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Abstract: This paper developed a practical split-window (SW) algorithm to estimate land 

surface temperature (LST) from Thermal Infrared Sensor (TIRS) aboard Landsat 8. The 

coefficients of the SW algorithm were determined based on atmospheric water vapor 

sub-ranges, which were obtained through a modified split-window covariance–variance 

ratio method. The channel emissivities were acquired from newly released global land 

cover products at 30 m and from a fraction of the vegetation cover calculated from visible 

and near-infrared images aboard Landsat 8. Simulation results showed that the new 

algorithm can obtain LST with an accuracy of better than 1.0 K. The model consistency to 

the noise of the brightness temperature, emissivity and water vapor was conducted, which 

indicated the robustness of the new algorithm in LST retrieval. Furthermore, based on 

comparisons, the new algorithm performed better than the existing algorithms in retrieving 

LST from TIRS data. Finally, the SW algorithm was proven to be reliable through 

application in different regions. To further confirm the credibility of the SW algorithm, the 

LST will be validated in the future. 

Keywords: Land Surface Temperature (LST); Landsat 8; split-window algorithm; Thermal 

Infrared (TIR) 
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1. Introduction 

Land surface temperature (LST) is a key parameter in the physics of land–surface processes regionally 

and globally; LST has been used in soil moisture estimation [1] and in climatic, hydrological, ecological 

and biogeochemical studies. Currently, LST can only be obtained over large spatial and temporal scales 

through remote sensing data, which have attracted much attention in the last three decades [2,3]. 

Consequently, many LST retrieval methods have been proposed from remotely sensed data, particularly 

multi-channel thermal infrared (TIR) data, and these methods can be roughly grouped into three 

categories: the single-channel algorithm, multi-channel methods (e.g., the split-window algorithm [4–6] 

and the temperature and emissivity separation method [7]) and multi-time methods (e.g., the 

temperature-independent spectral indices method [8], two-temperature method [9,10] and the physical day 

and night algorithm [11]). Some algorithms, such as the iterative spectrally smooth temperature-emissivity 

separation [12] and the alpha-driven emissivity method [13], have also been proposed to retrieve both LST 

and emissivity from hyperspectral TIR data. Amongst these methods, the split-window algorithm is the 

most commonly used, given that this algorithm removes the atmospheric effect and obtains the LST from 

the linear or nonlinear combination of the brightness temperatures of two adjacent channels centered at 11 

and 12 µm. 

Landsat 8, also previously called Landsat Date Continuity Mission, extends the remarkable 40-year 

Landsat record and has enhanced capabilities, including new spectral bands in visible and thermal infrared 

wavelengths, an improved sensor for signal-to-noise performance and associated improvements in 

radiometric resolution, and an improved duty cycle to collect significantly more images daily [14]. The 

Thermal Infrared Sensor (TIRS) instrument is one of the major payloads aboard this satellite which can 

observe the land surface by using the split-window thermal infrared channels (CH10: 10.6 µm to 11.2 µm; 

CH11: 11.5 µm to 12.5 µm) at a resolution of 100 m. Compared with the TIRS predecessors, namely, the 

Thematic Mapper (TM) and the Enhanced Thematic Mapper Plus (ETM+), which only have one thermal 

infrared channel, the TIRS instrument possesses two advantages. First, the TIRS has two thermal infrared 

channels in the atmospheric window that provide a new LST retrieval opportunity using the widely used 

split-window algorithm rather than the single-channel method. Second, as shown in Figure 1, the spectral 

filters of TIRS two bands present narrower bandwidth than that of the thermal band onboard TM and 

ETM+, the two thermal infrared channels have narrower bandwidths in the TIRS, which can capture finer 

land surface information, as shown in Figure 1 [15–17]. Consequently, the LST retrieval algorithm 

improves our understanding of the new sensor (TIRS) especially on response characteristics to land 

surface energy, and this algorithm will provide a valuable reference for future studies on the potential 

capability in terms of LST measurement. 

This study aims to develop an operational split-window algorithm (SW) for LST estimation using two 

thermal infrared channels (TIRS 10: 10.60 µm to 11.19 µm; and TIRS 11: 11.50 µm to 12.51 µm) of the 

TIRS images. This paper is organized as follows: Section 2 describes the principle associated with LST 

retrieval through the SW algorithm, and this section also presents the algorithm development for the TIRS 

data. Section 3 shows the SW algorithm coefficients and the ways to obtain land surface emissivity and 

atmospheric water vapor. Section 4 illustrates the conducted model sensitivity and consistency using 

several key parameters, such as brightness temperature noise, land surface emissivity (LSE) and water 
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vapor. Section 5 focuses on the application of the SW algorithm in TIRS images for LST product 

estimations. Section 6 presents the conclusion. 

 

Figure 1. Spectral response functions of the thermal bands of the different sensors on board 

the Landsat platforms. 

2. Methodology 

2.1. Split-Window Algorithm Principle 

Based on radiative transfer theory, for a cloud-free atmosphere under thermodynamic equilibrium, the 

channel radiance Bi(Ti) measured on top of the atmosphere (TOA) in a thermal infrared channel of the 

sensor aboard the satellite is provided with a significant approximation as follows [16,18]: 

_ _( ) ( ) (1 )i i i i s i i atm i i atm iB T B T R R        (1)

where τi is the effective transmittance of the atmosphere in channel i, and εi is the channel effective surface 

emissivity. Bi is the Planck function, and Bi (Ts) is the measured radiance if the surface is a black body with 
a surface temperature Ts (K), ܴ௧_

↑  and ܴ௧_
↓  are the upward and downward atmospheric thermal 

radiance. The first term on the right side of Equation (1) represents the surface emission attenuated by the 

atmosphere. The second term represents the downward atmospheric thermal radiance reflected by the 

surface and which reaches the sensor. The third term represents the upward atmospheric emission towards 

the sensor. From Equation (1), we can deduce that LST retrieval requires knowledge of surface emissivity 

and atmospheric information. 

The split-window algorithm removes the atmospheric effect through differential atmospheric 

absorption in the two adjacent thermal infrared channels centered at about 11 and 12 µm, and the linear or 

nonlinear combination of the brightness temperatures is finally applied for LST estimation. Given that this 

algorithm does not require accurate information about the atmospheric profiles during satellite acquisition, 

such algorithms have been widely used in LST retrieval from several sensors. A new refinement of the 

generalized split-window algorithm proposed by Wan (2014) [19] is added with a quadratic term of the 
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difference amongst the brightness temperatures (Ti, Tj) of the adjacent thermal infrared channels, which 

can be expressed as 

2
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where Ti and Tj are the TOA brightness temperatures measured in channels i (~11.0 μm) and j  

(~12.0 µm), respectively; ε is the average emissivity of the two channels (i.e., ε = 0.5 [εi + εj]), whilst Δε is 

the channel emissivity difference (i.e., Δε = εi − εj); bk (k = 0,1,...7) are the algorithm coefficients derived in 

the following simulated dataset. 

2.2. Algorithm Development for Landsat 8 

Given the unavailability of a database of in situ LST measurements that coincide with the Landsat 8 

overpass, the coefficients bk in Equation (2) are obtained through numerical simulation with different 

atmospheric and surface conditions. 

