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Abstract: Drought is a complex natural hazard which can have negative effects on 

agriculture, economy, and human life. In this paper, the primary goal is to explore the 

application of the Gravity Recovery and Climate Experiment (GRACE) gravity satellite data 

for the quantitative investigation of the recent drought dynamic over the arid land of 

northwestern China, a region with scarce hydrological and meteorological observation 

datasets. The spatiotemporal characteristics of terrestrial water storage changes (TWSC) 

were first evaluated based on the GRACE satellite data, and then validated against 

hydrological model simulations and precipitation data. A drought index, the total storage 

deficit index (TSDI), was derived on the basis of GRACE-recovered TWSC. The 

spatiotemporal distributions of drought events from 2003 to 2012 in the study region were 

obtained using the GRACE-derived TSDI. Results derived from TSDI time series indicated 

that, apart from four short-term (three months) drought events, the study region experienced 

a severe long-term drought from May 2008 to December 2009. As shown in the spatial 

distribution of TSDI-derived drought conditions, this long-term drought mainly concentrated 

in the northwestern area of the entire region, where the terrestrial water storage was in heavy 

deficit. These drought characteristics, which were detected by TSDI, were consistent with 

local news reports and other researchers’ results. Furthermore, a comparison between TSDI 

and Standardized Precipitation Index (SPI) implied that GRACE TSDI was a more reliable 
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integrated drought indicator (monitoring agricultural and hydrological drought) in terms of 

considering total terrestrial water storages for large regions. The GRACE-derived TSDI can 

therefore be used to characterize and monitor large-scale droughts in the arid regions, being 

of special value for areas with scarce observations.  
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1. Introduction 

Drought, as a complex natural hazard, develops slowly but can last for months or even years, and 

possibly causes more serious harm compared with other natural disasters (e.g., earthquakes and floods). 

Drought seriously damages agricultural production, ecosystems, and economic and social conditions [1]. 

In recent years, global climate change had a direct effect on the frequency and intensity of extreme 

drought events in many regions across the world, especially in semi-arid areas such as northwestern 

China [2]. During the first decade of the 21st century, China suffered from a series of severe droughts [3]. 

In China, the annual average crop area that suffered from drought was of 62.0 million acres in the 

beginning of this century, in comparison to 28.7 million acres in the 1950s [4]. The economic losses are 

also huge. For example, the annual average grain production loss rose to 34.9 million tons in the first 

decade of the 21st century, a loss which is 703% larger compared to that in the 1950s [4]. Reported direct 

economic losses from droughts were over 16 billion USD in 2009 in China [5]. In the face of increasingly 

severe droughts, it is urgent to take effective measures to continuously monitor this phenomenon.  

The arid region of northwestern China, located in the hinterland of the Eurasian continent [6], receives 

scarce annual precipitation. Drought, a major natural disaster in this region, has deep and extensive 

influences on human society. Due to global warming, extreme precipitation and temperature events occur 

much more frequently than ever before in this region [7]. Those events make the climate increasingly 

complex, inducing many more drought disasters. Drought has seriously hindered local economic 

development and even threatened human lives. 

In China, the traditional methods for drought monitoring are based primarily on hydrological and 

meteorological data. For example, using the Standardized Precipitation Evapotranspiration Index (SPEI) 

with monthly precipitation and air temperature at over six hundreds sites over China, Yu et al. [8] found 

that extreme droughts occurred more severely and more frequently during the last three decades in 

western Northwest China, and a significant drying trend was detected over the central and eastern regions 

of Northwest China. Zhai et al. [9] analyzed the frequency of drought occurrence in Gansu Province 

(32.59°–42.79°N and 92.76°–108.71°E), which is a part of the arid land of northwestern China, in the 

last 50 years using the Standardized Precipitation Index (SPI), and concluded that short time droughts 

severely affected urban and rural livelihoods as well as agricultural development. The strengths of these 

traditional methods lie in their simplicity, as they are based solely on hydrological and meteorological 

data. However, drought monitoring based on these traditional methods may be inaccurate in some 

regions that have complex terrain or fewer measuring sites. 

With the development of remote sensing technology, the methods to obtain drought information using 

multi-temporal, multi-angle, and multi-spectral satellite data at regional scales are maturing gradually. 
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For example, Zhang et al. [10] monitored meteorological drought over northern China using  

multi-sensor microwave remote sensing data, which was validated with the results from different 

timescale SPIs in northern China, and concluded that microwave remote sensing drought indices 

performed better for short-term drought monitoring. The Gravity Recovery and Climate Experiment 

(GRACE) satellite provides new gravity data that can be used to monitor terrestrial water storage changes 

(TWSC), which is vertically divided into five parts: groundwater, soil moisture, surface water, snow/ice 

water and biological water storage [11]. Based on the spatiotemporal variations in terrestrial water 

storage (TWS), drought characterizations can be obtained. This method has been successfully applied in 

some regions. Yirdaw et al. [12] introduced the GRACE-derived total storage deficit index (TSDI) for 

drought characterization in the Canadian Prairie. Leblanc et al. [13] combined GRACE-derived TWSC 

with in situ and modeled hydrological data to present water deficit propagation and increasing droughts of 

different types in the early 21st century in southeast Australia. Chen et al. [14] monitored the extreme 

drought event in 2005 in the Amazon river basin using the GRACE satellite data. Considering the 

applications mentioned above, GRACE satellite data has proven resourceful for drought characterization. 

As a fact, there are few hydrological and meteorological stations which are unevenly distributed 

across the arid land of northwestern China. It is therefore hard to accurately monitor the extent of drought 

using traditional drought monitoring methods. The objective of this paper is to assess the recent droughts 

over northwest China using the GRACE gravity satellite data. This data was used to recover the TWSC 

in the study area from 2003 to 2012. The GRACE-derived TWSC was thereafter validated against water 

storage changes modeled by the hydrological models as well as precipitation observations in the arid 

region. Based on the GRACE-derived water storage changes, the drought indicator TSDI was calculated 

and used to characterize the spatiotemporal distribution of drought in northwestern China.  

GRACE-derived drought results were compared with the news recorded, previous studies, and SPI 

monitoring results. Our results will provide scientific information for drought monitoring in large but 

data-scare regions, such as northwest China. 

