Single- and Multi-Date Crop Identification Using PROBA-V 100 and 300 m S1 Products on Zlatia Test Site, Bulgaria
Abstract
:1. Introduction
- •
- single- and multi-date crop identification using PROBA-V multispectral 100 m and 300 m daily syntheses (S1) Top of Canopy reflectance product acquired on different dates;
- •
- multi-date crop identification using PROBA-V S1 100 m and 300 m satellite NDVI time series.
2. Study Area and Data Used
2.1. Study Area
2.2. Data
2.2.1. Ground Truth
N | Date | Winter Wheat | Winter Rapeseed | Maize | Sunflower |
---|---|---|---|---|---|
I | 21 March | Heading | Vegetative | Bare soil | Bare soil |
II | 30 March | Heading | Vegetative | Sowing | Bare soil |
III | 4 April | Flowering | Flowering | Vegetative | Sowing |
IV | 19 May | Grain filling(milk development) | Grain filling | Vegetative | Vegetative |
V | 7 June | Grain filling (dough development) | Grain filling | Vegetative | Vegetative |
VI | 11 June | Ripening | Ripening/Maturity | Vegetative | Flowering |
VII | 8 July | Maturity harvest/stubble fields | Stubble fields | Flowering | Grain filling |
VIII | 5 August | Bare soil | Bare soil | Ripening | Ripening |
IX | 14 August | Bare soil | Bare soil | Ripening | Maturity |
X | 27 August | Bare soil | Bare soil | Maturity | Harvest |
2.2.2. Satellite Data
3. Methods
- (1)
- single- and multi-date supervised maximum likelihood classification (MLC) of the multi-spectral data, and
- (2)
Launch Date | 02:06 GMT on 7 May 2013 | |
---|---|---|
Weight | 33 kg | |
Size and Volume | 33 cm ×22 cm × 11 cm/0.05 m3 | |
Altitude | 820 km | |
Orbit type | sun-synchronous | |
Local overpass time | 10:45 h | |
Field Of View | 102° | |
Swath width | 2295 km | |
Number of cameras | 3 | |
Temporal resolution | daily near-global coverage (90%) and full global coverage is achieved every 2 days if data from all three cameras are combined (e.g., at 300 m Ground Sampling Distance) | |
PROBA-V spectral bands | Centered at (nm) | Width span (nm) |
BLUE | 463 | 46 |
RED | 655 | 79 |
NIR | 845 | 144 |
SWIR | 1600 | 73 |
n | Date | Cloud Coverage | Use in Classification Scheme Based on | |
---|---|---|---|---|
Multi-Spectral Data | NDVI Time Series | |||
I | 21 March | cloud free | + | + |
II | 30 March | <5% | − | + |
III | 4 April | cloud free | + | + |
IV | 19 May | <5% | − | + |
V | 7 June | cloud free | + | + |
VI | 11 June | <5% | − | + |
VII | 8 July | cloud free | + | + |
VIII | 5 August | <5% | − | + |
IX | 14 August | cloud free | − | + |
X | 27 August | <5% | − | + |
3.1. Single and Multi-Date Supervised MLC Classifications
Single-Date Spectral Classification Experiments | Abbreviation of Classification Experiment | ||||||
SINGLE1 | SINGLE2 | SINGLE3 | SINGLE4 | ||||
Image used | 21 March (I) | + | − | − | − | ||
4 April (III) | − | + | − | − | |||
7 June (V) | − | − | + | − | |||
8 July (VII) | − | − | − | + | |||
Distinguished classes | Wheat, Rapeseed, Soil | Wheat, Rapeseed, Soil | Wheat, Rapeseed, Soil, Maize, Sunflower, | Maize, Sunflower, Soil/crop residue | |||
Multi-Date Spectral Classification Experiments | Abbreviation of Classification Experiment | ||||||
MULT1 | MULT2 | MULT3 | |||||
Images used | 21 March (I) | + | + | − | |||
4 April (III) | + | + | + | ||||
7 June (V) | + | + | + | ||||
8 July (VII) | + | − | + | ||||