In our simulation, Thermodynamic Initial Guess Retrieval (TIGR) atmospheric profiles are considered. 

The TIGR database is constructed by the Laboratoire de Meteorologie Dynamique, and TIGR represents a 

worldwide set of atmospheric situations (2311 radio soundings) from polar to tropical atmospheres with a 

column water vapor of 0.1 g/cm2 to 8 g/cm2 [20,21]. In one of the levels, the profiles with a relative 

humidity greater than 90% are discarded as under a cloudy condition, which results in a total of 946 

atmospheric situations under clear skies with water vapor ranging from 0.06 g/cm2 to 6.3 g/cm2. 

According to these profiles, the MODTRAN 5.2 atmospheric transmittance/radiance code is used to 
calculate the channel atmospheric parameters ( ߬ , ܴ௧_

↑  and ܴ௧_
↓ ) in Equation (1) of each 

atmospheric profile with a spectral integration of the response filters of the two TIRS channels. 

For the surface conditions, the LST in the simulation are designed with 7 levels according to the bottom 

atmospheric temperature T0 of each atmospheric profile, that is, the LST range from T0 − 10 K to T0 + 20 K 

in a 5 K step. In addition, a total of 53 emissivity spectra in 3 µm to 14 µm are selected from the American 

Advanced Spaceborne Thermal Emission Reflection (ASTER) emissivity database [22], including 5 water 

types, 8 man-made target types, 4 vegetation types, 5 rock types, 30 soil types and 1 mineral type. Notably, 

by contrast to other studies [23,24], man-made targets are considered in this study because the LST 

products from TIRS are used in urban environmental studies, given the advantages of these products in 

terms of the finer resolution compared with the Moderate-resolution Imaging Spectroradiometer (MODIS) 

and Advanced Very High Resolution Radiometer (AVHRR) products, and also the free charge compared 

with the ASTER product with a resolution of 90 m. 
Finally, combined with the atmospheric parameters (߬, ܴ௧_

↑  and ܴ௧_
↓ ), LST and emissivity, the 

channel radiance at the TOA is determined according to Equation (1), and the brightness temperatures Ti 

and Tj are obtained from the inverse of Planck’s law in the two channels. Given that the field of view 

(FOV) of the TIRS is about 15 degrees and almost observes the land surface at a nadir direction, 

meanwhile, the angular effect of atmospheric data, land surface emissivity, and LST as reported in our 

previous study is also not remarkable [25,26] in FOV = 15 degrees, it is reasonable to ignore the angular 

variation in the development of SW algorithm. Thus, a total of 350,966 different groups of Ti and Tj, LST, 

and ε and ∆ε are obtained (946 atmospheres × 53 emissivity × 7 surface temperatures). Thus, the 

coefficients b0–b7 in Equation (2) can be determined through a statistical regression method. 



Remote Sens. 2015, 7 651 

 

3. Algorithm Results 

3.1. Algorithm Coefficients 

Given that the radiation in the thermal infrared wavelength was attenuated by the atmospheric column 

water vapor (CWV), we calculated the coefficients b0–b7 in Equation (2) independently on the CWV to 

improve the LST retrieval accuracy. Thus, in our SW algorithm, the CWV was divided into 5 sub-ranges 

and an overlap of 0.5 g/cm2 was considered between 2 adjacent sub-ranges, which resulted in [0.0, 2.5], 

[2.0, 3.5], [3.0, 4.5], [4.0, 5.5] and [5.0, 6.3] g/cm2. The CWV was retrieved from a modified split-window 

covariance and variance ratio method, as stated in Section 3.3. However, given the somewhat unsuccessful 

CWV retrieval, a group of coefficients for the entire CWV range needed to be calculated to ensure the 

spatial continuity of the LST product. Table 1 displays the coefficients in different CWV sub-ranges and 

the root-mean-square error (RMSE) of the temperature that are estimated based on the simulation data. 

The table shows a significant variation in the coefficients with the CWV sub-ranges, particularly in the 

heavy CWV loading. The RMSE was smaller than the variation from 0.34 K to 0.93 K, which increased as 

the CWV increased. 

Table 1. The coefficients bk (k = 0,1,…7) in different atmospheric column water vapor 

(CWV) sub-ranges and the root-mean-square error (RMSE) of the temperature estimated 

based on the simulation data. 

CWV  

(g/cm2) 
b0 b1 b2 b3 b4 b5 b6 b7 RMSE 

[0.0, 2.5] −2.78009 1.01408 0.15833 −0.34991 4.04487 3.55414 −8.88394 0.09152 0.34 K 

[2.0, 3.5] 11.00824 0.95995 0.17243 −0.28852 7.11492 0.42684 −6.62025 −0.06381 0.60 K 

[3.0, 4.5] 9.62610 0.96202 0.13834 −0.17262 7.87883 5.17910 −13.26611 −0.07603 0.71 K 

[4.0, 5.5] 0.61258 0.99124 0.10051 −0.09664 7.85758 6.86626 −15.00742 −0.01185 0.86 K 

[5.0, 6.3] −0.34808 0.98123 0.05599 −0.03518 11.96444 9.06710 −14.74085 −0.20471 0.93 K 

[0.0, 6.3] −0.41165 1.00522 0.14543 −0.27297 4.06655 −6.92512 −18.27461 0.24468 0.87 K 

To investigate the error details from the algorithm, we further presented the histograms of the 

temperature difference between the actual Ts in the simulated dataset and the Ts estimated through the SW 

algorithm using the coefficients (see Table 1) of the 5 CWV sub-ranges. In those figures, the temperature 

difference evidently fell in the ranges of [−1.0, 1.0] K, which covered about 97.92%, 94.42%, 91.67%, 

86.77%, 75.99% and 92.11% of the total cases in Figure 2a–f, respectively. The maximum temperature 

error was about −3.09 K (see Figure 2e), which corresponds to the heavy CWV content. In the case of the 

entire water vapor range, the RMSE was about 0.87 K. 
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Figure 2. Histograms of temperature difference between the actual Ts and the Ts estimated 

using the split-window algorithm; (a) for CWV ∈ [0.0, 2.5]; (b) for CWV ∈ [2.0, 3.5]; (c) 

for CWV ∈ [3.0, 4.5]; (d) for CWV ∈ [4.0, 5.5]; (e) for CWV ∈ [5.0, 6.3]; (f) for  

CWV ∈ [0.0, 6.3] g/cm2. CWV: Column Water Vapor, RMSE: Root-Mean-Square Error, 

ΔLST: actual Ts and the Ts estimated using the split-window algorithm. 

3.2. Determination of LSEs 

The classification-based emissivity method (CBEM) [23,27–29] that estimated LSEs from emissivity 

look-up tables (LUT) according to conventional land cover classification information was applied in this 

study to obtain LSEs for the SW algorithm. The CBEM is the simplest method in terms of processing, and 

this method can provide accurate LSEs for LST retrieval as long as the land surfaces are accurately 

classified and each class has familiar LSEs. The Finer Resolution Observation and Monitoring of Global 

Land Cover (FROM-GLC), which was the first 30 m resolution global land cover map generated from 

numerous Landsat TM and ETM+ data [30], is newly released to the public and can be downloaded freely. 