2. Data and Methods 

2.1. Study Area 

The arid land of northwestern China [15] represents a typical arid region of China (see Figure 1). The 

western and northern edges of the region lie along the national boundaries of China, while the southern 

edge lies along the border of Xinjiang Uygur Autonomous Region (Xinjiang hereafter) and the eastern 

edge is bounded by the Helan Mountains. This region covers an area of 2,200,000 km2, extending 

between the longitudes 73°–108°E and latitudes 34°–50°N. It accounts for 22% of the total area of China, 

including Xinjiang, the Hexi Corridor region of the Gansu Province (Hexi Corridor hereafter), parts of 

Ningxia Hui Autonomous Region, and the western part of the Inner Mongolia Autonomous Region.  

The study region is located in the center of the Eurasian continent far away from the ocean. It is 

surrounded by high mountains, and consists of alternating high mountain ranges and dry basins. 

Generally, desert plains and foothills are found in the south part, moderate-height mountains in the 

middle, and high mountains in the north [15]. The climate is of a typical continental arid type, with 

significant westerly winds, little precipitation, and large potential evapotranspiration, leading to an 



Remote Sens. 2015, 7 1024 

 

extensive distribution of Gobi deserts and loess sediment deposits. The local climate varies with the 

complex topography and geological structure: moving from lower basin to mountain, a significant 

vertical increment in precipitation has been observed of up to 500 mm of annual precipitation in the 

Tianshan, the Altai, and the Qilian Mountains. In contrast, the temperature in the basin plains is higher 

than in the mountains. Precipitation mostly happens in summer, with the exception of some special 

regions such as the northwestern part, where more precipitation is concentrated in spring and less in 

winter. Seasonal temperatures are widely varied; the temperature quickly goes up in spring, peaks in 

summer, rapidly drops down in autumn, and reaches a minimum during winter. 

Rich precipitation in the mountains forms runoff, and then is routed into inland rivers and lakes. These 

bodies provide surface water resources to the region’s basin plains. The hydrological cycle system is 

closed, as there are no surface or subsurface flow connections with any global ocean or other catchment 

areas. Water is frequently exchanged between surface water, soil moisture, and groundwater in the 

piedmonts. Meanwhile, rapid population growth in this arid land exacerbates the depletion of water and 

is harming the fragile local water system.  

 

Figure 1. Map of the arid land of northwestern China. 

2.2. GRACE Data 

GRACE Level-2 RL05 data, including time series of spherical harmonic coefficients of the Earth’s 

gravity field, is currently available at three GRACE data processing centers: CSR/UTA (University  

of Texas at Austin), GFZ/ISDC (Information System and Data Center), and JPL/PO.DAAC (Physical 

Oceanography Distributed Active Archive Center). RL05 data, with the same signals in RL04, has been 

improved with significantly noise reduction. This paper uses the GRACE Level-2 RL05 data provided 

by CSR, which is then truncated to a degree and an order of 90. The data spans from January 2003 to 

December 2012, with the exceptions of June 2003, January and June 2011, and May and October 2012 

due to data loss. Given that the C20 coefficient measured by satellite laser ranging (SLR) is much better 

than that in RL05, C20 in RL05 was replaced with SLR C20 [16]. Also, due to the reference frame used 
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in the determination of GRACE satellite gravity field, gravity field coefficients of degree 1 in RL05 were 

processed as zeros. However, the degree 1 information may have a significant impact on the recovery of 

surface mass variations. To improve the accuracy and precision in deriving TWSC, the original 

gravitational coefficients of degree 1 in RL05 were replaced by those calculated by Swenson et al. [17]. 

Monthly time-variable gravity coefficients were calculated by removing the temporal mean of the 

spherical harmonic coefficients from January 2003 to December 2012. A de-correlation filter [18] was 

applied to reduce the effects of noisy north-south stripes in the monthly time-variable coefficients. 

Correlated noises (north-south stripes) were removed from coefficients for orders (m) greater than 15 

using a 5th order polynomial, which was fit as a function for each odd or even set for a given order. 

Then, a fan filter [19] with an averaging radius of 300 km was used to reduce other remaining noises 

while attempting to maintain the real signal. Subsequently, these processed spherical harmonic 

coefficients were transformed into gridded data at a 1 by 1 degree spatial resolution, indicating the 

Earth’s surface mass variations, which, in most regions, were mainly caused by the redistribution of 

water on continents or in oceans. The results were further improved by glacial isostatic adjustment 

(GIA), which was small in the study region, as per the work of Paulson et al. [20]. The mass variations 

were then converted to TWSC in units of equivalent water height (EWH). The Albers equal area conic 

projection and WGS 1984 datum were used to project the 1 by 1 degree gridded data, which was then 

interpolated into a finer resolution of 10 km by 10 km using the Kriging method. 

2.3. Hydrological Models Data 

To evaluate TWSC measured by GRACE, the results were compared with TWSC from the four 

hydrological models: three models of the Global Land Data Assimilation System (GLDAS) [21] (Noah, 

VIC, and Mosaic) and the Climate Prediction Center (CPC) model. These hydrological models have 

been widely used for global and regional hydrological studies. For example, GLDAS soil moisture, snow 

water equivalent, and canopy water storage data were jointly used to separate groundwater storage 

changes from GRACE-derived TWSC [22]. Syed et al. [23] estimated global TWSC in major river 

basins using GLDAS data and compared the results with GRACE-derived TWSC. Based on GLDAS 

and CPC models data and GRACE derived TWSC, Feng et al. [24] evaluated the groundwater depletion 

in North China. However, GLDAS models did not provide surface water and groundwater storage, while 

the CPC model could provide soil moisture content but not snow water equivalent. In this paper, we 

averaged the four versions of TWSC from hydrological models as the best estimate of TWSC. In order 

to be comparable with GRACE TWSC, model-based monthly TWS were converted to spherical 

harmonic coefficients with a degree and order of 90 [25]. The exact same data processing procedure was 

followed as was done with GRACE data. The temporal mean of the study period of January 2003 to 

December 2012 was computed and the Fan filter with a 300 km radius was applied. Since the 

hydrological model data had no stripes errors, no de-correlation filter was used for the model data. After 

the same projection and resampling into 10 km by 10 km resolution was applied, a comparable  

model-based TWSC dataset was obtained. 

