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Abstract: Radar backscattering properties can be extremely sensitive to the freeze/thaw states
of the ground surface. This study aims to evaluate the changes of L-band microwave scattering
characteristics between thawed and frozen conditions by using polarimetric scattering mechanism
indicators. ALOS PALSAR polarimetric mode data acquired in winter and spring seasons over
Eastern Siberia are used in this study. Experimental results show that the actual scattering
mechanisms and their seasonal variations over various forested and non-forested permafrost
ecosystems can be successfully characterized by the polarimetric target decomposition parameters
and the polarimetric coherences. In addition, fully polarimetric radar observations exhibit great
potential for mapping land cover types and surficial features in the permafrost active layer.
Particularly, the co-polarization coherences on the HV-polarization basis and circular-polarization
basis were found to be very useful for discriminating different surficial geocryological characteristics
in recently burnt forests and thermokarst regions.

Keywords: synthetic aperture radar (SAR); radar polarimetry; microwave scattering mechanism;
permafrost active layer; freeze/thaw; ALOS PALSAR

1. Introduction

The active layer overlying permafrost generally undergoes drastic seasonal changes due to
large temperature variations between the summer and winter seasons. The freeze/thaw transition
of the active layer affects biological activities, water and energy exchange mechanisms. Seasonal
freeze/thaw states can be spatially and temporally complex depending on landscape heterogeneity
and local-scale variations in geocryological processes. Radar remote sensing, including synthetic
aperture radar (SAR), has great potential to provide spatially-distributed information on permafrost
ecosystem dynamics with its ability to penetrate cloud and independence from solar illumination.
A number of studies using the space-borne radar measurements have been conducted to extract
information regarding the freeze/thaw cycle [1–7], taiga forests [8–14], wetlands [15–17] and
geological features [18–20].

Radar backscattering properties can be strongly sensitive to the freeze/thaw state of the land
surface due to the large contrast in the dielectric constant of frozen and liquid water at microwave
frequencies. Studies of seasonal variations of C-band radar signals with ERS and ENVISAT SAR
data [1–9] showed a decrease in the backscattering coefficient of about 3 dB during the transition
of trees from a thawed to a frozen state almost independently of tree species. A greater decrease
in backscattering coefficients can be observed when tundra areas froze than when forested areas
froze [1,3].
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To characterize seasonal backscattering signatures at L-band frequency, a series of JPL
airborne SAR (AIRSAR) images over Alaskan taiga forests were investigated [10–12]. Changes
in backscattering intensities show about a 3–5 dB decrease in co-polarization channels (σ0

HH and
σ0

VV) and about a 6 dB decrease in the cross-polarization channel (σ0
HV) between the thawed and

frozen conditions. Backscatter changes in the space-borne L-band SAR observations show similar
temporal patterns to those of airborne SAR [13]. Some studies applied vegetation scattering models,
e.g., the radiative transfer model [12] and the water cloud model [14], in order to understand
changes in the scattering mechanism involved in the temporal SAR observations. The seasonal
backscattering changes can primarily be caused by decreases in the direct scattering from the canopy
under frozen conditions.

Although physical scattering models can successfully explain scattering mechanisms in the
radar observation, they are usually complex and require many input parameters. Therefore, the
applicability of those models is limited to a few test areas. Polarimetric SAR (POLSAR) remote
sensing can be an effective tool to monitor a spatially- and temporally-heterogeneous permafrost
landscape since the fully-polarimetric scattering measurement offers a unique opportunity to estimate
actual scattering mechanisms without in situ information. Kwok et al. [11] demonstrated the usability
of the co- and cross-polarization signature for characterizing changes in the relative scattering
contributions in the radar signal between frozen and thawed conditions. Recently, several studies
applied polarimetric processing techniques to characterize wetland classes in Canada [16] and to
estimate the growing stock volume in Siberian forest [21,22].

This study aims to evaluate L-band microwave scattering characteristics of different land
cover classes in the eastern Siberian permafrost area by using polarimetric scattering mechanisms
indicators. The Phased Array L-band SAR (PALSAR) data of the Japanese Advanced Land Observing
Satellite (ALOS) acquired in winter and spring seasons over Eastern Siberia are used in this study
to investigate the variations of backscattering in forested and non-forested permafrost ecosystems.
In the following section, the study area and a description of the acquired SAR data used for
this paper are discussed. In Section 3, a brief introduction to the methods for describing target
scattering characteristics is presented. Furthermore, experimental results on the changes of scattering
properties related to the freeze/thaw transition are discussed. A summary and concluding remarks
are presented in Section 4.