The FROM-GLC contains 10 types of land covers at level-1, namely, cropland, forest, grassland, 

shrubland, wetland, waterbody, tundra, impervious, barren land and snow-ice. Table 2 lists the resultant 

classification scheme with a level-2 hierarchy, which involves the cover-type end-component only. 

Compared with other popular global land covers, such as the International Geosphere-Biosphere Program 

(IGBP) [31,32], the FROM-GLC considers the impervious urban class. The high resolution of the 

FROM-GLC, which combines 100 m resolution TIRS data can significantly improve the accuracy  

of LSEs. 
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Table 2. Land cover schemes in FROM-GLC (Finer Resolution Observation and 

Monitoring of Global Land Cover) at levels 1 and 2 and their components. 

Land Cover (Emissivity Class) 
Models 

Component Description 

Level-1 Type Level-2 Type Vegetation Type Ground Type 

Cropland 

Rice fields 

Vol: bF = 0.0–0.2 

Gr. Veg Mollisols, Liquid Water 

Greenhouse farming Gr. Veg Mollisols, Liquid Water 

Other croplands Gr. Veg Mollisols 

Forest 

Broadleaf forests 

Vol: bF = 0.7–5.0 

Bdlf Alfisols, Spodosols 

Needleleaf forests Ndle Alfisols, Spodosols 

Mixed forests Bdlf , Ndle Alfisols, Spodosols 

Orchards Bdlf Alfisols, Spodosols 

Grasslands 
Pastures 

Vol: bF = 1.2–5.0 
Gr. Veg Aridisols, Gr. Veg, Tree and Bush 

Other grasslands Gr. Veg Aridisols, Gr. Veg, Tree and Bush 

Shrublands - Vol: bF = 1.2–5.0 Bdlf, Ndle Aridisols, Gr. Veg, Tree and Bush 

Wetlands 
Marshland 

Spec: σ = 0.2 
- Alfisols, Gr. Veg and Water 

Mudflats - Alfisols, Gr. Veg and Water 

Waterbodies 

Lake 

Spec: σ = 0.2 

- Liquid Water 

Reservoir/Pond - Liquid Water 

River - Liquid Water 

Ocean - Liquid Water 

Tundra 
Shrub and Brush Tundra 

Vol: bF = 0.35–0.7 
Bdlf, Ndle Aridisols, Gr. Veg, Tree and Bush 

Herbaceous Tundra Gr. Veg Aridisols, Gr. Veg, Tree and Bush 

Impervious 
Impervious-high albedo 

Vol: bF = 0.2–0.5 
Gr. Veg Paving concrete 

Impervious-low albedo Gr. Veg Paving asphalt 

Barren Land 

Dry salt flats 

Vol: bF = 0.0–0.2 

Sn.Veg Salty soil 

Sandy areas Sn.Veg Sand soil 

Bare exposed rock Sn.Veg Coarse sandstone 

Bare herbaceous croplands Sn.Veg Aridisols, Gr. Veg, Tree and Bush 

Dry lake/river bottom Sn.Veg Aridisols, Gr. Veg, Tree and Bush 

Other barren lands Sn.Veg Aridisols, Gr. Veg, Tree and Bush 

Snow and ice 
Snow 

Spec: σ = 0.2 
- Snow 

Ice - Ice 

Ndle. = Needle, Bdlf. = Broadleaf, Gr. = Green, Sn. = Senescent, Veg. = Vegetation; Vol = Volumetric kernel 

BRDF Model, Spec = Specular kernel BRDF Model; bF = Optical depth; σ = Surface roughness. 

According to the classification scheme in Table 2, three BRDF kernel (bi-directional distribution 

function) models, i.e., geometrical, volumetric and specular models [24,27], were used to calculate the 

scene emissivity for each land cover. Considering the variation of the biophysical and structural 

characteristics in the various land covers, different combinations of these BRDF kernel models were 

applied for the various land covers. According to the FROM-GLC, we classified 20 land cover types 

(level-2) into the volumetric BRDF kernel model, and the other 8 types were classified into the specular 

BRDF kernel model. Given that sparse vegetation was not in the FROM-GLC, we did not consider the 

geometrical BRDF kernel model. The details are shown in Table 2. Moreover, in this table, the parameter 

bF = −ln(1 − A), where A is the projected fractional area of the volumetric portion (i.e., vegetation cover). 
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The volumetric model can be applied in the 50% to 100% coverage range for trees, crops and shrubs, and 

over the entire range for grasses. σ	is the surface roughness and is equal to 0.2. 

The vegetation and ground emissivity spectra were selected from the MODIS University of California, 

Santa Barbara (UCSB) Emissivity Library [33] on the composition of the level-1 and level-2 products in 

the FROM-GLC, and the spectra were entered in the BRDF kernel models to obtain the scene emissivity. 

Although the emissivity was reported to vary with the view zenith angle, we found that the angular 

variation of emissivity was insignificant in the FOV (i.e., 15 degrees) of the TIRS instrument and can be 

disregarded without leading to obvious errors to the LST. Moreover, we used Fraction of vegetation cover 

(FVC) to obtain land surface emissivity (LSE) of land cover with temporal variation. It is well known that 

LSE is a key parameter used in land surface dynamics and varies with the composition of land cover, 

especially for the natural surface. Assumption that pixel LSE is a linear combination of vegetation and 

bare soil emissivities of the different land covers, the FVC is estimated from the NDVI, calculated from 

the red and near-infrared reflectance of Operational Land Imager, another payload on Landsat8, by using 

the method proposed by Carlson (1997) and Sobrino (2001) [34,35]. Finally, an emissivity LUT based on 

the land cover and FVC was established, and the average band emissivities for the TIRS bands 10 and 11 

over different land covers are listed in Table 3. During the retrieval process, the land covers of the pixel 

from the FROM-GLC and FVC that were calculated from the Normalized Difference Vegetation Index 

(NDVI) was used to determine the emissivity LUT to obtain the pixel channel emissivities. 

