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Abstract: Aimed at mapping time variations in the Earth’s gravity field, the Gravity 

Recovery and Climate Experiment (GRACE) satellite mission is applicable to access 

terrestrial water storage (TWS), which mainly includes groundwater, soil moisture (SM), 

and snow. In this study, SM and accumulated snow water equivalent (SWE) are simulated 

by the Global Land Data Assimilation System (GLDAS) land surface models (LSMs) and 

then used to isolate groundwater anomalies from GRACE-derived TWS in Pennsylvania 

and New York States of the Mid-Atlantic region of the United States. The monitoring well 

water-level records from the U.S. Geological Survey Ground-Water Climate Response 

Network from January 2005 to December 2011 are used for validation. The groundwater 

results from different combinations of GRACE products (from three institutions, CSR, 

GFZ and JPL) and GLDAS LSMs (CLM, NOAH and VIC) are compared and evaluated 

with in-situ measurements. The intercomparison analysis shows that the solution obtained 

through removing averaged simulated SM and SWE of the three LSMs from the averaged 

GRACE-derived TWS of the three centers would be the most robust to reduce the noises, 

and increase the confidence consequently. Although discrepancy exists, the  

GRACE-GLDAS estimated groundwater variations generally agree with in-situ 
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observations. For monthly scales, their correlation coefficient reaches 0.70 at 95% 

confidence level with the RMSE of the differences of 2.6 cm. Two-tailed Mann-Kendall 

trend test results show that there is no significant groundwater gain or loss in this region over 

the study period. The GRACE time-variable field solutions and GLDAS simulations provide 

precise and reliable data sets in illustrating the regional groundwater storage variations, and 

the application will be meaningful and invaluable when applied to the data-poor regions. 

Keywords: groundwater; terrestrial water storage; GRACE; GLDAS; satellite gravity 

 

1. Introduction 

Groundwater is a major source of fresh water in many parts of the world. It covers about 50%  

of drinking water needs, 40% of the needs of self-supplied industry, and 20% of the demand for 

irrigation water [1]. Nowadays, some cities are becoming overly dependent on groundwater, thus the 

replenishment of groundwater can no longer match up with the pace at which it is being consumed [2]. 

For instance, groundwater exploitation accounts for about 70% of the urban fresh water consumption 

in Beijing, and this proportion is more than 60% in the North China Plain [3]. Overexploitation of 

groundwater, however, has led to water resource and environmental problems, such as unremitting 

decrease of water table and constant land subsidence [4–6]. The conventional groundwater monitoring 

means, like well observations, are not only time-and-money-consuming, but also limited by their 

spatial coverage, which cannot produce large-scale dynamic observation and assessment due to 

scattered logs. 

Launched by National Aeronautics and Space Administration (NASA) and the Deutsche Zentrum 

für Luft- und Raumfahrt (DLR) in March 2002, the Gravity Recovery and Climate Experiment 

(GRACE) satellite mission aimed at mapping time variations in the Earth’s gravity field, making it 

applicable to the assessment of water storage under all types of terrestrial conditions [7,8]. Although 

the spatial and temporal resolution (no better than 160,000 km2 weekly or monthly) is low compared 

with that of other satellite missions, the major advantage of GRACE is that it can “sense” water stored 

at all levels, including groundwater [9]. In contrast to other technologies, such as radars and 

radiometers, which are limited to measurement of atmospheric and near-surface phenomena, GRACE 

is able to detect water storage variations of all depths, including groundwater, with accuracy of better 

than 1 cm of equivalent water height (EWH) [10]. 

Over the past decade, GRACE has been used to estimate regional water-storage variations  

(e.g., in the U.S. [11], the Amazon River basin [12–15], the Yangtze River basin [16,17], the Congo 

River basin [18] and the Lake Victoria [19]), monitor the mass balance of Antarctica [20,21] and 

Greenland [22–24] as well as evaluate the contributions of glaciers and ice caps to sea-level 

rise [25,26]. With the surface water storage variations estimated, for example, from the Global Land 

Data Assimilation System (GLDAS) and then subtracted from the terrestrial water storage (TWS), 

GRACE presents a new opportunity to monitor the groundwater storage variations. For instance, 

Rodell et al. [27] simulated the soil moisture and snow by GLDAS and isolated groundwater storage 

variations from GRACE-derived TWS for the Mississippi River basin and its four sub-basins. Water 
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level records from 58 wells were used for results validation and evaluation. They found that the  

GRACE-GLDAS estimations correspond well with those from monitoring well observations.  

