Difference 

A 97.83 −0.0836 0.0036 
B 81.34 −0.0701 0.0099 
C 52.51 −0.0674 0.0126 
D 38.06 −0.0382 0.0418 
E 15.80 −0.1486 0.0686 

4.3. Lake Management and Application 

Eutrophication is one of the most serious problems in inland lakes, especially in Taihu [35]. Studies 

have reported in the literature that aquatic vegetation can purify water and transform aquatic ecosystems 

from a turbid algal-dominated state to a clear-water, plant-dominated state. However, an excessive amount 

of macrophytes, especially floating-leaved vegetation, can cause silting through the addition of large 

amounts of plant material to the lake bottom and the release of pollutants into the lake water when the 

plants die and decay, even resulting in grass-type lakes shifting to algae-type Lakes [36]. Therefore, it 

is important to monitor in real time the types and distribution areas of aquatic vegetation in Taihu Lake 

and to provide helpful information for effective management of aquatic vegetation, such as through 

Open water Emergent vegetation Submerged vegetation Floating-leaved vegetation

2

1 2 2-bMCT SF→
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harvesting and restoration, especially in the growth stage of aquatic vegetation (from June to October). 

Past research has also suggested that aquatic vegetation harvesting can be a very cost-effective method 

for removing excessive nutrients and protecting lakes from this adverse shift. Through such efforts, 

nutrients contained in the plant tissues are removed from lake ecosystem [36–38]. Combined with 

enough ground-truth samples, a CT model can be developed based on remote sensing images to monitor 

the distribution of aquatic vegetation. In most cases there are adequate remote sensing images available 

to monitor lakes through time, but a lack of corresponding ground-truth samples. It can therefore be 

difficult to develop a corresponding CT model to accurately map the distribution of aquatic vegetation. 

In this study, results showed an approach based on a linear relation of ranked values of spectral 

features for two image dates offered a feasible approach for mapping aquatic vegetation form remote 

imagery when corresponding ground-truth samples were not available. This provides the means to monitor 

the composition and distribution of aquatic vegetation types in shallow lake in near-real time to inform 

lakes management decisions. 

5. Conclusions 

In this paper, three traditional classification tree models of 11 July, 16 August and 26 September were 

developed based on three spectral features and corresponding group-truth samples for mapping aquatic 

vegetation types in Taihu Lake. Overall accuracies of three models were 82%, 79% and 84%, respectively. 

Based on traditional classification tree model, we presented two approaches for modifying the CT 

thresholds to generate maps of aquatic vegetation types for image dates when no ground-truth samples 

would be available. By test and verification, we found that we could modify CT thresholds successfully 

with linear models derived from the ranked values of spectral features from two image dates to produce 

maps. In comparison, an approach based on an assumed directed linear relationship between spectral 

feature values calculated for pixels from two image dates did not provide a good foundation for 

modifying CT thresholds. 
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