Table 3. Average emissivity for two TIRS (Thermal Infrared Sensor) channels at different 

land covers of FROM-GLC (Finer Resolution Observation and Monitoring of Global  

Land Cover) 

Emissivity Class 
Mean 

TIRS-10 TIRS-11 

Cropland 0.971 0.968 

Forest 0.995 0.996 

Grasslands 0.970 0.971 

Shrublands 0.969 0.970 

Wetlands 0.992 0.998 

Waterbodies 0.992 0.998 

Tundra 0.980 0.984 

Impervious 0.973 0.981 

Barren Land 0.969 0.978 

Snow and ice 0.992 0.998 

3.3. Determination of Atmospheric CWV 

Inspired by several previous studies [36–39], a modified split-window covariance and variance ratio 

(MSWCVR) method was developed to retrieve CWV from the TIRS data. With a vital assumption that the 

atmosphere is unchanged over the neighboring pixels, the MSWCVR method relates the atmospheric 

CWV to the ratio of the upward transmittances in two thermal infrared bands, whereas the transmittance 

ratio can be calculated based on the TOA brightness temperatures of the two bands. Considering N 

adjacent pixels, the CWV in the MSWCVR method is estimated as 
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In Equation (3a), c0, c1 and c2 are the coefficients obtained from the simulated data; τ is the band 

effective atmospheric transmittance; N is the number of adjacent pixels (always excluding water and cloud 

pixels) in a spatial window size n (i.e., N = n × n); Ti,k and Tj,k are the respective brightness temperatures 
(K) of bands i and j at the TOA level for the kth pixel; and ܶ and ܶ are the mean or median brightness 

temperatures of the N pixels for the two bands. Using the aforementioned 946 cloud-free TIGR 

atmospheric profiles, we first used the new high accurate atmospheric radiative transfer model 

MODTRAN 5.2 to simulate the band effective atmospheric transmittance, and then we obtained the 

coefficients through regression, which resulted in c0 = −9.674, c1 = 0.653 and c2 = 9.087. The model 

analysis indicated that this method will obtain a CWV RMSE of about 0.5 g/cm2. The details about the 

CWV retrieval can be found in [40]. 

4. Sensitivity Analysis 

4.1. Sensitivity Analysis to Instrument Noises  

The noise-equivalent-change-in-temperature (NEΔT) of the TIRS instrument was designed as 0.80 K at 

240 K, 0.4 K at 300 K and 0.27 K at 360 K for channel 10, and 0.71 K at 240 K, 0.4 K at 300 K and 0.29 K 

at 360 K for channel 11 [41]. However, this NEΔT was much greater than that of the similar thermal 

infrared bands on orbit in the MODIS and AHVRR [42,43] and caused significant uncertainty in the land 

surface temperature retrieval. Fortunately, Ren recently estimated the radiometric noise for the two bands 

of the TIRS by using images over uniform ground areas, where the actual NEΔT of the two bands was 

found to be about 0.1 K, which was better than the design specification [44]. 

To investigate the effect of noise on the LST error, we added a Gaussian noise with a zero mean and a 

standard deviation equal to 2 × NEΔT (= 0.1, 0.2 and 0.4 K) to the TOA brightness temperatures Ti and Tj 

in Equation (2). For CWV ∈ [0, 2.5] considering most parts of the 946 atmospheric profiles, we selected 

the coefficients in this CWV range (see Table 1) as examples to check the variation of the RMSEs affected 

by the given NEΔT. Thus, the LST error was 0.355 K for NEΔT = 0.1 K, 0.397 K for NEΔT = 0.2 K and 

0.531 K for NEΔT = 0.4 K. Compared with the LST error (i.e., 0.34 K) for the no instrument noise,  

NEΔT = 0.1 K contributed only 4.5% of the error in the retrieved LST, whereas NEΔT = 0.2 K contributed 

about 16.8% and NEΔT = 0.4 K contributed up to 56.3%. 

4.2. Sensitivity Analysis to LSEs 

According to Equation (2), 
ଵ	ି	ఌ

ఌ
 and 

∆ఌ

ఌమ
 determined the sensitivity from the LSE uncertainties, which 

can be expressed as 

2 52 2
i j i jT T T T
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To determine the algorithm sensitivities in the different CWV sub-ranges, we consider the coefficients 

in all the CWV sub-ranges. By using the same regression method mentioned in Section 2.2 and by 

combining with Equation (4), we can obtain the variation of α and β. Table 4 shows the range, mean and 

standard derivation of α and β for all the sub-ranges. 

Table 4. The values of α and β in Equations (4a) and (4b). α and β are coefficients of 
ଵ	ି	ఌ

ఌ
 

and 
∆ఌ

ఌమ
, respectively, mentioned in Equations (4a) and (4b). 

CWV Sub-Ranges 

(g/cm2) 
[0.0, 2.5] [2.0, 3.5] [3.0, 4.5] [4.0, 5.5] [5.0, 6.3] 

Variables α β α β α β α β α β 

Range of Value (K) 
[30.70, 

61.38] 

[−138.62, 

−66.76] 

[45.77, 

56.46] 

[−112.25, 

−68.18] 

[30.57, 

60.88] 

[−99.19, 

−28.91] 

[20.94, 

54.83] 

[−81.41, 

−10.97] 

[12.73, 

46.30] 

[−58.40, 

−4.40] 

Mean (K) 42.29 −93.57 51.20 −90.02 46.03 −64.04 38.20 −47.09 30.53 −33.11 

Standard deviation (K) 4.00 9.20 1.82 6.60 4.95 11.41 6.08 12.65 7.10 11.34 

Based on Table 4, the absolute value of α and β notably increased as the CWV in the atmosphere 

increased, which indicated better convergence of the sensitivities of LST to 
ଵ	ି	ఌ

ఌ
 and 

∆ఌ

ఌమ
 in a wet 

atmospheric condition compared with those in a dry atmospheric condition. According to Equation (2), the 

combined uncertainty from 
ଵ	ି	ఌ

ఌ
 and 

∆ఌ

ఌమ
 contributed to the LST error δLST, which can be written as 

2 2 2 2
2

1
( ) ( )LST

     
 
 

  (5) 

Table 5. LST (Land Surface Temperature) errors caused by 1% uncertainties in LSEs (Land 

Surface Emissivities) for different ranges of CWV (Column Water Vapor). 

LST Error (K) 
CWV (g/cm2) 

[0.0, 2.5] [2.0, 3.5] [3.0, 4.5] [4.0, 5.5] [5.0, 6.3] 

Range of Value [0.73, 1.52] [0.82,1.25] [0.42,1.16] [0.24,0.98] [0.13,0.75] 

Mean 1.02 1.04 0.79 0.61 0.45 

Standard deviation 0.10 0.06 0.12 0.13 0.13 

Table 5 shows that the LST error was caused by 1% of the LSE uncertainties for the different CWV 

ranges. From this table, the LST error was determined as [0.73, 1.52] K with a mean of 1.02 K and a 

standard deviation of 0.10 K for the CWV sub-range of [0.0, 2.5] g/cm2. The error generally decreased as 

the CWV increased, and the minimum was obtained for the highest atmospheric condition consequently. 

In addition, the range of the LST error in the wet atmospheric condition was narrower than that in the dry 

atmospheric condition. This finding indicates that in wet atmospheric conditions, the dominant factor that 

affects the LST error is the uncertainty from the atmospheric information, rather than from that of the 

surface conditions. In this case, the LST retrieval was insensitive to the error included in the LSEs. 

4.3. Sensitivity Analysis to the Atmospheric CWV 

As shown in Figure 2, the CWV is important in improving the accuracy of LST retrieval. However, we 

did not directly use the CWV in Equation (2) to estimate the LST, but we applied this parameter to 
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determine the algorithm coefficients (see Table 1). As mentioned in Section 3.3, the CWV retrieval had an 

error of about 0.5 g/cm2 theoretically. Thus, misclassifying CWV from the correct sub-range to the 

incorrect sub-range was possible, which can result in wrong coefficients for the SW algorithm. Table 6 

lists the LST errors caused by using the wrong coefficients in the adjacent CWV sub-ranges. Given that the 

CWV error varies from −0.5 g/cm2 to 0.5 g/cm2, we considered only the cases of misclassifying CWV in 

the adjacent CWV sub-ranges. Thus, for a true CWV value of 2.6 g/cm2, the retrieved water vapor value 

may be ranged in [0.0, 2.5], [2.0, 3.5] or [3.0, 4.5] g/cm2. 