Rodell et al. [9] used the GRACE and GLDAS data for the period from August 2002 to October 2008, 

and demonstrated that groundwater was being depleted at an average rate of 4.0 ± 1.0 cm/year in terms 

of EWH (17.7 ± 4.5 km3/year) over the Indian states of Rajasthan, Punjab, and Haryana (including 

Delhi). They suggested that irrigation consumption and other anthropogenic uses are the main causes. 

Tiwari et al. [28] combined the GRACE data with hydrological models to remove natural variability 

and found that northern India and its surroundings lost groundwater at a rate of 54 ± 9 km3/year 

between 2002 and 2008, which was considered the largest rate of groundwater losses in any 

comparable-sized region. Voss et al. [29] evaluated the freshwater storage trend in the north-central 

Middle East using GRACE data and showed a decline rate of water storage within the study area of 

approximately −27.2 ± 0.6 mm/year from 2003 to 2009. After further analysis with additional 

information and GLDAS output, they concluded that the groundwater losses are the main cause of this 

decrease. Jin and Feng [30] derived the global TWS from GRACE observations during approximately 

10 years and obtained the groundwater storage by subtracting the surface water simulated by GLDAS 

and WaterGAP Global Hydrology Model (WGHM). They considered the GRACE-GLDAS as a 

reliable means to detect large-scale global groundwater storage variations. Feng et al. [3] estimated the 

regional groundwater storage changes from GRACE in North China and found that the groundwater 

decline rate reached 2.2 ± 0.3 cm/year through GRACE-based compared with that between 2.0 and 

2.8 cm/year from monitoring well records within the same period. They analyzed the difference 

between GRACE results and the numbers from Groundwater Bulletin of China Northern Plains 

(GBCNP), and concluded that the groundwater depletion from deep aquifers in the plain and piedmont 

regions is the main cause. 

In this paper, soil moisture and accumulated snow components simulated from GLDAS are 

removed from the TWS changes observed by GRACE to estimate the groundwater variations. Due to 

unique processing schemes and algorithms, GRACE gravity fields provided by different agencies 

differ. Consequently, whereas the different solutions are very similar, there exist slight variations in 

TWS estimates from gravity fields from different processing centers [31,32]. Similar case occurs in the 

various hydrological models. Thus, the groundwater variations from different combinations of the 

three institutions’ (CSR, GFZ and JPL) GRACE products and the three land surface models (LSMs) 

driven by GLDAS (CLM, NOAH and VIC) are compared and evaluated in this study. Upon the 

intercomparison analysis of the various combinations, we would like to obtain the most robust solution 

to reduce the noises and increase the confidence. The states of Pennsylvania and New York (except 

Long Island), covering an area of approximately 257,000 km2 with a population of 25 million, in the 

Mid-Atlantic region of the United States are set as the study area. The area is chosen mainly because 

ground-based measurements from about 130 monitoring wells in the unconfined aquifers are available 

for results validation. The remainder of the paper is organized as follows: Section 2 will briefly 

introduce the principles of TWS changes estimation from GRACE gravity field models. The study area 

and data used will also be described in this part. The experimental results and discussion will be 

addressed in Section 3. Finally, conclusions and summary of the paper will be delivered in Section 4. 
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2. Method and Data 

TWS refers to all forms of water stored on and underneath the Earth’s surface. As a representative 

of water availability, TWS is of remarkable importance for water resources management. In general, 

the sources of TWS variations include the contributions from changes of groundwater (GW) and land 

surface water, i.e., soil moisture (SM) and snow water equivalent (SWE) for this particular study, and 

can be expressed as [27]: 

∆TWS ൌ ∆GW ∆SM  ∆SWE (1)

Meanwhile, the variations from SM and accumulated SWE can be simulated from land surface 

hydrological models, herein, GLDAS [33]. Thus, we can isolate the groundwater storage changes by 

removing soil and snow water variations from the GRACE-derived TWS. 