There are only a limited number of hydrological and meteorological sites in the large study region, which 

are insufficient to verify GRACE results. The gridded hydrological model outputs, which were globally 

validated, might be one of the alternatives to verify the GRACE TWSC. Figure 2 shows the four sets of 
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TWSC derived by models in this study region. Among them, the three GLDAS hydrological models were 

not really independent, and generally provided consistent time-series changes, whereas large differences in 

magnitude still exist under dry and wet conditions (e.g., in summer and winter). There are obvious differences 

in phase and magnitude between GLDAS models and CPC. This may be attributed to variances in model 

structure, the forcing data used, and the components of the TWSC. The RMSs from Noah, VIC, Mosaic and 

CPC were 13 mm, 23 mm, 22 mm, and 6 mm, respectively. The average RMS was 14 mm. 

 

Figure 2. Region-averaged terrestrial water storage changes (TWSC) derived by models, 

Noah, VIC, Mosaic and CPC. 

2.4. Meteorological Data 

In the ecologically fragile arid land of northwestern China, surface and ground water resources are 

scarce. Precipitation is the primary water source for local agriculture; therefore, precipitation has a 

significant influence on the local agricultural and ecological development. In this study, the relationships 

between TWSC, TSDI, and meteorological factors, including precipitation and air temperature, were 

examined. Daily precipitation and air temperature data were provided by the National Climate Centre of 

China Meteorological Administration. There were a total of 102 weather stations inside and around the 

study region (see Figure 1), with data spanning between 2003 and 2012. 

The daily station data was interpolated by the Meteorological Distribution System for  

High-Resolution Terrestrial Modeling (MicroMet) [26] which, as a quasi-physically based  

and high-resolution meteorological model considering topographic effects to meteorological variables, 

could effectively perform spatial interpolation for variables as precipitation and air temperature. In this 

paper, the SRTM 90-m DEM was resampled to 10 km to drive the MicroMet model. 

The Barnes objective analysis scheme and corrections were used in MicroMet to interpolate 

precipitation and air temperature. The reference gridded values were obtained using the Barnes objective 

analysis scheme with observed records and elevations. Then, a set of adjustment factors was used to 

calculate the final gridded precipitation/air temperature considering elevation effects, following 

Equations (1) and (2), respectively. ܲ = ܲ ቈ1 + χ(ݖ − )1ݖ − χ(ݖ − ) (1)ݖ
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Here, P is the final interpolated precipitation (mm), P0 is the reference precipitation (mm) at the 

station whose elevation is z0 (m), z the elevation (m) at the grid to be interpolated, and χ (km−1) is the 

precipitation adjustment factor. ܶ = ܶ − ݖሾ߁ − ሿ (2)ݖ

T0 is the reference air temperature (°C) at the reference elevation of z0 (m), T is the final interpolated 

air temperature (°C) at the elevation of z (m), and ߁ (°C·km−1) is the lapse rate of air temperature. 

The precipitation-elevation adjustment factors (χ in Equations (1) and (3)) and air temperature lapse 

rate (߁ in Equation (2)) vary seasonally and geographically. The default monthly air temperature lapse 

rates (߁ in Equation (2)) were calculated by Kunkel [27], which were generally appropriate in the Northern 

Hemisphere and also used in this paper. Nevertheless, the adjustment factors for precipitation were calculated 

following Equation (3) with monthly station precipitations and elevations at 102 meteorological stations 

for the period between 2003 and 2012. Then, weighted least-squares regression was used to obtain monthly 

adjustment factors. ଵܲ − ଶܲଵܲ + ଶܲ = χ(ݖଵ − ଶ) (3)ݖ

Here, P and z are the precipitation and elevation at the station, and the subscripts represent individual 

stations. The monthly precipitation adjustment factors in the study area are presented in Table 1. 

Table 1. Monthly precipitation-adjustment factors in the arid land of northwestern China. 

Month January February March April May June 

χ (km−1) 0.000 0.000 0.000 0.015 0.103 0.150 

Month July August September October November December 

χ (km−1) 0.169 0.189 0.177 0.025 0.000 0.000 

2.5. Total Storage Deficit Index 

As drought brings countless problems on human societies [28], it is necessary to take effective measures 

to monitor the spatial scope, duration, and intensity of these phenomena so that mitigation plans can be 

made against the adverse effects. There are many drought-related indexes, including the Parmer Drought 

Severity Index (PDSI) [29], the Soil Moisture Deficit Index (SMDI) [30], the Standardized Precipitation 

Index (SPI) [31], and the Surface Water Supply Index (SWSI) [32] to characterize different types of 

drought-related disasters. These indicators have their own strengths and limitations. The PDSI is widely 

used and applicable for long-term weather conditions that are abnormally dry and wet. It requires inputs 

such as precipitation, air temperature, and other local hydrological quantities. The SMDI, usually 

monitoring agricultural drought, is advantageous in high temporal and spatial resolution, but is frequently 

restricted in use by the absence of high quality soil moisture data. The SPI has its own merit in its easy 

computation but it does not take into account the temperature anomalies that are also critical for drought 

monitoring. The SWSI, which is calculated from precipitation and from the characteristics of a variety of 

surface water sources (reservoir storage, snow water and stream flow), is primarily applied to the areas where 

precipitation is not the sole water source. 

In this paper, we used TSDI, which was introduced by Yirdaw [12] and can be calculated from 

GRACE-derived TWSC, to create a pictorial representation of long-term dryness and wetness. The 



Remote Sens. 2015, 7 1028 

 

computation of TSDI included the computation of cumulative monthly total storage deficits in the dry 

periods, and the determination of a drought monograph. The TSDI appeared to be more consistent with 

PDSI [33], which is popularly employed in drought assessment. 

The monthly total storage deficit (TSD) in the study area was expressed mathematically as in 

Equation (4) by using the mean, maximum, and minimum water storage anomalies of each month (January 

to December) during the 10 years in the study period (2003–2012). ܶܵܦ, = ,ܣܵܶ − ܣܵܶݔܽܯܣܵܶܯ − ܣܵܶ݊݅ܯ × 100 (4)

Here, TSDi,j is the total storage deficit (%) of the jth month of the ith year, TSAi,j is the monthly total 

water storage anomaly (mm) derived from GRACE data, MTSAj is the mean total storage anomaly for the 

jth month (mm), MaxTSAj is the long-term maximum total storage anomaly (mm) for the jth month, and 

MinTSAj is the long-term minimum total storage anomaly for the jth month (mm). In this study, i ranged 

from 2003 to 2012 and j from January to December. The TSD could therefore be comparable across seasons. 

Depending on its value in the range between −100 and 100, the TSD was able to indicate the conditions 

from very dry to very wet. Drought might occur if the state of dryness continued for a prolonged period of 

time, thus affecting crop growth and other human activities. 