2. Study Area and Data

The study site is located about 180 km northwest of Yakutsk city in eastern Siberia (Figure 1a).
The central Yakutia area was investigated in a previous study on mapping freeze/thaw cycles from
ENVISAT ASAR [7]. In this study, a small part of the area showing distinctive differences in the
radar-derived spring transition date is selected for further investigation of microwave scattering
properties. The permafrost characteristics in the Yakutsk area have been relatively well studied as
compared to other high-latitude regions [23–27]. This region is covered with forests, grasslands and
thermokarst features underlain by continuous permafrost. The terrain is nearly flat, and the taiga
forest consists of mixed stands of larch, birch and pine. Icy deposits are located at depths of 1–3 m
below the surface and exceed 20–25 m in thickness. Average monthly temperatures range from 19 ˝C
in July to ´40 ˝C in January, and annual precipitation is 190–230 mm, mainly in the summer season.

Two ALOS PALSAR polarimetric mode data acquired on 31 March 2007 and 16 May 2007 over
the Yakutia study site are investigated in this study. The off-nadir angle of the polarimetric mode
is 21.5˝ corresponding to a 22.8˝–25.2˝ incidence angle range. In this study, single-look complex
(Level 1.1) data with the nominal slant range resolution of 9.5 m and the azimuth resolution of 4.5 m
are used in this study. In order to identify environmental conditions during SAR data acquisitions,
the daily air temperature and snow water equivalent information were obtained from the nearest
grid point (about 25 km away from the study site) of the global atmospheric reanalysis product of
the European Centre for Medium-Range Weather Forecasts (ECMWF) [28], as shown in Figure 1b.
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In addition to the ECMWF reanalysis data, snowmelt timing information can be obtained from the
diurnal changes of QuikScat time-series data [7,8]. The start and end dates of the snowmelt period of
the study area derived from the QuikScat data are also illustrated in Figure 1b.

Remote Sens. 2015, 7, page–page 

3 

diurnal changes of QuikScat time-series data [7,8]. The start and end dates of the snowmelt period 
of the study area derived from the QuikScat data are also illustrated in Figure 1b. 

 
Figure 1. (a) Location of the study area; (b) meteorological data (air temperature and snow water 
equivalent) from the nearest European Centre for Medium-Range Weather Forecasts (ECMWF) 
point (25 km distance). The dotted and dashed vertical lines mark respectively the date of the start 
and the end of the snowmelt derived from the QuikScat data [6]. 

According to the meteorological data, the air temperature changed significantly from frozen 
condition (−3–−18 °C) on 31 March to thawed condition (4–11 °C) on 16 May. The daily mean 
temperature had remained above freezing from 4 May to the second PALSAR data acquisition. The 
very thin snow layer in the beginning of May disappeared about three days before the second 
PALSAR data acquisition. According to the QuikScat snowmelt time product, the second PALSAR 
data were acquired about six days after the end of snowmelt. Since soil thawing starts as soon as 
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According to the meteorological data, the air temperature changed significantly from frozen
condition (´3–´18 ˝C) on 31 March to thawed condition (4–11 ˝C) on 16 May. The daily mean
temperature had remained above freezing from 4 May to the second PALSAR data acquisition.
The very thin snow layer in the beginning of May disappeared about three days before the second
PALSAR data acquisition. According to the QuikScat snowmelt time product, the second PALSAR
data were acquired about six days after the end of snowmelt. Since soil thawing starts as soon as
snow disappears [27], it is possible to assume that the second PALSAR data (16 May) was acquired
under thawed ground conditions. An optical image taken on a cloud-free day (8 September 2007) by
the Landsat TM sensor is also obtained to support the interpretation of SAR data.
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where Spq is the scattering element in pq polarizations and the superscript T denotes the transpose.
In natural surfaces, the received wave in the SAR system is the coherent sum of the waves scattered
from all individual scattering centers. Therefore, several measurements are often added to reduce
statistical variations, such as the speckle filtering, as well as the multilook averaging. An ensemble
average of the complex scattering matrix leads to the so-called covariance matrix. In the monostatic
backscattering case, when SHV “ SVH by reciprocity, the covariance matric rCs is expressed as [29]:
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where represents the ensemble averaging and the superscript * denotes the complex conjugate.
Diagonal elements of the covariance matrix correspond to the conventional backscattering
coefficients, while off-diagonal elements describe correlation properties between co- and
cross-polarization channels. In addition, the trace of the covariance matrix represents the total
scattered power in a POLSAR measurement.