2.1. GRACE-Derived TWS: Data Acquisition and Processing 

In this paper, GRACE gravity field solutions (Level 2 Release-05) from the Center for Space 

Research (CSR) of the University of Texas at Austin, GFZ German Research Centre for Geosciences 

and NASA Jet Propulsion Laboratory (JPL) are used for estimating TWS from January 2005 to 

December 2011. The TWS results have a missing data period due to battery management (January and 

June in 2011), which are filled in by linear interpolation. The time span is adopted here because in-situ 

data and GRACE results overlap each other over this period. Cheng and Tapley [34] suggested the 

replacement of the C20 coefficients with estimates from Satellite Laser Ranging (SLR) solutions, in 

that, the values derived from GRACE observations have a larger uncertainty than the SLR-values. 

Seasonal changes of the degree-1 spherical harmonics representing the Earth’s geocenter variations 

cannot be provided by GRACE alone. Thus, we use the results calculated by Swenson et al. [35,36] 

which had been proven to improve estimates of mass variability from GRACE. Glacial isostatic 

adjustment (GIA) is corrected based on the model of Paulson et al. [37]. We also use a Gaussian filter 

with a smoothing radius of 300 km and a “P4M6” decorrelation filter [38,39] (i.e., for spherical 

harmonic coefficients of order 6 and above, a degree 4 polynomial is fitted to the even pairs and then 

the polynomial fit is removed from the coefficients, and the same is applied to the odd pairs) to 

minimize the influence of the “stripe” errors [35,40,41]. After relevant processing, the computing 

model of terrestrial water storage (in terms of EWH) is as follows [42,43]: 

∆ത݄ ൌ
ܽρா

3Ω


ρ௪


2݈  1
1  ݇

ܹሺݒ
 መܥ∆  ݒ

௦ ∆ መܵሻ



ୀ

∞

ୀ

 (2)

where ܽ is the mean radius of the Earth; ρா is the average density of the solid Earth (5517 kg/m3),  
ρ௪ is the water density (assumed throughout here to be 1000 kg/m3); Ω is the angle area of the 

region; ݇ are the load love numbers of degree l representing the effects of the Earth’s response to 

surface loads and can be obtained from Han et al. [44]; ݒ
  and ݒ

௦  are spherical harmonic 

coefficients describing the shape of the “basin”; ܹ corresponds to the Gaussian smoothing operator; 

መܥ∆  and ∆ መܵ  are the residuals of spherical harmonic coefficients of the gravity field, where the  

long-term mean has been removed. For consistent comparisons with the gridded GLDAS data sets as 
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well as reducing the leakage error by the filters, a gain factor is used to scale the GRACE signals. With 

GLDAS estimated total water content, we obtain the basin scale gain factor through a least squares 

minimization as described by Landerer et al. [45,46], which is 1.46 for the study area. 

2.2. Soil Moisture and Snow from GLDAS 

Being essential components of terrestrial water, variations of soil moisture and accumulated snow 

can be acquired from the actual observation in hydrological stations. But observing the large-scale 

variations of soil moisture and accumulated snow through field observation is quite difficult. The 

development of land surface hydrological model makes it possible to acquire the temporal-spatial 

distribution of large-scale moisture and accumulated snow variations. Jin et al. [30,47] pointed out that 

in describing the global hydrological changes, GLDAS performs better than other models. 

Jointly developed by NASA Goddard Space Flight Center (GSFC) and National Oceanic and 

Atmospheric Administration (NOAA) National Centers for Environmental Prediction (NCEP), GLDAS 

presents optimized near-real-time terrain variations, and is able to output information on the amount of 

global land surface soil moisture and accumulated snow [33]. In this study, we use the average soil 

moisture and snow water equivalent from three different LSMs provided by GLDAS, i.e., Community 

Land Model (CLM v2), NOAH and VIC, with the number of soil moisture layers being 10, 4 and 3, 

respectively, and corresponding depth reaching 3.433 m, 2.0 m and 1.9 m, respectively. According to 

Dai et al. [48], Rodell et al. [33] and Shamsudduha et al. [49], all these LSMs do not include groundwater 

storage. Thus, water storage variations in deep unsaturated soil or groundwater are not taken into account. 

2.3. Groundwater from Monitoring Wells 

To verify the accuracy of groundwater variations derived from GRACE time-variable gravity field 

model and LSM data, the groundwater level variations from monitoring wells should be transformed 

into the form of EWH. The variations of groundwater storage height are computed through the  

water-level statistics from the U.S. Geological Survey (USGS) Ground-Water Climate Response 

Network (http://pubs.usgs.gov/fs/2007/3003/). The primary purpose of this network is to monitor the 

effect of climate on groundwater levels. Most of the wells are located in unconfined aquifers or  

near-surface confined aquifers that are minimally affected by pumping or other anthropogenic 

stresses [50], which makes sure the groundwater variations in these monitoring wells are mainly 

affected by climate but little by human activities or tide. The good observation conditions of the 

network ensure the calculation precision of the water storage change. 