Generally, a drought will gradually disappear if the dry conditions cease to be present in the following 

months. Thus, the TSDI was established by considering the previous drought status and the current 

condition of total storage deficit as given in Equation (5) [12]. ܶܵܫܦ =  × ିଵܫܦܵܶ + ݍ ×  (5)ܦܵܶ

Parameters p and q are determined as per the cumulative TSD plot during the drought period using 

Equation (6).  = 1 − ݉݉ + ܾ ݍ = ݉ܥ + ܾ (6)

Here, m indicates the slope and b the intercept, both obtained from the cumulative TSD curve. The 

parameter C stands for the intensity of the dryness condition (drought monograph) which can be retrieved 

from the best-fit line of the cumulative TSD during the dryness period. Palmer defined four drought 

classifications, and assigned corresponding values to parameter C: −4.0 for extreme drought, −3.0 for 

severe drought, −2.0 for moderate drought, and −1.0 for mild drought [33]. However, it should also be 

pointed out there are no uniform criteria to define the drought monograph [33]. In this study, C was 

calculated following the method introduced by Palmer [33] and Yirdaw [12], where the parameter  

was determined by the cumulative TSD in conjunction with SPI, the latter being calculated from site 

precipitation records in and around the study area.  

Developed by McKee et al. [31], the SPI was widely used for detecting both dry and wet conditions. 

Mathematically, and in accordance with the cumulative probability of a given rainfall event occurring at 

a station, the SPI can be determined for multiple time scales (1, 3, 6, 9, 12, 24, 48 months). A long-term 

precipitation record (at least 30 years) for a station was first fitted to a Gamma probability density function 

and then transformed into a cumulative probability function. The SPI was a random probability index 

with zero mean and with a variance equal to that of this probability distribution. 
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ܫܲܵ = ܹ − ܥ + ଵܹܥ + ଶܹଶ1ܥ − ݀ଵܹ + ݀ଶܹଶ + ݀ଷܹଷ , 
ܹ = ቊ √−2 lnܲ ݎ݂ ܲ ≤ 0.5ඥ−2 ln(1 − ܲ) ݎ݂ ܲ > 0.5 

(7)

P is the probability of exceeding a threshold and can be calculated following the literature [1]. The other 

parameters, C0, C1, C2, d1, d2, and d3 are constants, taking the values of 2.515517, 0.802853, 0.010328, 

1.432788, 0.189269 and 0.001308 [1], respectively. 

The SPI has a negative value for drought, and a positive one for wet conditions. As the dry or  

wet conditions become more severe, the index becomes more negative or more positive. The drought 

classification, based on the SPI, is shown in Table 2 [31]. 

Table 2. Drought classification based on Standardized Precipitation Index (SPI). 

Class SPI 

Mild drought −1.0 < SPI ≤ −0.5
Moderate drought −1.5 < SPI ≤ −1.0

Severe drought −2.0 < SPI ≤ −1.5
Extreme drought SPI ≤ −2.0 

3. Results 

3.1. GRACE-Recovered TWSC 

Using GRACE satellite data, the TWSC over the arid land of northwestern China were obtained from 

2003 to 2012. Prior to calculating the TSDI index, the GRACE TWSC need to be validated to ensure their 

accuracy within the target region. In this paper, the GRACE TWSC were compared with hydrological 

models TWSC and precipitation. 

Figure 3 depicts the comparison between the monthly GRACE-derived and hydrological model-derived 

TWSC time series. Note that the model-derived TWSC were the result of averaging outputs of four 

hydrological models. GRACE TWSC varied from −35 to 33 mm, whereas model TWSC varied from 

−25 to 36 mm. The monthly TWSC from both sources showed obvious seasonal variations and agreed 

relatively well, with peaks in summer (June to August) and valleys in winter (December to February). As 

there were no surface and ground water components in the model-derived TWSC, the differences in 

amplitude could be discerned when compared with the GRACE TWSC. In the study region, surface and 

ground water was recharged mainly in the wet period, in temporal agreement with the changes in soil 

moisture. As a result, the two source TWSC agreed in trend but differed in amplitude as illustrated in 

Figure 3, where significant terrestrial water storage losses occurred between 2008 and 2009, and have 

been restored since 2010. 
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Figure 3. Comparison between terrestrial water storage changes (TWSC) derived by 

GRACE and hydrological models. 

 

Figure 4. Spatial patterns of monthly averaged TWSC during 2008 and 2009. (a) GRACE; 

(b) hydrological models. 

We also mapped the corresponding spatial patterns of TWSC by aggregating monthly TWSC during 

2008 and 2009, as shown in Figure 4. The spatial distributions agreed well with each other (Figure 4a,b) 

with similar significant losses in the northwestern part of the study region during the two years. However, 

the GRACE results (Figure 4a) showed a maximum loss of around 47 mm/month, while the model results 

(Figure 4b) showed a maximum of only 16 mm/month. The underestimation can be attributed to 

incomplete TWSC components in the model estimation. The GRACE method was able to detect the total 

water storage changes, including groundwater and surface water, both of which were not taken into 
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account by the hydrological modeling method. The groundwater and surface water in the northwestern 

part of the study region was depleted in those years, and it accounted for about two thirds of the total 

water storage changes derived by GRACE. In opposition, groundwater and surface water in the east 

region was recharged during 2008 and 2009. Moreover, the errors in GRACE recovery and models also 

led to the differences in amplitude between them. 

Precipitation anomalies were calculated by removing the mean of the period of January 2003 and 

December 2012 from every monthly precipitation value. Monthly GRACE TWSC and precipitation 

anomalies are shown in Figure 5a, which revealed a relatively good agreement between them,  

with a correlation coefficient of 0.51. The maximum synchronously appeared around June to August and 

the minimum around November to next January. GRACE TWSC and precipitation anomalies both 

showed similar periodic change trends throughout the study period. Most amounts of water were 

accumulated during the wet season (May–September) while they were mostly lost during the dry season  

(October–April). 

 

Figure 5. GRACE-derived TWSC and precipitation: (a) GRACE-derived TWSC and 

precipitation anomalies; (b) yearly annual precipitation. 