Figure 2a,b shows the total power images of multilook-processed ALOS PALSAR data acquired
under frozen and thawed conditions with a multilook factor 6 ˆ 1 (azimuthˆrange), which
corresponds to an approximately 25 m ˆ 25 m spatial resolution on the ground. Drastic seasonal
changes in the total scattered power can be easily observed in Figure 2. The total power obtained in
thawed conditions shows significantly higher values than those obtained in frozen conditions.
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consist of forested areas (F1,F2), shrublands (S1,S2) and open grounds (G1,G2), as shown in  
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upper right quadrant of the image, S1 and G1, correspond to the recently-burnt taiga (three years or 
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Two ALOS PALSAR images acquired under frozen and thawed conditions were co-registered 
before analysis. In addition, polarimetric speckle filtering based on the Intensity-Driven 
Adaptive-Neighborhood (IDAN) filter was applied to multilook-processed PALSAR data to obtain 
unbiased estimates of polarimetric parameters and better performance in the change detection [31,32]. 

Figure 2. ALOS PALSAR total power images acquired on (a) 16 March 2007 (frozen conditions) and
(b) 16 May 2007 (thawed conditions); (c) a Landsat TM image (Bands 3, 2, 1 in RGB) acquired on
8 September 2007. F, forest; G, open ground; S, shrubland.

Although no ground-truth information was available for this study, six test sites or regions of
interest (ROI) showing distinctive scattering features were selected based on visual interpretation
of Landsat TM (Figure 2c) and PALSAR images, as well as investigation of the current literature.
Each region contains more than 1000 pixels to obtain statistically-significant results. The selected
test sites consist of forested areas (F1,F2), shrublands (S1,S2) and open grounds (G1,G2), as shown
in Figure 2b. Two test sites from taiga forests, F1 and F2, were selected to have different types of
trees based on the Landsat image in autumn. They are identified as evergreen trees, such as pine
(F1), and deciduous trees, such as larch (F2) [23–26]. According to the literature [25,30], two sites
in the upper right quadrant of the image, S1 and G1, correspond to the recently-burnt taiga (three
years or less) covered with shrub (S1) and low or no vegetation (G1), respectively. On the other hand,
shrublands (S2) and open ground (G2) in the lower left quadrant of the image are probably related to
the thermokarst feature, such as Alas [23,26]. Note that the S2 and G2 sites in the lower left quadrant
are hardly distinguishable from the S1 and G1 sites in the optical image. Therefore, differences
in radar scattering characteristics between test sites in the lower left quadrant and the upper right
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quadrant would be a consequence of the differences in soil properties, e.g., density, moisture content
and heat capacity, and active layer structures.

3. Experimental Results and Discussion

Two ALOS PALSAR images acquired under frozen and thawed conditions were co-registered
before analysis. In addition, polarimetric speckle filtering based on the Intensity-Driven
Adaptive-Neighborhood (IDAN) filter was applied to multilook-processed PALSAR data to obtain
unbiased estimates of polarimetric parameters and better performance in the change detection [31,32].
Table 1 summarizes seasonal changes in the mean backscattering intensities over six regions of
interest, showing an apparent increase in all polarization channels by more than 4 dB with thawing.
Among the different polarization channels, HV polarization shows the largest seasonal variations by
about 7–8 dB with little dependency on land cover types. Backscattering intensities in co-polarization
channels (HH and VV) exhibit nearly identical temporal patterns across all test sites. There are
relatively greater seasonal variations in the non-forested areas (7–8 dB) than forested areas (5 dB).
In order to understand underlying scattering processes that cause these seasonal trends in SAR
measurements, variations of polarimetric parameters were examined in this section.

Table 1. Measured mean backscattering intensity (in dB) of ALOS PALSAR data acquired under
frozen and thawed conditions.