Distinguished classes | Wheat, Rapeseed, Maize, Sunflower |
3.2. Cluster Analysis of PROBA-V NDVI Time Series
4. Results
4.1. Single- and Multi-Date Supervised MLC Classifications of Multi-Spectral Data
Data Sets Used for Classification | Number of Distinguished Classes | Accuracy Assessment based on Computer Aided Visual Interpretation of Landsat OLI Data | |
---|---|---|---|
100 m (n = 275) | 300 m (n = 275) | ||
SINGLE1 | 3 | 86.2 (81.9–90.5) | 79.3 (74.3–84.3) |
SINGLE2 | 3 | 79.6 (74.7–84.5) | 67.6 (61.9–67.8) |
SINGLE3 | 5 | 72.4 (66.9–77.9) | 62.2 (56.3–68.1) |
SINGLE4 | 3 | 82.5 (77.8–87.2) | 70.2 (64.6–75.8) |
MULT1 | 4 | 76.7 (71.5–81.9) | 69.8 (64.2–75.4) |
MULT2 | 4 | 74.9 (69.6–80.2) | 69.1 (64.0–75.0) |
MULT3 | 4 | 73.5 (68.1–78.9) | 66.2 (60.4–72.0) |
Reference Data | |||||||
---|---|---|---|---|---|---|---|
Maize | Rapeseed | Sunflower | Wheat | Soil | Total | User Acc. (%) | |
Maize | 16 | 0 | 5 | 1 | 3 | 25 | 64.0 |
Rapeseed | 0 | 25 | 0 | 1 | 0 | 26 | 96.2 |
Sunflower | 5 | 3 | 53 | 2 | 0 | 63 | 84.1 |
Wheat | 9 | 6 | 6 | 72 | 0 | 93 | 77.4 |
Soil | 22 | 1 | 2 | 10 | 33 | 68 | |
Total | 52 | 35 | 66 | 86 | 36 | 275 | |
Prod. Acc. (%) | 30.8 | 71.4 | 80.3 | 83.7 | |||
Overall Accuracy 72.4% |
4.2. Time Series Cluster Analysis Using PROBA-V NDVI Data
100 m | 300 m | |
---|---|---|
Unsupervised ISODATA classification of the four crops (maize, sunflower, winterwheat, rapeseed) | 74.9 (69.6–80.2) | 61.8 (55.9–67.7) |
Unsupervised ISODATA classification of the two crop types (summer and winter crops) | 92.4 (89.9–96.3) | 84.7 (80.3–89.1) |
Supervised MLC classification of the four crops (maize, sunflower, winterwheat, rapeseed) | 67.3 (61.6–73.0) | 60.4 (54.3–66.3) |
5. Discussion
6. Conclusions
Acknowledgements
Author Contributions
Conflicts of Interest
References
- Atzberger, C. Advances in remote sensing of agriculture: Context description, existing operational monitoring systems and major information needs. Remote Sens. 2013, 5, 949–981. [Google Scholar] [CrossRef]
- Rembold, F.; Atzberger, C.; Savin, I.; Rojas, O. Using low resolution satellite imagery for yield prediction and yield anomaly detection. Remote Sens. 2013, 5, 1704–1733. [Google Scholar] [CrossRef] [Green Version]
- Morel, J.; Todoroff, P.; Begue, A.; Bury, A.; Martine, J.F. Toward a satellite-based system of sugarcane yield estimation and forecasting in smallholder farming conditions: A case study on Reunion Island. Remote Sens. 2014, 6, 6620–6635. [Google Scholar] [CrossRef]
- Mello, M.P.; Risso, J.; Atzberger, C.; Aplin, P.; Pebesma, E.; Vieira, C.A.O. Bayesian networks for raster data (BayNeRD): Plausible reasoning from observations. Remote Sens. 2013, 5, 5999–6025. [Google Scholar] [CrossRef]
- Vieira, M.A.; Formaggio, A.R.; Rennó, C.D.; Atzberger, C.; Aguiar, D.A.; Mello, M.P. Object based image analysis and data mining applied to a remotely sensed Landsat time-series to map sugarcane over large areas. Remote Sens. Environ. 2012, 123, 553–562. [Google Scholar] [CrossRef]
- Lunetta, R.S.; Shao, Y.; Ediriwickrema, J. Monitoring agricultural cropping patterns across the Laurentian Great Lakes Basin using MODIS-NDVI data. Int. J. Appl. Earth Obs. 2010, 12, 81–88. [Google Scholar] [CrossRef]
- Vrieling, A.; de Beurs, K.M.; Brown, M.E. Variability of African farming systems from phenological analysis of NDVI time series. Climatic Change 2011, 109, 455–477. [Google Scholar] [CrossRef]