For the entire study period, GRACE TWSC decreased slightly. However, a significant decline in 

TWSC was found between 2005 and 2009, with a trend of −0.59 mm/month. The red solid line in Figure 

5a represents the best linear fit to the GRACE TWSC in the period of 2005–2009. In particular, water 

storage was remarkably reduced in many months during 2008–2009, even in the wet season, which 

contributed to the non-seasonal variability. The annual precipitation in the same period is displayed in 

Figure 5b. In those 10 years, annual precipitation changed year by year. The best linear fit line for the 

annual precipitation was also obtained for the period of 2005–2009, which shows the same obvious 
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decline as the GRACE TWSC. While the annual average precipitation in the arid land of northwestern 

China was less than 200 mm [34], annual precipitation in 2008 and 2009 was far below the average 

(~130 mm), while in 2010 it came back to the average (~200 mm). Along with the increase in 

precipitation, TWSC increased between 2010 and 2012. As shown in Figure 5b, precipitation in 2006 

was about 137 mm, far below the average. However, the total water storage in the study region increased 

during many months in 2006 (Figure 5a). Even more than precipitation, evapotranspiration and runoff 

were both critical in regional water allocations. Moreover, snow/ice melt water were also crucial to 

supply the local water storage in the arid area of northwest China. Despite less precipitation, the joint 

effects of those factors increased the total water storage in 2006. Overall, the figures showed a good 

agreement between GRACE TWSC and precipitation, which could be explained in terms of the 

precipitation controlling the water storage in the arid lands. Although we lacked TWS observations as 

well as evapotranspiration and runoff data, the indirect comparisons support the capability of GRACE 

data in detecting trend changes, seasonal, and extra non-seasonal variations of TWSC in arid lands. 

The high correlations observed between GRACE TWSC and hydrological model-derived TWSC, and 

between GRACE TWSC and precipitation, confirm that TWSC estimated by GRACE are reliable and 

can be used for further calculations of drought intensity and its characteristics. 

3.2. Drought Events Detected by GRACE TSDI 

3.2.1. Temporal Drought Characteristics 

Figure 5a shows that the TWSC in the study region had an obvious declining trend from 2005 to 

2009, reaching the lowest in 2008 and 2009. The TSD was calculated from the GRACE-derived TWSC 

using Equation (4) (Figure 6). The TSD values between April 2008 and December 2009 were all negative 

with a minimum of −29.3%, implying that the study area was dry during this period. Because the dry 

conditions lasted for months, and there was not enough water to recharge the water storage of the whole 

region, drought might have occurred from April 2008 until December 2009. The duration of dry 

conditions was the longest throughout the 10 years. Assuming that April 2008 was the beginning of the 

dry conditions, TSDs between April 2008 and December 2012 were used to obtain the parameters in 

Equations (5) and (6). The accumulated TSDs from April 2008 to December 2012 were computed 

(shown in Figure 7) to obtain the critical parameters (m, b) that were used to calculate p and q in 

Equation (5). The best fit line was obtained from the plot of the cumulative TSD during the beginning 

time (April 2008) and the month with the maximum cumulated TSD (April 2010). The parameters m 

and b in Equation (6) were obtained by the best fit line of the cumulative TSD plot (the solid line in 

Figure 7), where m was the slope (−17.352), and b was the y-intercept (−13.459). The critical parameter 

C in Equation (6) was obtained from the SPI which considered only precipitation across the study region. 

In order to obtain the dry and wet conditions of the arid land of northwestern China from April 2008 

to December 2009, by using monthly precipitation data, the SPI values were calculated separately for 

each meteorological station on a 6-month time scale (SPI-6) for a period of 50 years (1963–2012). Based 

on the SPI-6 values, approximately 95.9% of the arid land stations suffered from drought between April, 

2008 and December, 2009 as shown in Figure 8. Approximately 25.8% of the stations reported 

conditions of extreme drought, while 33.0% of stations reported severe drought. Moderate and mild 
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drought was reported by 26.8% and 10.3% of the stations, respectively. Based on these percentages, we 

defined the drought event during April 2008 to December 2009 as a severe dry condition, with a C value 

of −3. The cumulative TSD declined gradually from −5 in April 2008 to −398 in April 2010, after which 

it began to increase. The best-fit line (the solid line in Figure 7, labeled “−3”) of the cumulative TSD 

between April 2008 and April 2010 was defined as the upper limit of severe dryness in the drought 

monograph. Given that the horizontal line of zero in Figure 7 represents “near normal” conditions, the 

interval from near normal to severe dryness was divided into three equal intervals, and the body of graph 

above the best-fit line of the cumulative TSD was correspondingly divided by two dashed lines labeled 

“−1”, “−2”. Using an equal interval, the fourth line was obtained and labeled “−4” in the drought 

monograph. The three dashed lines in Figure 7 represent the upper limits of mild, moderate and 

extreme dryness. 

 

Figure 6. Total storage deficit (TSD, %) for the arid land during 2003–2012. 

 

Figure 7. Cumulative total storage deficit (TSD) derived from GRACE TWSC for the arid land. 
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Figure 8. Percentage of precipitation stations on different drought severity levels from  

April 2008 to December 2009. 

With the values of m (−17.352), b (−13.459), and C (−3) in conjunction with Equation (6), the 

parameters p and q were determined as 0.4368 and 0.0974, respectively. By substituting the values of p 

and q into Equation (5), the monthly TSDI in the study region was calculated using Equation (8). ܶܵܫܦ = 0.4368 × ିଵܫܦܵܶ + 0.0974 ×  (8)ܦܵܶ

The initial TSDI, TSDI0, was obtained by multiplying TSD1 by a value of 2%, as described by 

Narasimhan and Srinivasan [30]. 

The distribution of TSDI over the period between 2003 and 2012 as calculated using Equation (8) is 

displayed in Figure 9 (blue solid line), and the drought severity classifications as per TSDI are included 

in Table 3. 

 

Figure 9. Total storage deficit index (TSDI) of the arid land. 

As shown in Figure 9, the TSDI ranged from approximately −4.20–4.50 between 2003 and 2012. 

When the TSDI remained below −1.0 for three or more consecutive months, the period was marked as 

a drought event. Following this method, five droughts were identified from the GRACE data with 
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different durations and intensities, the latter being represented by the slope of cumulative TSDI curve in 

the study region (Table 4). These drought events occurred from February to April 2003, from July to 

September 2004, from November 2007 to January 2008, and from April to June 2012. They all had the 

same durations of three months, although with different intensities, indicated by varying slopes: −3.40, 

−1.94, −2.31 and −1.88, respectively. According to the classification table (Table 3), these drought 

events belonged to “severe drought”, “mild drought”, “moderate drought” and “mild drought”, 

respectively. Because short-term droughts are common in arid regions, these events are not explained 

in detail. 