We selected about 130 wells in the unconfined aquifers from the National Water Information 

System (NWIS, http://waterdata.usgs.gov/nwis) as shown in Figure 1. The groundwater storage (GWS) 

changes (in terms of EWH) of the region from 2005 to 2011 are calculated by [51,52]: 

∆GWS ൌ ܵܥ∆ ݄

ே



/ܥ

ே



 (3)

where N refers to the number of subareas or zones divided in the study region; ܵ are the specific yield 

values of the unconfined aquifers; ܥ are the sizes of subareas; and ∆ ݄ refer to the mean values of the 

well water-level variations in each subarea. The time series of each well are calculated by removing 
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the mean water-level of the well during the study period from the monthly average of  

groundwater-level. We use 34 grid cells of the same area (1° × 1° as shown in Figure 1) in this case as 

subareas, and Equation (3) can be simplified as: 

∆GWS ൌ
1
ܰ
 ܵ∆ ݄

ே



 (4)

Estimating the specific yield value is quite difficult because for regional scales, it is no longer a 

simple geologic parameter and can hardly be determined by the pumping test. Rodell et al. applied an 

average specific yield value of 0.15 to all the 58 wells in the Mississippi River basin [27], and similarly a 

value of 0.12 in India [9]. Shamsudduha et al. [49] calculated the correlations between GRACE-derived 

and borehole-derived groundwater storage time series for different specific yield values (distributed 

values for each well, a uniform value of 0.10 and national mean of 0.06) in Bengal Basin and found that 

they are approximately the same. At regional scales, the application of different specific yield values to 

estimate the groundwater variations from in-situ observations only has influence on the annual 

amplitude. Based on the metadata of the monitoring wells and extensive review of reports by USGS, we 

use the estimations ranging from 0.02 (mainly for the carbonate rock) to 0.06 (for the standstone), and 

0.04 for migmatite of sandstone and carbonate rock [53,54], to compute the water storage changes. 

 

Figure 1. Study area (surrounded by the red curve) in the northern part of the Mid-Atlantic 

region of the United States and distribution of groundwater monitoring wells (red dots) used 

from the U.S. Geological Survey Ground-Water Climate Response Network. The area of this 

region is about 250,000 km2. The black rectangles represent the 1° × 1° grid cells as subareas. 
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3. Results and Discussion 

3.1. Terrestrial Water Storage Variations 

We calculated the average soil moisture and accumulated snow variations between 2005 and 2011 

with the 1.0-degree monthly data from GLDAS-NOAH, CLM and VIC models. Figure 2 shows the 

soil moisture and accumulated snow from GLDAS (average of the three LSMs) as well as groundwater 

storage variations from monitoring wells. 

 

Figure 2. Monthly soil moisture (SM) and snow water equivalent (SWE) from Global Land 

Data Assimilation System (GLDAS) models and groundwater storage from monitoring 

wells. The error bars represent the standard deviations for the GLDAS model simulations. 

The soil moisture and accumulated snow variation is featured by a prominent seasonal character,  

with the annual amplitude of around 5.39 ± 0.28 cm. Groundwater is also characterized by evident 

seasonal variations, with its annual amplitude as 2.62 ± 0.23 cm, smaller than that of soil moisture and 

accumulated snow. The phase difference between the two series is approximately 11 days, and 

generally in-situ observations lag the simulated SM and SWE. The simulated soil moisture and 

accumulated snow variations exhibit stronger magnitude than the monitoring well groundwater 

records. The changes of soil moisture and accumulated snow may take the largest part of TWS 

variations. This implies these two components (i.e., SM and SWE) are the dominant contributors to 

TWS changes in this region. 

The comparisons of TWS derived from GRACE with that from LSMs and actually measured 

groundwater, i.e., sum of SM, SWE and groundwater (GW), are shown in Figure 3. In spite of 

differences existing in the water storage variations computed via time-variable gravity field model 

provided by CSR, GFZ and JPL in a few periods, the overall results are consistent. The GRACE 

monthly gravity field changes are derived from a series of complicated inversion of relative ranging 

observations between the two satellites. Various solution strategies have been adopted by different 
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institutions in the processing, such as the precise orbit determination from on-board GPS and the 

corrections for spacecraft platform accelerations. This is the main reason for differences in products 

from different institutions. The correlation coefficients between the GRACE TWS results of CSR, 

GFZ, JPL and the simulated TWS (sum of SM, SWE and GW) are 0.92, 0.88, and 0.93, respectively, 

with a 95% confidence. The phases of the GRACE-derived TWS and simulated TWS time series 

correspond relatively well, both with water storage peaks occurring in MAM (March, April and May) 

and lows around SON (September, October and November). 