ROI
SAR Signal Frozen SAR Signal Thawed Differences (Thawed-Frozen)

HH VV HV HH VV HV HH VV HV

F1 ´10.5 ´12.1 ´19.4 ´5.4 ´7.1 ´12.5 5.1 5.0 6.9
F2 ´11.9 ´12.6 ´21.4 ´6.9 ´8.1 ´14.4 5.0 4.5 7.0
S1 ´8.7 ´9.3 ´19.1 ´2.8 ´3.4 ´12.4 5.9 5.9 6.7
S2 ´8.9 ´9.6 ´21.6 ´1.7 ´2.7 ´13.4 7.2 6.9 8.2
G1 ´11.9 ´13.1 ´24.5 ´3.6 ´5.1 ´17.2 8.3 8.0 7.3
G2 ´11.3 ´12.6 ´26.4 ´4.2 ´5.7 ´18.0 7.1 6.9 8.4

3.1. Model-Based Polarimetric Decomposition

Polarimetric target decomposition techniques provide a possibility of separating different
scattering mechanisms within the SAR measurement. Among the target decomposition approaches,
the model-based decomposition methods [33–35] have been widely used in POLSAR applications
because they are based on the physical scattering models and offer easy-to-interpret scatter type
discrimination. The model-based decomposition technique aims to separate the observed covariance
matrix as a linear combination of elementary scattering matrices related to specific scattering models.
A more extensive review of different model–based decomposition methods and evaluation of their
performance can be found in [36].

In this study, the Yamaguchi decomposition method with orientation compensation [35] was
used to characterize scattering processes involved in the ALOS PALSAR observations of frozen and
thawed landscapes. According to the Yamaguchi decomposition, the measured covariance matrix
after applying orientation compensation can be decomposed into a combination of the surface (Ps),
double-bounce (Pd), volume (Pv) and helix scattering (Pc) contributions to the total backscattered
return. Since the helix scattering power is usually much lower than others, it was omitted in
the analysis.

Figure 3a,b shows the surface, double-bounce and volume scattering components for each
test site observed under frozen and thawed conditions, respectively. In forested areas, F1 and F2,
the dominant scattering mechanism under thawed conditions is the volume scattering followed
by the surface and double-bounce scattering contributions. When these areas freeze, both the
volume scattering and the double-bounce scattering contributions decrease significantly, resulting
in decreases of the scattering intensities. On the other hand, the surface scattering component in
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shrublands, S1 and S2, is higher than the volume scattering component for both frozen and thawed
conditions. The decomposition results for open ground covered with low or no vegetation, G1 and
G2, show a dominant surface scattering contribution to the total scattered power. The double-bounce
scattering component is smaller than others for all test sites for both frozen and thawed conditions
and shows no significant variations over different land cover types.

Figure 3c shows the seasonal changes of mean scattering components between the frozen and
thawed conditions (µthawed ´ µfrozen). In non-forested areas, apparent increases of the surface,
double-bounce and volume scattering powers with thawing can be observed. The double-bounce
and volume scattering powers in forested areas also show significant seasonal changes. However,
the seasonal changes of the surface scattering power is much smaller than others, and it is unclear
whether there is a statistically-significant difference between the observed mean scattering powers
under frozen and thawed conditions. To compare the two mean scattering powers between the frozen
and thawed conditions, the hypothesis test of:

H0 : µthawed “ µfrozen against H1 : µthawed ‰ µfrozen (3)

can be examined. The acceptance region for the null hypothesis at the 99% significance level is
represented as the vertical error bars in Figure 3c. Since the differences between mean values belong
to the rejection region for all scattering components, it is possible to conclude that the observed
model-based decomposition components, including surface scattering power, are significantly
changed by the seasonal freeze/thaw transitions. On the other hand, there are only 1–2 dB differences
in the seasonal changes of different scattering components.
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In order to better clarify the variations of scattering mechanisms related to the frozen
and thawed states, the magnitude and direction of change of a scattering power vector
Ñ

P “

”

Ps Pd Pv

ı

are presented in this study. Let
Ñ

P t1 and
Ñ

P t2 be scattering power vectors of
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a pixel under frozen and thawed conditions, respectively, which are defined in the Cartesian space
with the axes being the decomposed surface, double-bounce and volume scattering powers. The

change vector
Ñ

P D “
Ñ

P t2 ´
Ñ

P t1 of a pixel can be represented by the magnitude RP and angle pφP, θPq

of change. The magnitude of change corresponds to the changes in the total scattered power, which
can be obtained by:

RP “

b

pPs,t2 ´ Ps,t1q
2
`
`

Pd,t2 ´ Pd,t1
˘2
` pPv,t2 ´ Pv,t1q

2 (4)

The azimuth angle φP and the elevation angle θP indicate the changes of the relative contribution
of the scattering mechanisms, defined as in Equations (5) and (6):