Table 6. LST (Land Surface Temperature) errors caused by using wrong coefficients in 

adjacent CWV (Column Water Vapor) sub-ranges. 

CWV(g/cm2) [0.0, 2.5] [2.0, 3.5] [3.0, 4.5] [4.0, 5.5] [5.0, 6.3] 

[0.0, 2.5] 0.34 K 1.45 K - - - 

[2.0, 3.5] 1.40 K 0.60 K 1.40 K - - 

[3.0, 4.5] - 1.34 K 0.71 K 1.21 K - 

[4.0, 5.5] - - 1.29 K 0.86 K 2.45 K 

[5.0, 6.3] - - - 1.85 K 0.93 K 

In Table 6, the diagonal direction shows the LST errors with the correct coefficients in the 

corresponding CWV sub-ranges, which were similar to the results in Figure 2. The other values are the 

results from the incorrect coefficients, which are denoted as δLSTinc for convenience in the following 

discussion. The δLSTinc was less than 1.5 K with a CWV of less than 4.0 g/cm2, but δLSTinc increased 

dramatically with a CWV of more than 4.0 g/cm2. However, for a CWV in the sub-ranges of [2.5, 3.0], 

[3.5, 4.0], [4.5, 5.0] or [5.5, 6.0] g/cm2, the CWV retrieval value using the MSWCVR method may fall in 

the CWV adjacent sub-ranges, which consequently decreases the LST accuracy. For instance, a CWV is 

4.8 g/cm2 and belongs to a sub-range of [4.5, 5.0] g/cm2. If this CWV is misclassified into [3.5, 4.0], the 

δLSTinc will be 1.29 K, whereas if this CWV is misclassified into [5.5, 6.0], the δLSTinc will reach 2.45 K. 

To reduce the influence of the CWV error on the LST, for a CWV within the overlap of two adjacent CWV 

sub-ranges, we first use the coefficients from the two adjacent CWV sub-ranges to calculate the two initial 

temperatures and then use the average of the initial temperatures as the pixel LST. For example, the LST 

pixel with a CWV of 2.1 g/cm2 is estimated by using the coefficients of [0.0, 2.5] and [2.0, 3.5]. This 

process initially reduces the δLSTinc and improves the spatial continuity of the LST product. 

4.4. Comparison amongst Different Split-Window Algorithms 

To date, two other SW algorithms were proposed for LST retrieval from TIRS data.  

Jiménez-Muñoz et al. (2014) [45] presented an SW algorithm based on the structure suggested by Sobrino 

et al. (1996) [46], and Rozenstein et al. (2014) [47] utilized a first-order Taylor-series linearization of the 

radiative transfer equation and addressed a general form based on the work of Qin et al. (2001). The 

formats of the current SW algorithms are expressed as follows: 

Jiménez-Muñoz et al.: 

  )()1)(()()( 65430
2

21 wddwdddTTdTTdTT jijiis  (6a) 

Rozenstein et al.: 

jijiis TfeTfefefeTTfTT  241322110 )(
 (6b) 
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In the above equations, dk (k = 0, 1…6) and ek (k = 1, 2, 3, 4) are the algorithm coefficients; w is the 

CWV; ε and ∆a are the average emissivity and emissivity difference of two adjacent thermal channels, 

respectively, which are similar to Equation (2); and fk (k = 0 and 1) is related to the influence of the 

atmospheric transmittance and emissivity, i.e., fk = f(εi,εj,τi,τj). Note that the algorithm (Equation (6a)) 

proposed by Jiménez-Muñoz et al. added CWV directly to estimate LST. Rozenstein et al. used CWV to 

estimate the atmospheric transmittance (τi, τj) and optimize retrieval accuracy explicitly. Therefore, if the 

atmospheric CWV is unknown or cannot be obtained successfully, neither of the two algorithms in 

Equations (6a) and (6b) will work. By contrast, although our algorithm also needs CWV to determine the 

coefficients, this algorithm still works for unknown CWVs because the coefficients are obtained 

regardless of the CWV, as shown in Table 1. We first obtained the coefficients of Equations (6a) and (6b) 

using the same simulated dataset in our algorithm development, and then we analyzed the difference 

between the SW algorithms. Table 7 presents the LST errors caused by the different algorithms for various 

CWV sub-ranges. From this table, we know that the errors of all the algorithms were close to one another 

for a CWV of less than 3.5 g/cm2, which is much less than 1.0 K. However, under wet atmospheric 

conditions, the LST error increased quickly as the CWV increased, especially for the algorithm of 

Rozenstein et al., Jiménez-Muñoz’s algorithm had similar results with our algorithm. Moreover, we added 

an uncertainty of ±0.5 g/cm2 to the CWV, and we found that the LST error was about 0.8 K for the CWV of 

−of t tha2 and 1.1 K for the CWV of +0.5 g/cm2 for the algorithm of Jiménez-Muñoz et al.; the results were 

somewhat better than those of our algorithm, as shown in Table 7, probably because of the direct usage of 

CWV in the algorithm of Jiménez-Muñoz et al. (Equaiton (6a)) to reduce the influence of the CWV on the 

LST retrieval accuracy. As stated above, all three algorithms relied on the CWV input and were 

impractical without this parameter. To deal with this potential problem, our algorithm also obtained the 

coefficients in Equation (2) for the entire CWV range, and this group of coefficients only resulted in an 

LST error of about 0.87 K for all the CWV, about 0.46 K for the CWV sub-range of [0.0, 2.5] g/cm2 and 

about 1.11 K for a CWV of less than 3.5 g/cm2. This CWV range contains most cases of atmospheric 

moisture in polar, mid-latitude and tropical profiles. Therefore, compared with the other two algorithms, 

our algorithm is more practical and can even obtain LST with high accuracy for cases even without known 

CWV information. 

Table 7. LST (Land Surface Temperature) error for different split-window (SW) algorithms 

at different sub-ranges of CWV (Column Water Vapor). The second, third and fourth 

columns correspond to the RMSEs (Root-Mean-Square Errors) of Jiménez-Muñoz et al., 

Rozenstein et al., and our algorithm, while the last column is RMSE from our algorithm 

using the coefficients derived from all water vapor range [0, 6.3] g/cm2 when no CWV 

information can be obtained. 