 

Figure 3. GRACE-derived terrestrial water storage (TWS) and TWS derived by combining 

GLDAS estimated soil moisture (SM) and snow water equivalent (SWE) with in-situ 

groundwater (GW) observations. 

Since the water storage variations have seasonal and secular signals, multi-linear regression analysis 

(MLRA) can be applied to examine the temporal variability of the hydrological quantities, such as 

estimated TWS. Hence, for a given time series, the model used in this work is taken into account: 

yሺtሻ ൌ ܽ ܣቀ݇ωݐ െφ

ቁ εሺݐሻ

ଶ

ୀଵ

 (5)

where t is time; a is the constant; ܣ , φ


 and ω refer to the amplitudes, phases and frequency, 

respectively; k represents the rank of the harmonics (k = 1 and k = 2 correspond to the annual and  

semi-annual components, respectively); ε(t) is the remaining variability in the data, which is primarily 

noise with some residual signals. The starting time for the phases has been set as the 0 h of 1 January 

2005. Table 1 displays the annual amplitude and phase of the GRACE-derived TWS and simulations, 

respectively, as well as the correlation between them. GRACE signal exhibits stronger magnitude than 

the values predicated by GLDAS model and groundwater observations, which is more obvious at the 

lows of 2006 and 2007. Similar cases were discussed by Syed et al. [55] and Shum et al. [56].  

The amplitude differences between the two sources may result from either the model deficiencies of 
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the GLDAS or uncertainties in the GRACE data. Overall, the TWS derived from GRACE shows 

consistence in general with that simulated by GLDAS and monitoring well records. 

Table 1. Annual amplitude and phase of terrestrial water storage (TWS) from GRACE 

(average of 3 institutions) and simulations (average of 3 GLDAS models) with confidence 

level of 95%. The significance level of the correlation coefficient is 95%. 

Variables Annual Amplitude (cm) Annual Phase (months) Correlation 

GRACE TWS 8.57 ± 0.59 2.90 ± 0.02 
0.93 

SM + SWE + GW 7.98 ± 0.48 2.62 ± 0.02 

Compared with corresponding periods in other years, GRACE-derived TWS represents an obvious 

decrease between September and November in 2007. According to the NOAA State of the Climate 

report, drought expanded in the Mid-Atlantic region during September 2007 [57]. Although the 

groundwater from the monitoring wells remained stable, the GLDAS simulation reached the lowest in 

2007 (Figure 2). We consider this unusual decrease in 2007 mainly results from the drought, and the 

soil moisture reduction contributes the most. As Chen et al. [12] and Houborg et al. [58] have 

described the potential of GRACE in monitoring severe drought and flooding events, this presents a 

confirmatory evidence for monitoring drought using satellite gravity measurements. 

3.2. Intercomparison Analysis of Groundwater Variations 

Groundwater storage changes can be obtained by deducting the GLDAS-simulated regional soil 

moisture and snow water variations from the TWS changes observed by GRACE. We use Taylor 

diagram as Figure 4 to show correlation coefficient, the centered pattern root-mean-square difference 

(RMSD) as well as standard deviation for evaluating the relationship between GRACE-GLDAS based 

(from different institutions and hydrological models) and the well-observed groundwater changes.  

The definitions of the statistics in the Taylor diagram can be found in [59]. 