- Vrieling, A.; Hoedjes, J.C.B.; van der Velde, M. Towards large-scale monitoring of soil erosion in Africa: Accounting for the dynamics of rainfall erosivity. Global Planet. Change 2014, 115, 33–43. [Google Scholar] [CrossRef]
- De Leeuw, J; Vrieling, A.; Shee, A.; Atzberger, C.; Hadgu, K.M.; Biradar, C.M. The potential and uptake of remote sensing in insurance: A review. Remote Sens. 2014, 6, 10888–10912. [Google Scholar]
- Galford, G.L.; Mustard, J.F.; Melillo, J.; Gendrin, A.; Cerri, C.C.; Cerri, C.E.P. Wavelet analysis of MODIS time series to detect expansion and intensification of row-crop agriculture in Brazil. Remote Sens. Environ. 2008, 112, 576–587. [Google Scholar] [CrossRef]
- De Oliveira, J.; Trabaguini, K.; Neves, J.C. Analysis of agricultural intensification in a basin with remote sensing data. Gisci Remote Sens. 2014, 51, 253–268. [Google Scholar] [CrossRef]
- Mukashema, A.; Veldkamp, A.; Vrieling, A. Automated high resolution mapping of coffee in Rwanda using an expert Bayesian network. Int. J. Appl. Earth Obs. Geoinf. 2014, 33, 331–340. [Google Scholar] [CrossRef]
- Ivits, E.; Cherlet, M.; Tóth, G.; Sommer, S.; Mehl, W.; Vogt, J.; Micale, F. Combining satellite derived phenology with climate data for climate change. Global Planet. Change 2012, 88–89, 85–97. [Google Scholar] [CrossRef]
- Brown, M.E.; de Beurs, K.M.; Marshall, M. Global phenological response to climate change in crop areas using satellite remote sensing of vegetation, humidity and temperature over 26 years. Remote Sens. Environ. 2012, 126, 174–183. [Google Scholar] [CrossRef]
- Richardson, A.; Keenan, T.F.; Migliavacca, M.; Ryu, Y.; Sonnentag, O.; Toomey, M. Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agr. Forest Meteorol. 2013, 169, 156–173. [Google Scholar] [CrossRef]
- Teixeira, E.; Fischer, G.; Van Velthuizen, H.; Walter, C.; Ewert, F. Global hot-spots of heat stress on agricultural crops due to climate change. Agr. Forest Meteorol. 2013, 170, 206–215. [Google Scholar] [CrossRef]
- Atzberger, C.; Eilers, P.H.C. A time series for monitoring vegetation activity and phenology at 10-daily time steps covering large parts of South America. Int. J. Digital World 2011, 4, 365–386. [Google Scholar] [CrossRef]
- Bolton, D.K.; Friedl, M.A. Forecasting crop yield using remotely sensed vegetation indices and crop phenology metrics. Agr. Forest Meteorol. 2013, 173, 74–84. [Google Scholar] [CrossRef]
- Pax-Lenney, M.; Woodcock, C.E. The effect of spatial resolution on the ability to monitor the status of agricultural lands. Remote Sens. Environ. 1997, 61, 210–220. [Google Scholar] [CrossRef]
- Duveiller, G.; Defourny, P. A conceptual framework to define the spatial resolution requirements for agricultural monitoring using remote sensing. Remote Sens. Environ. 2010, 114, 2637–2650. [Google Scholar] [CrossRef]
- Drusch, M.; Del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.; Martimort, P.; et al. Sentinel-2: ESA’s optical high-resolution mission for GMES operational services. Remote Sens. Environ. 2012, 120, 25–36. [Google Scholar] [CrossRef]
- Preparing Sentinel-2 Exploitation for Agriculture Monitoring. Available online: http://www.esa-sen2agri.org/SitePages/Home.aspx (accessed on 7 September 2015).