Table 3. Drought severity classification based on TSDI. 

Class TSDI 

Wet 1.0 < TSDI 
Near normal −1.0 < TSDI ≤ 1.0
Mild drought −2.0 < TSDI ≤ −1.0

Moderate drought −3.0 < TSDI ≤ −2.0
Severe drought −4.0 < TSDI ≤ −3.0

Extreme drought TSDI ≤ −4.0 

Table 4. Summary of GRACE TSDI-identified drought events. 

ID Time Span Maximum TSDI Duration (months) Slope of Cumulative TSDI

1 February 3 to April 3 −3.70 3 −3.40 
2 July 4 to September 4 −2.39 3 −1.94 
3 November 7 to January 8 −2.60 3 −2.31 
4 May 8 to December 9 −4.20 20 −3.35 
5 April 12 to June 12 −1.96 3 −1.88 

Aside from the four short-term drought events, the study area experienced the longest drought event 

in nearly a decade between May 2008 and December 2009 (Table 4). The minimum TSDI (−4.20) was 

found in that time period. 

The values of TSDI from May 2008 to December 2009 were totally negative, with a minimum value 

of −4.20 (Figure 9). The precipitation (bar) and air temperature (dash line) are also displayed in Figure 

9. The changes of TSDI were a result of precipitation and air temperature anomalies. In other words, this 

long-term drought event was jointly caused by low precipitation and high temperature. Despite the fact 

that there were occurrences of positive GRACE-derived TWSC in several months between May 2008 

and December 2009 (Figure 5a), these positive changes exerted no significant effects on the nearly  

two-year drought. Multiyear droughts could lead to the drying of surface water and soil moisture and 

even the loss of groundwater. The cumulative TSDI values during this drought period and their best fit 

line are depicted in Figure 10. The slope of the best-fit line is −3.35, indicating that this drought event 

belonged to the “severe drought” category. From Figure 9, it can be observed that the drought ended in 

December 2009 due to abundant rainfall starting in 2010 (see Figure 5). 
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Figure 10. Cumulative total storage deficit index (TSDI) for the arid land of northwestern China. 

3.2.2. Spatial Drought Distribution 

Using Equation (4), the TSD values at the pixel scale could be obtained by gridded TWSC. 

Afterwards, based on Equation (8), coefficients p and q at the regional-scale, the gridded TSD values 

and the monthly spatial distribution of TSDI could be obtained. Figure 11a maps the spatial distribution 

of drought severity, which was represented as cumulative TSDI slope in the period of May 2008 to 

December 2009. As shown in Figure 11a, the drought/wet conditions over the study region spatially 

varied during the period. Overall, the drought intensity in Xinjiang increases spatially from southeast to 

northwest, and the northwest region of Xinjiang clearly suffered extreme drought. The other regions, 

including the Hexi Corridor, the western region of Inner Mongolia, along with southeastern parts of 

Xinjiang, were in near-normal or wet conditions. 

 

Figure 11. Spatial distributions of TSDI-derived drought conditions and average TWSC in 

the arid land of northwestern China. 
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The spatial distribution of averaged TWSC in the period of May 2008 to December 2009 is displayed 

in Figure 11b. The negative TWSC in the northwestern parts of study region indicate severe shortage of 

water storage, while in other regions the water storage is close to the average or slightly higher. 

Examining TWSC and TSDI revealed that continuing total water deficit was the primary reason to the 

drought disaster. Because of its location in the hinterland of the Eurasian continent, the westerly wind 

from the Atlantic Ocean brings a small amount of precipitation to the Xinjiang region. Drought in 

Xinjiang was primarily attributed to high sea level pressure, strong wind divergence, low convection of 

water and low water storage capacity [35]. Furthermore, the La Niña event in 2008 and 2009 also had a 

significant influence on the severe drought in northern China [36]. 

4. Discussion 

4.1. Deviations with Various GRACE Data Products 

Except for the GRACE CSR data product, we also examined other data products such as GFZ and 

JPL. Region-averaged monthly TWSC from CSR, GFZ, and JPL are shown in Figure 12 for the study 

period. All TWSC results were generally consistent with each other, especially good in phase, but with 

variations in specific months. The trend maps were obtained by least-square fitting based on the gridded 

GRACE TWSC over the entire time span between 2003 and 2012. The spatial patterns of trend 

distributions of TWSC from CSR, GFZ, and JPL are as expected, in good agreement with each other 

(Figure 13a–c), although there are small deviations in some areas. The slight differences of  

spatio-temporal TWSC among different GRACE products are caused by the processing strategies, the 

tuning parameters, and the error patterns in the GRACE Science Data System [37]. Therefore, the results 

of this study using CSR data were independent from the selection of the GRACE data product and were 

able to cover the real situations in the study region. 

 

Figure 12. Region-averaged GRACE TWSC estimated from CSR, GFZ and JPL. 

In order to further exclude possible processing errors, we tested the errors with different truncations 

of spherical harmonic coefficients. The degree and order of GRACE CSR RL05 solutions were up to 96, 

but we used a uniform truncation of 90 in this study. We tested truncations of 90 and 60 and the recovered 
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TWSC are shown in Figure 14. The results are pretty similar, and confirm that the errors caused by 

truncating to a varying degree and order, like 90 and 60, could be neglected. 

 

Figure 13. Spatial distributions of TWSC trend estimated from (a) CSR; (b) GFZ;  

and (c) JPL GRACE products. 

 

Figure 14. GRACE TWSC with spherical harmonic coefficients truncated to degree and 

order of 60 and 90.  
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4.2. Uncertainties in GRACE TWSC 

Because our final calculation of the TSDI was based on the GRACE TWSC, the accuracy of GRACE 

TWSC determined the quality and liability of the drought index. The errors in GRACE data mainly 

included measurement and leakage errors. Due to the lack of in situ terrestrial water storage observations 

in the study area, it was difficult to accurately quantify the uncertainties of GRACE-derived TWSC. 

The measurement errors could be estimated by removing the trend, annual cycle, half annual cycle, and 

the 161 days of tide effect signals from the GRACE spherical harmonic coefficients [38]. 

The measurement errors bars, representing land residuals, following Wahr’s method, are plotted in 

Figure 15a. Because extreme hydrological signals are not related to the long-term inter-annual 

variability, the measurement errors obtained by Wahr’s method might be overestimated. Therefore, we 

used an independent method, i.e., Chen’s method, to re-calculate the measurement error [14]. The theory 

underlying this method is that the changes in ocean mass in equivalent latitudes of the study area are 

zero or approximately zero as the de-aliasing process for GRACE data is corrected for these changes. 