The Taylor diagram presents the intercomparisons of statistics between monitoring well 

observations (as reference) with GRACE-GLDAS derived groundwater by jointly using different 

processing centers’ (CSR, GFZ, and JPL) products with the SM and SWE simulations from the CLM, 

NOAH, and VIC models. For instance, “CC” in Figure 4 stands for the combination of CSR TWS 

products and CLM model simulated SM and SWE; “MM” represents the groundwater result by 

removing averaged simulated SM and SWE of the three GLDAS LSMs from the averaged GRACE 

TWS of the three institutions’ products. As illustrated in Figure 4, considering GRACE TWS, the JPL 

product presents the largest correlation and smallest RMSD, indicating its superior performance, 

followed by the CSR and GFZ estimates. When we only take SM and SWE into account, the simulated 

results from NOAH model would be the first choice, and the VIC model is better than the CLM. In this 

case, the JPL-NOAH and CSR-NOAH combinations with small RMSDs (i.e., 2.57 cm and 2.77 cm, 

respectively) and high correlations (i.e., 0.60 and 0.59 at the 95% confidence level) have the best 

performances. Granted that these results provide similar information, we may deem these products as 

different measurements in terms of the models and processing strategies they use. Seen from this 

perspective, averaging these measurements may reduce the various errors to some extent and increase 

the confidence, as shown in Figure 4 that the “MM” option has a higher correlation of 0.70 and relatively 
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small RMSD of 2.59 cm. In other publications, similar processing strategies are also adopted. For 

instance, Tang et al. [60] averaged the CSR, GFZ and JPL products as well as Longuevergne et al. [61] 

and Shamsudduha et al. [49] took the CSR-GRGS average. Also in recent research conducted by 

Sakumura et al. [62], they suggested that the simple arithmetic mean of CSR, JPL and GFZ fields is 

very effective in reducing the noise in the gravity field solutions. 

 

Figure 4. Taylor diagram displaying the pattern of the statistics between GRACE-GLDAS 

based (from different institutions and land surface models) and in-situ groundwater variations. 

The monthly and quarterly groundwater variations play an important role in the research of  

water cycle. We compared the GRACE-GLDAS based groundwater results (the “MM” option) with 

the monitoring well data from 2005 to 2011 in Figures 5 and 6. 

For monthly data, the correlation between GRACE-GLDAS based results and the monitoring well 

data is 0.70 with the root-mean-square error (RMSE) of the differences of 2.6 cm. In terms of quarterly 

scales, the correlation between the two sequences reaches 0.74, and 2.1 cm for RMSE of the 

differences. Generally, the monthly and quarterly groundwater variations derived from both in-situ and 

GRACE satellite observations are consistent in terms of seasonal peaks and phases. Monthly storage 

anomaly peaks and lows are observed in MAM and SON, respectively. However, significant 

differences still remain. Notably, the GRACE-GLDAS found larger monthly groundwater changes in 

2007 and 2009, disagreeing with in-situ monitoring well records in terms of amplitude. Considering 

the monitoring wells we used are all from Climate Response Network, in-situ groundwater variations 

are mainly affected by climate but little by anthropogenic stresses, which may result in failing to 

reflect the comprehensive situation in some specific cases. 
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Figure 5. Comparisons of monthly and quarterly variations between GRACE-GLDAS 

based groundwater and in-situ monitoring well observations. 

 

Figure 6. Spatiotemporal comparisons between monthly, quarterly groundwater variations 

and in-situ monitoring well observations. The significance level of the correlation 

coefficient is 95%. 

The nonparametric Mann-Kendall trend test [63,64] was applied to the groundwater time-series 

from monitoring wells and GRACE-GLDAS from 2005 to 2011. The Z and p-value of the two-tailed 

test for the well observations are 0.07 and 0.95, respectively, and 1.63 and 0.10 for GRACE-GLDAS 

results, respectively, at the significance level of 0.05. It is a statement that the evidence available is not 

sufficient to conclude that there is a trend in the groundwater variations in this region during the study 

period, in other words the groundwater remains stable. This is due to groundwater not being the main 

source of the water supply in the study area. According to reports from USGS [65], in 2005 the 

groundwater use was 867 million gallons per day, accounting for 8% of the total supply for the whole 
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New York State (considering Long Island is out of our research, the number should be smaller) and the 

numbers are only 591 million gallons per day and 6% for Pennsylvania. The population density of the 

study area (excluding Long Island) is less than 100 people per km2 and the groundwater abstraction, if 

any, is likely limited. Thus, the groundwater storage remains stable. The results clearly illustrate that 

the regional groundwater storage variations can be detected precisely with GRACE time-variable field 

solutions and GLDAS simulations. Compared with the expenditure of the traditional well monitoring, 

the remote sensing method is cost saving in the aspect of data collection. Unlike the United States or 

other developed countries, in-situ groundwater monitoring is not easily conducted in many other parts 

of the world due to the lack of adequate well networks; even when the monitoring well networks exist, 

the information is not centralized or available due to policies. The application of this approach will be 

more meaningful when applied to the data-poor regions, e.g., the Middle East and Africa. 