- Petitjean, F.; Inglada, J.; Gancarski, P. Assessing the quality of temporal high-resolution classifications with low-resolution satellite image time series. Int. J. Remote Sens. 2014, 35, 2693–2712. [Google Scholar] [CrossRef]
- Atzberger, C.; Formaggio, A.R.; Shimabukuro, Y.E.; Udelhoven, T.; Mattiuzzi, M.; Sanchez, G.A.; Arai, E. Obtaining crop-specific time profiles of NDVI: The use of unmixing approaches for serving the continuity between SPOT-VGT and PROBA-V time series. Int. J. Remote Sens. 2014, 35, 2615–2638. [Google Scholar] [CrossRef]
- Atzberger, C.; Rembold, F. Mapping the spatial distribution of winter crops at sub-pixel level using AVHRR NDVI time series and neural nets. Remote Sens. 2013, 5, 1335–1354. [Google Scholar] [CrossRef] [Green Version]
- Bisquert, M.; Bordogna, G.; Bégué, A.; Candiani, G.; Teisseire, M.; Poncelet, P. A simple fusion method for image time series based on the estimation of image temporal validity. Remote Sens. 2015, 7, 704–724. [Google Scholar] [CrossRef] [Green Version]
- Dierckx, W.; Sterckx, S.; Benhadj, I.; Livens, S.; Duhoux, G.; Achteren, T.V.; Francois, M.; Mellab, K.; Saint, G. PROBA-V mission for global vegetation monitoring: Standard products and image quality. Int. J. Remote Sens. 2014, 35, 2589–2614. [Google Scholar] [CrossRef]
- Aschbacher, J.; Milagro-Perez, M.P. The European Earth monitoring (GMES) programme: Status and perspectives. Remote Sens. Environ. 2012, 120, 3–8. [Google Scholar] [CrossRef]
- Fritz, S.; See, L.; You, L.; Justice, C.; Becker-Reshef, I.; Bydekerke, L.; Foley, J. The need for improved maps of global cropland. EOS, Trans. Am. Geophys. Union 2013, 94, 31–32. [Google Scholar] [CrossRef]
- Roumenina, E.; Filchev, L.; Naydenova, V.; Jelev, G.; Dimitrov, P.; Vassilev, V.; Kraleva, L. Monitoring of winter crop status in Bulgaria using a series of NOAA AVHRR NDVI images. Can. J. Remote Sens. 2010, 36, 224–230. [Google Scholar] [CrossRef]
- Chukaliev, O.; Ramos, F.; Ceglar, A.; Niemeyer, St. Final Report Workshop on Crop Yield Forecasting in South East Europe; Publications Office of the European Union: Luxembourg City, Luxembourg, 2013. [Google Scholar]
- Boogaard, H.; Wolf, J.; Supit, I.; Niemeyer, St.; van Ittersum, M. A regional implementation of WOFOST for calculating yield gaps of autumn-sown wheat across the European Union. Field Crop. Res. 2013, 143, 130–142. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014: International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports No. 106; FAO: Rome, Italy, 2014. [Google Scholar]
- VITO. Product Distribution Portal (PDF). Available online: http://www.vito-eodata.be/PDF/portal/Application.html#Home (accessed on 16 October 2015).