Therefore, residuals over the ocean could approximately represent residual errors of the study areas at 

equal latitudes. Following these means, the measurement errors are shown in Figure 15b. However, in 

view of the nature of imperfect de-aliasing process for the ocean model, the mass changes of ocean 

regions could be dramatic and, therefore, the measurement errors are still not ideal. Estimated 

measurement errors from the two methods did not differ much. They were about 10 mm of land residuals 

using Wahr’s method and about 12 mm of ocean residuals using Chen’s method. We simply averaged 

the two, and took their average, 11 mm, as the best estimate of measurement errors in GRACE TWSC. 

 

Figure 15. GRACE TWSC and their measurement errors: (a) Wahr’s method;  

and (b) Chen’s method. 
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Meanwhile, because of the use of filtering, the measurement errors were generally underestimated, 

as the amplitudes of both GRACE TWSC and associated errors were damped by filters. Besides, the 

signal attenuation, some leakage error of GRACE TWSC was also introduced by filtering and truncating 

GRACE spherical harmonic coefficients. A region-scale factor was used to restore  

the amplitude-damped GRACE TWSC and their associated errors. The region-scale factor could be 

computed from model based TWSC, which in this study was an average of TWSC from four models 

(Noah, VIC, Mosaic and CPC). The region-scale factor (k), expressed with Equation (9), was a result of 

a least-square regression by minimizing the error between the unfiltered model TWSC (Modeltrue) and 

the filtered model TWSC (Modelfiltered). ∆=൫݈݁݀ܯ௧௨ − ௧ௗ൯ଶ (9)݈݁݀ܯ݇

Using Equation (9), we obtained a region-scale factor of 1.08. By applying the region-scale factor, 

the leakage error was reduced by up to 78%, being 6.3 mm rather than about 27 mm without the use of 

the region-scale factor. The leakage error was calculated using Equation (10) [39]. ܧ = ௧௨݈݁݀ܯ൫ܵܯܴ − ௧ௗ൯݈݁݀ܯ݇ ௗ(௧ௗ)ܵܯܴோா(௧ௗ)ீܵܯܴ  (10)

Multiplying the estimated measurement error by the region-scale factor suggested a scaled average 

measurement error of 12 mm. Thus, the total error of the study region was 14 mm, by summing 

measurement error and the leakage error in quadrature. The low region-mean error was attributed to the 

more accurate GRACE RL05 product data and to a large area of the study region, which covers a total 

of 2.2 million km2. 

4.3. Evaluation of TSDI Drought Detection 

Impacted by global warming, severe drought disasters over the past 30 years had occurred more 

frequently and with longer durations in China [8]. It was reported by Chinese Arid Meteorology that 

most parts of Northwest China suffered drought disasters under continuous high temperature and 

reduced precipitation since the summer of 2008 [40]. The longest drought from May 2008 to December 

2009 was clearly observed by GRACE TSDI, with a lowest TSDI in this period. In 2008, Xinjiang 

suffered a drought disaster which was second in severity in record (the most severe was in 1974) [41], 

while the drought in the northwestern part of Xinjiang was much more severe than that in 1974 [42]. 

Those spatial patterns were in coincident with that detected by GRACE TSDI. 

Experts have concluded that long-term high-air temperature and low levels of precipitation in 

mountains are the causes to the severe drought disaster in Xinjiang in 2008. In March and July 2008, the 

precipitation dropped by over 30% compared to other years, while the air temperature rose by  

1 °C ~ 4 °C above the multiple year average, exceeding 37 °C in a number of consecutive days during 

May and September 2008 [43] and even up to 40 °C in some regions. A large area of crops and 

47.7 million acres of pasture land in Xinjiang were under severe drought [43]. 

The drought continued through 2009. According to the records of China Meteorological 

Administration, precipitation was reduced by 30%~80%, and air temperature rose by 1 °C ~2 °C above 

that in previous years in most parts of the study area until the end of June 2009 [44]. About one tenth 
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(~2.6 million acres) of the total affected crops by drought (~23.1 million acres) had no harvest in this 

year due to this disaster. 

Overall, both spatial and temporal distributions of drought events detected by GRACE TSDI for the 

arid land of northwestern China were consistent with the drought news reports and drought records in 

the government issued bulletins of flood and drought disasters in China. 

4.4. TSDI vs. SPI 

Because of considering important climatic factors, SPI is believed to be effective for assessing 

drought severity, especially in arid regions [45]. The SPI is able to detect precipitation deficit for many 

time scales. Due to quick soil moisture changes in response to precipitation changes, while changes of 

stream flow, groundwater, and reservoir storage probably reflecting long-term changes, we further 

examined 3-month and 12-month SPI (Figure 16a), apart from the TSDI (Figure 16b) which used 

information from 6-month SPI as described in previous section. SPI-3 could represent a short time 

window impact to agricultural drought detection and SPI-12 represented a long time window impact to 

hydrological drought. The input station precipitation records were regional means from the MicroMet 

interpolated results from 102 sites in the period from 1963 to 2012. 

 

Figure 16. TSDI, SPI-3, and SPI-12. 

Figure 16 shows the short time window SPI-3 which detected two mild drought events during the 

summer of 2004 and between October and December 2007, both of which were also detected by GRACE 

TSDI. However, there were some discrepancies between TSDI and SPI-3 derived drought events. For 

example, from April to June 2008 and from June to October 2009, short-term mild droughts were 

detected by SPI-3, although drought captured by TSDI was severe and lasted longer (Figure 16). 
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The one-year time window SPI-12 showed a moderate drought event in July 2008 and a mild drought 

event during September and October 2009, both of which were classified as severe by TSDI. In the 

government issued bulletins of flood and drought disasters in China in the years of 2008 and 

2009 [43,44], the northwest China had suffered drought disasters in many other months during 2008 and 

2009, all of which were also successfully detected by GRACE TSDI but failed to be detected by SPI-3 

and SPI-12. Furthermore, a below-average drought disaster in 2011 [46] was wrongly reported as a mild 

drought during summer, and a moderate drought in fall detected by SPI-3 was classified as mild 

in fall/winter by SPI-12. However, there were actually no drought disasters in summer/fall/winter 2011 

across most parts of the Northwest China [46]. Basically, SPI-3 and SPI-12 detected more mild and 

moderate drought events than TSDI, and missed some others such as the ones in spring 2003 and spring 

2012. Those problems were not observed in the TSDI detection. Since some discrepancies exist between 

the TSDI and the SPI drought index, the overall agreement of TSDI with records has proven that 

the TSDI is a reliable integrated index in monitoring agricultural drought (3-month SPI) as well as 

hydrological drought (12-month SPI) over the arid land of northwestern China. 