GRACE offers an innovative and important approach to estimating groundwater storage changes. 

However, there are still some limitations of this method. First of all, groundwater storage derived by 

subtracting model estimated SM and SWE from GRACE TWS exhibited larger dynamic ranges than 

observed groundwater, likely due to smaller dynamic ranges in modeled soil moisture and snow than 

expected. Ground-based network of sensors or advanced land surface modeling techniques would 

provide more reliable soil moisture and snow data and ultimately improve the GRACE derived 

estimate of groundwater changes. In addition, aquifer specific yields, used to convert the water table 

depth to water storage, also affect the estimation accuracies. The differences in specific yield values 

used could change the amplitude of the groundwater fluctuations calculated by in-situ well levels. In 

fact, at the regional scale, we would no longer consider the specific yield as a simple geologic 

parameter and the value can hardly be determined by pumping test. For instance, Sun et al. [52] 

estimated the specific yield using GRACE, in-situ well observations and North American Land Data 

Assimilation System (NLDAS) data, which provides a potentially new way to validate regional aquifer 

storage parameters using GRACE data. Moreover, uncertainty exists in the GRACE data. As is known, 

the gravity changes measured by GRACE mission are caused by any integrated mass redistributions 

from the center of the Earth to the satellites. Notably, the changes not only include groundwater, soil 

moisture and snow variations, but also other components such as GIA and atmospheric mass changes. 

Although parts of them are modeled and corrected in the data production (by the agencies) and data 

processing, the unmodeled variations still remain in GRACE data. Wahr et al. [66] discussed the error 

sources and accuracy of GRACE-derived mass estimates. Feng et al. [3] calculated the groundwater 

depletion in North China using the CSR, GFZ, JPL, and GRGS GRACE products and found that 

uncertainty still remains using different gravity field inversion strategies. However, these shortcomings 

in using global spherical harmonic solutions could be overcome by using regional gravity field 

recovery (e.g., mass concentration solution). 

4. Summary and Conclusions 

In this study, we present an application for estimating groundwater storage variations based on 

remotely sensed TWS changes from GRACE in Pennsylvania and New York States of the  

Mid-Atlantic region of the United States. We use the approach proposed by Rodell et al. [27], assuming 

the groundwater, soil moisture and snow as the only significant contributors to the regional water 
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storage. To isolate groundwater from the TWS, SM, and SWE, simulations by the LSMs were used as 

ancillary information. Since the different gravity filed products and hydrological models vary, we 

evaluate the groundwater variations from different combinations of three institutions’ GRACE 

products and three GLDAS LSMs. Through intercomparison analysis, the most robust solution is 

obtained. The nonparametric Mann-Kendall test is applied for the groundwater trend analysis during 

the study period from 2005 to 2011. 

Obvious seasonal characteristics feature the SM and SWE variations simulated from GLDAS as 

well as groundwater from the well observations. The GRACE TWS results are in good agreement with 

the sum of SM, SWE from the GLDAS model simulations and GW from the well water level 

observations. TWS variations computed by products provided by CSR, GFZ and JPL present small 

differences in some periods, which are probably due to the inconsistent calculation methods adopted 

by the three institutions. For groundwater derivation, the JPL-NOAH and CSR-NOAH combinations 

perform the best in this study case. Considering these products and models as different measurements, 

we take the ensemble average of the TWSs as well as the SM and SWE simulations. As for monthly 

scales, the correlation coefficient between the GRACE-GLDAS based and in-situ groundwater 

variations reaches 0.70 with the RMSE of the differences of 2.6 cm. In terms of quarterly scales, the 

correlation coefficient is 0.74 with 2.1 cm for the RMSE of the differences. The averaged  

GRACE-GLDAS based groundwater result (the “MM” option) is clearly seen to reduce the noises and 

to be the most robust solution. Thus, this should be the first choice for GRACE-GLDAS groundwater 

variations estimation. 

Two-tailed Mann-Kendall trend test results indicate that the evidence for a trend in the groundwater 

in the region is not sufficient, which means no significant groundwater gain or loss existed in this 

region over the study period. The GRACE time-variable field solutions and GLDAS simulations 

provide precise and reliable data sets in illustrating the regional groundwater storage variations and 

make data collection cost saving. The application will be more meaningful and invaluable when 

applied to data-poor regions. 
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