- Wolters, E.; Dierckx, W.; Dries, J.; Swinnen, E. PROBA-V Products User Manual v1.1.; ESA: Paris, France, 2014; p. 74. [Google Scholar]
- Ball, G.H.; Hall, D.J. ISODATA: A Method of Data Analysis and Pattern Classification; Stanford Research Institute: Menlo Park, CA, USA, 1965. [Google Scholar]
- Vuolo, F.; Atzberger, C. Improving land cover maps in areas of disagreement of existing products using NDVI time series of MODIS—Example for Europe. Photogramm. Fernerkun. 2014, 5, 393–407. [Google Scholar] [CrossRef]
- Foody, G.M. Thematic map comparison: Evaluating the statistical significance of differences in classification accuracy. Photogramm. Eng. Remote. Sens. 2004, 70, 627–633. [Google Scholar] [CrossRef]
- Foody, G.M. Classification accuracy comparison: Hypothesis tests and the use of confidence intervals in evaluations of difference, equivalence and non-inferiority. Remote Sens. Environ. 2009, 113, 1658–1663. [Google Scholar] [CrossRef]
- Fleiss, J.L.; Levin, B.; Paik, M.C. Statistical Methods for Rates and Proportions, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2003. [Google Scholar]
- Simonneaux, V.; Duchemin, B.; Helson, D.; Er-Raki, S.; Olioso, A.; Chehbouni, A.G. The use of high-resolution image time series for crop classification and evapotranspiration estimate over an irrigated area in central Morocco. Int. J. Remote Sens. 2010, 29, 95–116. [Google Scholar] [CrossRef] [Green Version]
- Becker-Reshef, I.; Justice, C.; Sullivan, M.; Vermote, E.; Tucker, C.; Anyamba, A.; Small, J.; Pak, E.; Masuoka, E.; Schmaltz, J.; et al. Monitoring global croplands with coarse resolution earth observations: The Global Agriculture Monitoring (GLAM) project. Remote Sens. 2010, 2, 1589–1609. [Google Scholar] [CrossRef]
- Pittman, K.; Hansen, M.C.; Becker-Reshef, I.; Potapov, P.V.; Justice, C.O. Estimating global cropland extent with multi-year MODIS data. Remote Sens. 2010, 2, 1844–1863. [Google Scholar] [CrossRef]
- Waldner, F.; Fritz, S.; Di Gregorio, A.; Defourny, P. Mapping priorities to focus cropland mapping activities: Fitness assessment of existing global, regional and national cropland maps. Remote Sens. 2015, 7, 7959–7986. [Google Scholar] [CrossRef] [Green Version]
- Aplin, P.; Atkinson, P.M.; Curran, P.J. Fine spatial resolution simulated satellite sensor imagery for land cover mapping in the United Kingdom. Remote Sens. Environ. 1999, 68, 206–216. [Google Scholar] [CrossRef]
- Castillejo-Gonzalez, I.; Lopez-Granados, F.; Garcia-Ferrer, A.; Pena-Barragan, J.; Jurado-Exposito, M.; Sanchez de la Orden, M.; Gonzalez-Audicana, M. Object- and pixel-based analysis for mapping crops and their agro-environmental associated measures using QuickBird imagery. Comput. Electron. Agr. 2009, 68, 207–215. [Google Scholar] [CrossRef]
- Vassilev, V. An approach for accuracy assessment comparison between per-pixel supervised and object-oriented classifications on a QuickBird image. In Proceedings of the 30th EARSeL Symposium: Remote Sensing for Science, Education and Culture, Paris, France, 31 May–3 June 2010.