CWV (g/cm2) Jiménez-Muñoz Rozenstein SW in This Paper 

[0.0, 2.5] 0.46 K 0.32 K 0.34 K 0.46 K 

[2.0, 3.5] 0.51 K 0.56 K 0.60 K 1.11 K 

[3.0, 4.5] 0.71 K 0.79 K 0.71 K 2.00 K 

[4.0, 5.5] 0.87 K 1.32 K 0.86 K 2.33 K 

[5.0, 6.3] 0.93 K 1.26 K 0.93 K 3.13 K 

[0.0, 6.3] 0.72 K 1.25 K 0.87 K 0.87 K 
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5. Application of the Split-Window Algorithm 

Based on the above discussions, the input parameters to drive the new SW algorithm includes the 

brightness temperatures (Ti and Tj) of the two adjacent bands of the TIRS, FROM-GLC land cover 

products and emissivity lookup table, which are a fraction of the FVC that can be estimated from the red 

and near-infrared reflectance of the Operational Land Imager (OLI). These parameters can be easily 

obtained, which makes our algorithm generally operational in practice. Figure 3 shows the main 

flowchart of the LST retrieval LST from the TIRS data, where the clouds in the images are eliminated by 

using the band quality files along with the OLI and TIRS data, which are consequently removed before 

the LST retrieval. The output can contain LST products and emissivity images in the two channels and in 

the CWV product. 

 

Figure 3. The main flowchart of retrieving LST (Land Surface Temperature) from Landsat 

8 image. OLI: Operational Land Imager; TIRS: Thermal Infrared Sensor; NDVI: 

Normalized Different Vegetation Index; FVC: Fraction of Vegetation Cover; MSWCVM: 

Modified Split-Window Covariance and Variance Ratio; CWV: Column Water Vapor. 

Based on Figure 3, we applied the new SW algorithm to retrieve LST in two different locations: around 

the Beijing urban area (orbit path = 132, row = 32, acquired date: 12 May 2013) in China, and in northwest 
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China (orbit path = 143 row = 31, acquired date: 25 June 2013), where the atmosphere is always very dry 

and most of the land surface is covered by desert or Gobi. Figure 4a and d display the false color images of 

the two locations, which are generated from the OLI near-infrared, red and green bands. The red pixels 

depict vegetated areas, the black pixels indicate water, and the grey and light blue pixels represent barren 

surface, such as urban impervious areas and Gobi Desert areas. The clouds are shown in white. Figure 4b,e 

shows the retrieved LST in the two locations, and the white colour in the images represents the invalid 

pixels caused by the clouds. Figure 4c,f are the LST histograms. 

Based on Figure 4b, the temperatures of the urban impervious surface are higher than those around 

the vegetated surface and water bodies, which consequently lead to the urban heat island effect. In 

Figure 4e, the temperatures in the deserts are much higher than those in the oasis areas and water bodies, 

and the temperature difference in this area can reach up to 20 or 30 K. In this region, the LST is highly 

correlated to the surface types and soil moistures, and then becomes a significant indicator of the 

environmental conditions. Compared with the histograms shown in Figure 4c and f, the spatial 

temperature difference of Figure 4d is more significant than that of Figure 4a, which is probably because 

the atmospheric moisture in northwest China is generally low from the lack of surface 

evapotranspiration and input water vapor from other places; the LST is mainly determined by the surface 

conditions, whereas the regions of Figure 4a has a relatively higher water vapor, and the spatial 

temperature difference is smoothened by the atmospheric effect. 

 

 

Figure 4. The LST (Land Surface Temperature) retrieved from TIRS (Thermal Infrared 

Sensor) data at urban area of Beijing city and Gobi in northwest China. (a) and (d) are the 

false color images; (b) and (e) are the retrieved LST; while (c) and (f) present  

LST histograms. 
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Note that, the validation of the LST estimated from the Landsat 8 TIRS data was not conducted in this 

paper because it is discussed in another separate paper by using in situ measured temperature 

synchronously with Landsat 8 overpass in several uniform surface and also with some other products, such 

as MODIS and ASTER LST products. 

6. Discussions 

As stated above, this paper proposed a practical algorithm to obtain LST from Landsat 8, but for its 

good performance several attentions should be paid. First, as pointed by some studies [44,49], data gap 

existed in some of current TIRS images because of the uncertainly of pixel-to-pixel radiometric 

calibration. As a result, the used water vapor will show spatial discontinuity, and consequently, the LST 

products will show some obvious blocks in their images. Therefore, it is very necessary and important to 

investigate the pixel-to-pixel radiometric calibration the TIRS image. Besides, the spatial scales of land 

cover product (30 m), water vapor (1 km), TIRS pixel (100 m), and FVC data (30 m) can reduce the LST 

retrieval accuracy if spatial mis-registration exists between different input auxiliary data. 

As mentioned in Section 2.2, the used 946 TIGR atmospheric profiles is composed of 812 profiles for 

CWV ∈ [0.0, 2.5] g/cm2, 100 profiles for CWV ∈ [2.0, 3.5] g/cm2, 76 profiles for CWV ∈ [3.0, 4.5] g/cm2, 

36 profiles for CWV ∈ [4.0, 5.5] g/cm2 and 15 profiles for CWV ∈ [5.0, 6.3] g/cm2. The dry atmosphere 

takes great part in the used atmospheric profiles, but our algorithm developed several groups of 

coefficients depending on the CWV sub-ranges, so the current algorithm will not cause significant 

uncertainty to the final LST retrieval with known CWV, but it will lead some error to the LST result for the 

cases without input CWV. To reduce this effect, we are trying to find more representative profiles to 

optimize the current algorithm in the coming future work. 

In addition, newly released from U.S. Geological Survey (USGS), discrepancies have been noted 

between calibrated Landsat 8 TIRS Bands 10 and 11 data and these calibration uncertainty results about 

more than 2 K errors compared with surface-water temperature field campaign. Although, the radiometric 

and geometric refinements have been implemented in thermal infrared band offsets soon and improved the 

data accuracy to −2.1 ± 0.8 K for band 10 and −4.4 ± 1.75 K for band 11 at a 300 K brightness temperature 

respectively, this accuracy still cannot meet the requirements of algorithm application [48,49]. Meanwhile, 

according to the reprocessing campaign results, this uncertainty is scene-dependent and probably related to 

out-of-field response in the TIRS instrument, and gives us an obstacle in algorithm validation, for we 

cannot analyze whether errors are caused by TIRS sensor or the algorithm. 

7. Conclusions 

Land surface temperature, as one of the key variables, describes surface states and processes critical in 

studies of climate, hydrology, ecology and human health. This study proposed a practical split-window 

algorithm for LST retrieval from the Landsat 8 TIRS data using two thermal infrared channels: CH10 

(10.6 µm to 11.2 µm) and CH11 (11.5 µm to 12.5 µm). The new SW algorithm estimated the LST by using 

a nonlinear combination of brightness temperatures, and the algorithm coefficients were designed to be 

dependent on water vapor, which was obtained from the TIRS data itself using the MSWCVR method. 

According to the principle of the CBEM, channel emissivities were obtained from the FROM-GLC 

products at 30 m, and FVC was calculated from the red and near-infrared images aboard the Landsat 8. 
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The simulation results showed that the new algorithm can obtain LST with an accuracy of better than  

1.0 K. A model analysis with respect to the noise that included in the measured brightness temperature, 

emissivity and water vapor was conducted, and the results showed that the new algorithm was robust in 

LST retrieval. 