Furthermore, we should pay attention to the importance of appropriate time windows used in 

calculating SPI. With a short time window, SPI mainly emphasized the soil moisture changes and 

ignored the changes from other components. Oppositely, a long time window SPI would miss the 

information of short time changes. Most importantly, in the areas such as the study region, the changes 

of precipitation were not equal to drought conditions. Snow/glacier melt water, as another critical water 

sources, jointly affected water recharge in the arid land of northwestern China [15]. Especially in spring, 

the snow/glacier melt became a major water source for surface and subsurface water. In some 

circumstances, no drought occurred, with scarce precipitation but adequate glacier/snow water in the 

arid land. GRACE TSDI appeared to be more complete as it took into account all components of 

terrestrial water storage. The significant advantage of GRACE TSDI is that it considers drought 

conditions in a holistic manner, not only in terms of soil moisture content, but also in terms of subsurface 

water storage, which are usually absent in other drought indices. In western China, over-exploitation of 

groundwater also contributed to an increasing frequency of drought occurrences. In addition, in some 

mountainous areas of the study region, such as the Tianshan, the Kunlun, the Altai, and the Qilian 

Mountains, glacier and snow melting significantly impacted the local water balance. More glacier 

ablation was subject to changes in global climate [47]. Those changes, excluding precipitation changes, 

could not be captured by any SPI. However, they could be reflected by GRACE TSDI. For example, 

GRACE TSDI detected a large loss of water storage around the Tianshan Mountain, which was caused 

by increasing glacier ablation [48]. However, the water storage over the Xinjiang region was not 

alleviated under increasing runoff because human water consumption was much more excessive than 

before [49]. For example, approximately 86% of the total water storage was used for agriculture in the 

Shiyang River basin [50], which was part of the arid land of northwestern China. Moreover, GRACE 

TSDI, as a drought monitoring method, works on a region scale, while most traditional ones, like SPI, 

are based on a single point and are not fully representative on a large regional scale especially in large 

and terrain-complex areas.  

Drought severity not only relies on climate anomalies (low rainfall and high temperature), but is also 

closely associated to terrestrial hydrological conditions. Taking it into account that GRACE TSDI 

includes all the vertical water components, it is theoretically more effective than SPI. Hence, GRACE 
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TSDI, based on globally covered remote sensing data, has wide application potentials, especially in the 

regions with scarce hydro-meteorological sites where it is impossible to support traditional methods 

which rely on rich site observations. 

4.5. Forecasting Issues 

GRACE data products have latencies of two to six months and the establishment of TSDI also requires 

long-term data. An operational drought monitoring system may need real time or near real time inputs 

from GRACE data centers. In order to perform forecasting with GRACE TSDI, these issues should 

be addressed.  

Be aware that monthly GRACE data products started from April 2002 and there was generally two to 

six month latencies before the data was released, which would restrict their use for drought 

forecasting [51]. Moreover, the follow-on GRACE mission was planned to launch in 2017 and, before 

this, the present GRACE satellites might stop functioning. Currently, GRACE TSDI is made  

on decade-long records. However, multi-decade (at least 30 years) TWSC could be more valuable in 

monitoring extreme hydrological events, for example. In order to carry out forecasting tasks, some 

methods have already been developed to extend the current available GRACE data into a longer time 

period. Long et al. [52] hindcast TWSC for a large karst plateau in Southwest China over the past three 

decades, by developing an artificial neural network (ANN) model to reconstruct GRACE series in 

combination with in situ precipitation, monthly mean temperature, and GLDAS soil moisture. Both the 

frequency and severity of droughts and floods were then obtained through the reconstructed TWSC in 

the last three decades. Similarly, Sun et al. [53] predicted groundwater table changes by using GRACE 

and the ANN model. De Linage et al. [54] proposed a simple statistical modeling framework to forecast 

TWSC in the Amazon Basin based on the relationship between TWSC and the sea surface temperature 

anomalies. However, those studies are still at preliminary stages and more efforts are required in 

developing the inputs to achieve sound forecasting. 

5. Conclusions 

This study investigates the spatiotemporal performances of drought monitoring using the Gravity 

Recovery and Climate Experiment (GRACE) gravity satellite and provides theoretical foundation for 

the use of a remote sensing approach in monitoring drought in the regions where only scarce data or 

even no data is available. Using the GRACE-derived drought indicator, the total storage deficit index 

(TSDI), which was calculated from the verified GRACE-recovered terrestrial water storage changes 

(TWSC), we monitored the drought patterns in the arid land of northwestern China, a typical large and 

data-scare region in China. Research results showed that GRACE-recovered TWSC was able to 

represent the TWSC characteristics, by comparing with hydrological model estimation and precipitation. 

The GRACE-derived TSDI discovered a long-term and severe drought from May 2008 to December 

2009 in the study area, in addition to four short-term drought events. Spatially, the northwest Xinjiang 

experienced extreme drought during May 2008 and December 2009, which was caused by strong 

depletion in terrestrial water storage (TWS). The results were consistent with independent new reports 

and previous studies. A comparative analysis between GRACE-derived TSDI and traditional index 

confirmed a better capability of GRACE-derived TSDI in detecting drought than the traditional SPI 
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methods, because the former took into account all water components, rather than a single component 

such as precipitation like what SPI did. 

GRACE-derived TSDI is the sole integrated drought indictor that considers all hydrological 

components for regional-to-global coverage. Our use of GRACE-derived TSDI sets up an example study 

of efficient drought monitoring that takes advantage of the strengths of both remote sensing and    

GRACE-recovered TWSC to meet the challenges of difficult access and adverse environmental 

conditions whereby there was sparse in situ data such as soil moisture and multiple year rainfall. The 

obtained results can be helpful for improving water resources management in Northwest China. Further 

research will focus on a wider application of GRACE-derived TSDI in various regions with different 

climatic characteristics, and then explore the applicability of an operational drought monitoring and 

warning program in collaboration with local meteorological departments. 
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