- Yang, C.; Everitt, J.H.; Murden, D. Evaluating high resolution SPOT 5 satellite imagery for crop identification. Comput. Electron. Agr. 2011, 75, 347–354. [Google Scholar] [CrossRef]
- Lobell, D.B.; Asner, G. Comparison of Earth Observing-1 ALI and Landsat ETM+ for crop identification and yield prediction in Mexico. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1277–1282. [Google Scholar] [CrossRef]
- Vassilev, V. Crop area estimates based on per-pixel supervised classification on EO-1 ALI image for a test site in northeast Bulgaria. Aerosp. Res. Bulg. 2014, 25, 179–190. [Google Scholar]
- Jain, M.; Mondal, P.; DeFries, R.S.; Small, C.; Galford, G.L. Mapping cropping intensity of smallholder farms: A comparison of methods using multiple sensors. Remote Sens. Environ. 2013, 134, 210–223. [Google Scholar] [CrossRef]
- Pena-Barragan, J.M.; Jurado-Exposito, M.; Lopez-Granados, F.; Atenciano, S.; Sanchez de la Orden, M.; Garcia-Ferrer, A.; Garcia-Torres, L. Assessment of soil uses in olive groves from aerial photographs. Agric. Ecosyst. Environ. 2004, 103, 117–122. [Google Scholar] [CrossRef]
- Cohen, Y.; Shoshany, M. A national knowledge-based crop recognition in Mediterranean environment. Int. J. Appl. Earth Obs. 2002, 4, 75–87. [Google Scholar] [CrossRef]
- Wardlow, B.D.; Egbert, S.L. A state-level comparative analysis of the GAP and NLCD land-cover data sets. Photogramm. Eng. Remote Sens. 2003, 69, 1387–1397. [Google Scholar] [CrossRef]
- Foerster, S.; Kaden, K.; Foerster, M.; Itzerott, S. Crop type mapping using spectral-temporal profiles and phenoplogical information. Comput. Electron. Agr. 2012, 89, 30–40. [Google Scholar] [CrossRef]
- Wardlow, B.; Egbert, S. Large-area crop mapping using time-series MODIS 250 m NDVI data: An assessment for the U.S. Central Great Plains. Remote Sens. Environ. 2008, 112, 1096–1116. [Google Scholar] [CrossRef]
- Jakubauskas, M.E.; Legates, D.R.; Kastens, J.H. Crop identification using harmonic analysis of time-series AVHRR NDVI data. Comput. Electron. Agr. 2002, 37, 127–139. [Google Scholar] [CrossRef]
- Ilsen, S.; Gerrits, D.; Vrancken, D.; Naudet, J. PROBA-V: The example of onboard and onground autonomy. In Proceedings of 28th Annual AIAA/USU Conference on Small Satellites, Logan, UT, USA, 4–7 August 2015.
- Vassilev, V. Crop identification mapping on the arable territory of Bulgaria using multi-temporal 100 m PROBA-V NDVI data for 2014. CR Acad. Bulg. Sci. 2015, 68, 767–774. [Google Scholar]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roumenina, E.; Atzberger, C.; Vassilev, V.; Dimitrov, P.; Kamenova, I.; Banov, M.; Filchev, L.; Jelev, G. Single- and Multi-Date Crop Identification Using PROBA-V 100 and 300 m S1 Products on Zlatia Test Site, Bulgaria. Remote Sens. 2015, 7, 13843-13862. https://doi.org/10.3390/rs71013843
Roumenina E, Atzberger C, Vassilev V, Dimitrov P, Kamenova I, Banov M, Filchev L, Jelev G. Single- and Multi-Date Crop Identification Using PROBA-V 100 and 300 m S1 Products on Zlatia Test Site, Bulgaria. Remote Sensing. 2015; 7(10):13843-13862. https://doi.org/10.3390/rs71013843
Chicago/Turabian StyleRoumenina, Eugenia, Clement Atzberger, Vassil Vassilev, Petar Dimitrov, Ilina Kamenova, Martin Banov, Lachezar Filchev, and Georgi Jelev. 2015. "Single- and Multi-Date Crop Identification Using PROBA-V 100 and 300 m S1 Products on Zlatia Test Site, Bulgaria" Remote Sensing 7, no. 10: 13843-13862. https://doi.org/10.3390/rs71013843
APA StyleRoumenina, E., Atzberger, C., Vassilev, V., Dimitrov, P., Kamenova, I., Banov, M., Filchev, L., & Jelev, G. (2015). Single- and Multi-Date Crop Identification Using PROBA-V 100 and 300 m S1 Products on Zlatia Test Site, Bulgaria. Remote Sensing, 7(10), 13843-13862. https://doi.org/10.3390/rs71013843