Our algorithm was compared with two other existing algorithms, and the results showed that the 

accuracy of our algorithm was close to that of Jiménez-Muñoz and was better than that of Rozenstein. 

However, because we used water vapor to determine the coefficients of the SW algorithm rather than 

directly applying this parameter in the algorithm equations as other algorithms do, and also because we 

obtained the algorithm coefficients for all the water vapor ranges, the new SW algorithm in this paper was 

more practical than the two existing algorithms, especially in conditions where the water vapor is 

unknown. The new SW algorithm was applied to two different regions, and the estimated LST presented 

higher value in urban and desert areas than the vegetated surface and waterbody. The results further proved 

the credibility and reliability of our proposed SW algorithm. 

Considering the strip problem, ghost signal caused by stray light and a time-varying absolute 

calibration error for TIRS, the validation exercise is still a tough problem and will be discussed in another 

separate paper by using ground measured surface temperature at different uniform areas and with other 

surface temperature products, such as MODIS [6] and ASTER [7] products.  

Acknowledgments 

This work was supported by the programs of the National Natural Science Foundation of China (Grant 

No. 41230747, 41401375, and 41231170), the China Postdoctoral Science Foundation (Grant No. 

2014M550551, 2014M550550), and the High Resolution Earth Observation Systems of National Science 

and Technology Major Projects. The Landsat 8 images were downloaded from USGS image achieves. The 

authors thank the three anonymous reviewers for their valuable suggestions and comments. 

Author Contributions 

In this manuscript, Chen Du and Huazhong Ren provided the main ideas, developed the algorithm, 

evaluated the algorithm sensitivity and also wrote the whole manuscript. Both of them contributed equally. 

Qiming Qin evaluated the algorithm performance and helped much on processing Landsat 8 data. Jinjie 

Meng and Shaohua Zhao contributed to generate some graphs and revisions. 

Conflicts of Interest 

The authors declare no conflict of interest. 

References and Notes 

1. Price, J.C. The potential of remotely sensed thermal infrared data to infer surface soil-moisture and 

evaporation. Water Resour. Res. 1980, 16, 787–795. 

2. Duan, S.-B.; Li, Z.-L.; Tang, B.-H.; Wu, H.; Tang, R.L.; Bi, Y.; Zhou, G. Estimation of diurnal 

cycle of land surface temperature at high temporal and spatial resolution from clear-sky MODIS 

data. Remote Sens. 2014, 6, 3247–3262. 



Remote Sens. 2015, 7 663 

 

3. Duan, S.-B.; Li, Z.-L.; Tang, B.-H.; Wu, H.; Tang, R.L. Generation of a time-consistent land 

surface temperature product from MODIS data. Remote Sens. Environ. 2014, 140, 339–349. 

4. Becker, F.; Li, Z.-L. Towards a local split window method over land surfaces. Int. J. Remote Sens. 

1990, 11, 369–393. 

5. Becker, F.; Li, Z.-L. Surface temperature and emissivity at various scales: Definition, measurement 

and related problems. Remote Sens. Rev. 1995, 12, 225–253. 

6. Wan, Z.; Dozier, J. A generalized split-window algorithm for retrieving land-surface temperature 

from space. IEEE Trans. Geosci. Remote Sens. 1996, 34, 892–905. 

7. Gillespie, A.; Rokugawa, S.; Matsunaga, T.; Cothern, J.S.; Hook, S.; Kahle, A.B. A temperature 

and emissivity separation algorithm for advanced spaceborne thermal emission and reflection 

radiometer (ASTER) images. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1113–1126. 

8. Becker, F.; Li, Z.-L. Temperature-independent spectral indexes in thermal infrared bands.  

Remote Sens. Environ. 1990, 32, 17–33. 

9. Watson, K. Two-temperature method for measuring emissivity. Remote Sens. Environ. 1992, 42, 

117–121. 

10. Peres, L.F.; DaCamara, C.C. Land surface temperature and emissivity estimation based on the 

two-temperature method: Sensitivity analysis using simulated MSG/SEVIRI data. Remote Sens. 

Environ. 2004, 91, 377–389. 

11. Wan, Z.; Li, Z.-L. A physics-based algorithm for retrieving land-surface emissivity and temperature 

from EOS/MODIS data. IEEE Trans. Geosci. Remote Sens. 1997, 35, 980–996. 

12. Ingram, P.M.; Muse, A.H. Sensitivity of iterative spectrally smooth temperature/emissivity 

separation to algorithmic assumptions and measurement noise. IEEE Trans. Geosci. Remote Sens. 

2001, 39, 2158–2167. 

13. Kealy, P.S.; Hook, S.J. Separating temperature and emissivity in thermal infrared multispectral 

scanner data - implications for recovering land-surface temperatures. IEEE Trans. Geosci. Remote 

Sens. 1993, 31, 1155–1164. 

14. Roy, D.P.; Wulder, M.A.; Loveland, T.R.; Woodcock, C.E.; Allen, R.G.; Anderson, M.C.;  

Helder, D.; Irons, J.R.; Johnson, D.M.; Kennedy, R.; et al. Landsat-8: Science and product vision 

for terrestrial global change research. Remote Sens. Environ. 2014, 145, 154–172. 

15. Li, Z.-L.; Tang, B.-H.; Wu, H.; Ren, H.; Yan, G.; Wan, Z.; Trigo, I.F.; Sobrino, J.A. 

Satellite-derived land surface temperature: Current status and perspectives. Remote Sens. Environ. 

2013, 131, 14–37. 

16. Li, Z.-L.; Wu, H.; Wang, N.; Qiu, S.; Sobrino, J.A.; Wan, Z.; Tang, B.-H.; Yan, G. Land surface 

emissivity retrieval from satellite data. Int. J. Remote Sens. 2013, 34, 3084–3127. 

17. Gao, C.; Li, Z.-L.; Qiu, S.; Tang, B.; Wu, H.; Jiang, X. An improved algorithm for retrieving land 

surface emissivity and temperature from MSG-2/SEVIRI data. IEEE Trans. Geosci. Remote Sens. 

2014, 52, 3175–3191. 

18. Li, Z.-L.; Petitcolin, F.; Zhang, R.H. A physically based algorithm for land surface emissivity 

retrieval from combined mid-infrared and thermal infrared data. Sci China Ser. E. 2000, 43, 23–33. 

19. Wan, Z. New refinements and validation of the collection-6 MODIS land-surface 

temperature/emissivity product. Remote Sens. Environ. 2014, 140, 36–45. 



Remote Sens. 2015, 7 664 

 

20. Chedin, A.; Scott, N.A.; Wahiche, C.; Moulinier, P. The improved initialization inversion method - 

a high-resolution physical method for temperature retrievals from satellites of the Tiros-N Series.  

J. Climate Appl. Meteor. 1985, 24, 128–143. 

21. Chevallier, F.; Chedin, A.; Cheruy, F.; Morcrette, J.J. TIGR-like atmospheric-profile databases for 

accurate radiative-flux computation. Quart. J. Roy. Meteorol. Soc. 2000, 126, 777–785. 

22. Hulley, G.C.; Hook, S.J. The north American ASTER land surface emissivity database 

(NAASLED) version 2.0. Remote Sens. Environ. 2009, 113, 1967–1975. 

23. Tang, B.-H.; Bi, Y.; Li, Z.-L.; Xia, J. Generalized split-window algorithm for estimate of land 

surface temperature from Chinese geostationary Fengyun meteorological satellite (FY-2C) data. 

Sensors 2008, 8, 933–951. 

24. Snyder, W.C.; Wan, Z. BRDF models to predict spectral reflectance and emissivity in the thermal 

infrared. IEEE Trans. Geosci. Remote Sens. 1998, 36, 214–225. 

25. Ren, H.; Yan, G.; Chen, L.; Li, Z.-L. Angular effect of MODIS emissivity products and its 

application to the split-window algorithm. ISPSR J. Photogramm. 2011, 66, 498–507. 

26. Ren, H.; Liu, R.; Yan, G.; Mu, X.; Li, Z.-L.; Nerry, F.; Liu, Q. Angular normalization of land 

surface temperature and emissivity using multiangular middle and thermal infrared data.  

IEEE Trans. Geosci. Remote Sens. 2014, 52, 4913–4931. 

27. Snyder, W.C.; Wan, Z.; Zhang, Y.; Feng, Y.Z. Classification-based emissivity for land surface 

temperature measurement from space. Int. J. Remote Sens. 1998, 19, 2753–2774. 
28. Sun, D.; Pinker, R. Implementation of GEOS—based land surface temperature diurnal cycle to 

avhrr. Int. J. Remote Sens. 2005, 26, 3975–3984. 

29. Trigo, I.F.; Peres, L.F.; DaCamara, C.C.; Freitas, S.C. Thermal land surface emissivity retrieved 

from SEVIRI/METEOSAT. IEEE Trans. Geosci. Remote Sens. 2008, 46, 307–315. 

30. Gong, P.; Wang, J.; Yu, L.; Zhao, Y.; Zhao, Y.; Liang, L.; Niu, Z.; Huang, X.; Fu, H.; Liu, S.; et al. 

Finer resolution observation and monitoring of global land cover: First mapping results with 

Landsat TM and ETM+ data. Int. J. Remote Sens. 2013, 34, 2607–2654. 

31. Belward, A.S.; Estes, J.E.; Kline, K.D. The IGBP-DIS global 1-km land-cover data set discover: A 

project overview. Photogramm. Eng. Remote Sens. 1999, 65, 1013–1020. 

32. Loveland, T.R.; Reed, B.C.; Brown, J.F.; Ohlen, D.O.; Zhu, Z.; Yang, L.; Merchant, J.W. 

Development of a global land cover characteristics database and IGBP discover from 1 km AVHRR 

data. Int. J. Remote Sens. 2000, 21, 1303–1330. 

33. Wan, Z.; Ng, D.; Dozier, J. Spectral emissivity measurements of land-surface materials and related 

radiative transfer simulations. Adv. Space Res. 1994, 14, 91–94.  

34. Carlson, T.N.; Ripley, D.A. On the relation between NDVI, fractional vegetation cover, and leaf 

area index. Remote Sens. Environ. 1997, 62, 241–252. 

35. Sobrino, J.A.; Raissouni, N.; Li, Z.-L. A comparative study of land surface emissivity retrieval from 

NOAA data. Remote Sens. Environ. 2001, 75, 256–266. 

36. Sobrino, J.A.; Raissouni, N.; Simarro, J.; Nerry, F.; Petitcolin, F. Atmospheric water vapor content 

over land surfaces derived from the AVHRR data: Application to the Iberian Peninsula.  

IEEE Trans. Geosci. Remote Sens. 1999, 37, 1425–1434. 

37. Li, Z.-L.; Jia, L.; Su, Z.; Wan, Z.; Zhang, R. A new approach for retrieving precipitable water from 

ATSR2 split-window channel data over land area. Int. J. Remote Sens. 2003, 24, 5095–5117. 



Remote Sens. 2015, 7 665 

 

38. Schroedter-Homscheidt, M.; Drews, A.; Heise, S. Total water vapor column retrieval from 

MSG-SEVIRI split window measurements exploiting the daily cycle of land surface temperatures. 

Remote Sens. Environ. 2008, 112, 249–258. 

39. Wang, N.; Li, Z.-L.; Tang, B.-H.; Zeng, F.N.A.; Li, C.R. Retrieval of atmospheric and land surface 

parameters from satellite-based thermal infrared hyperspectral data using a neural network 

technique. Int. J. Remote Sens. 2013, 34, 3485–3502. 

40. Ren, H.; Du, C.; Qin, Q.; Liu, R.; Meng, J.; Li, J. Atmospheric water vapor retrieval from landsat 8 

and its validation. In Proceedings of the IEEE International Geoscience and Remote Sensing 

Symposium (IGARSS), Quebec, QC, Canada, July 2014; pp. 3045–3048. 

41. Irons, J.R.; Dwyer, J.L.; Barsi, J.A. The next landsat satellite: The landsat data continuity mission. 

Remote Sens. Environ. 2012, 122, 11–21. 

42. Sobrino, J.A.; Li, Z.-L.; Stoll, M.P.; Becker, F. Improvements in the split-window technique for 

land-surface temperature determination. IEEE Trans. Geosci. Remote Sens. 1994, 32, 243–253. 

43. Xiong, X.X.; Barnes, W. An overview of MODIS radiometric calibration and characterization.  

Adv. Atmos Sci. 2006, 23, 69–79. 

44. Ren, H.; Du, C.; Liu, R.; Qin, Q.; Meng, J.; Li, Z.-L.; Yan, G. Evaluation of radiometric 

performance for the thermal infrared sensor onboard Landsat 8. Remote Sens. 2014, 6,  

12776–12788. 

45. Jimenez-Munoz, J.C.; Sobrino, J.A.; Skokovic, D.; Mattar, C.; Cristobal, J. Land surface 

temperature retrieval methods from Landsat-8 thermal infrared sensor data. IEEE Geosci. Remote 

Sens. Lett. 2014, 11, 1840–1843. 

46. Sobrino, J.A.; Li, Z.-L.; Stoll, M.P.; Becker, F. Multi-channel and multi-angle algorithms for 

estimating sea and land surface temperature with ATSR data. Int. J. Remote Sens. 1996, 17,  

2089–2114. 

47. Rozenstein, O.; Qin, Z.; Derimian, Y.; Karnieli, A. Derivation of land surface temperature for 

Landsat-8 TIRS using a split window algorithm. Sensors 2014, 14, 5768–5780. 

48. Montanaro, M.; Lunsford, A.; Tesfaye, Z.; Wenny, B.; Reuter, D. Radiometric calibration 

methodology of the Landsat 8 thermal infrared sensor. Remote Sens. 2014, 6, 8803–8821. 

49. Montanaro, M.; Gerace, A.; Lunsford, A.; Reuter, D. Stray light artifacts in imagery from the 

Landsat 8 thermal infrared sensor. Remote Sens. 2014, 6, 10435–10456. 

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/4.0/). 