φP “ tan´1 “`Pd,t2 ´ Pd,t1
˘

{ pPs,t2 ´ Ps,t1q
‰

(5)

θP “ tan´1
„

pPv,t2 ´ Pv,t1q {

b

pPs,t2 ´ Ps,t1q
2
`
`

Pd,t2 ´ Pd,t1
˘2


(6)

The azimuth angle φP represents the double-bounce to surface scattering ratio, which increases
with the increase of the double bounce scattering contribution. On the other hand, the elevation angle
θP is the angle from pPs–Pdq plane, which can represent the amount of volume scattering contribution.
Note that the direction of changes can be associated with the variations of the scattering center
between frozen and thawed conditions.

Figure 4 shows how the magnitude and direction of changes between two scattering power
vectors in frozen and thawed states vary with the permafrost landscape. In forested areas,
significant increases of the volume scattering mechanisms with thawing can be observed in both
sites. Changes in backscattering intensities are caused by the shift of scattering mechanisms
rather than the magnitude changes. By comparison, evergreen forest shows a greater increase of
the double-bounce scattering contribution. Backscatter changes in shrublands can be caused by
changes in the scattering mechanism, as well as the total backscattered power. Changes in the
scattering mechanisms with thawing occur mainly in the direction of increasing the volume scattering
contributions. Open grounds covered with low or no vegetation show minor changes in the relative
contribution of scattering mechanisms. The measured total backscattered powers, however, are
increased significantly by landscape thawing. The amount of magnitude change can be associated
with the dynamic range of the signals from the ground surface with varying dielectric constants.
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3.2. Eigenvalue-Eigenvector-Based Polarimetric Decomposition

Another group of polarimetric target decompositions is based on the eigenvalue-eigenvector
analysis of the coherency matrix, which contains the same information as the covariance matrix,
but with a reordering of the product terms [29,37]. Among several polarimetric parameters that
can be derived from the eigenvalues and eigenvectors, two rotational invariant parameters, the
polarimetric entropy (H) and the mean alpha parameter (α), have been widely used for analyzing
POLSAR data. The polarimetric entropy can be derived from the three eigenvalues, providing useful
information on the randomness of the scattering process, which is zero for the single scattering (zero
depolarization) and one for the random scattering (maximum depolarization). On the other hand, the
alpha parameter, derived from the eigenvector, indicates a type of scattering mechanism with a range
from 0˝–90˝ (0˝ for a symmetric specular scattering, 45˝ for a dipole scattering and 90˝ for a dihedral
scattering). The pair H{α has been used for identifying the underlying mean scattering mechanisms
of the measured coherency matrix [38].

Figure 5 shows calculated mean H and α values of the test sites under frozen (closed circle) and
thawed (open circle) conditions. In general, both H and α values increase with thawing. A greater
increase in scattering randomness can be found in forested areas. By comparison, F1 shows higher
entropy than F2 in both frozen and thawed conditions, while F2 exhibits slightly greater seasonal
changes than F1. The H{α values in the S2 and G2 sites are much smaller than other sites in frozen
conditions and exhibit increasing trends with thawing. The least seasonal variations in the scattering
randomness can be found in two test sites in the upper right quadrant of the image, S1 and G1.
Particularly, in the case of open ground G1, the entropy is rather decreased by the thawing of the
landscape as opposed to other sites.
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Figure 5. Movement of mean H and α values of the test sites between frozen (closed circle) and thawed
(open circle) conditions.

The results in Figure 5 illustrate that the eigenvalue and eigenvector parameters may provide
additional information on the soil properties of the permafrost active layer, as distinct from the
model-based decomposition parameters. Nonetheless, it is not easy to distinguish different scattering
properties with the H{α plane, since they are distributed in a narrow region along the azimuthal
symmetry line (lower bounding curve in the H{α plane). This can be attributed to the averaging
inherent in the H{α parameters. To improve the distinguishability of different scatterers, seasonal
variations of the dominant scattering mechanism, which can be identified via extraction of the largest
eigenvalue (λ1), are further investigated.

Figure 6 shows the changes of the largest eigenvalue and its relative amplitude,
p1 “ λ1{ pλ1 ` λ2 ` λ3q. Here, λ1 and p1 represent the dominant scattering power and relative
strength of the dominant scattering mechanism in the total power, respectively. The dominant
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scattering power follows a similar temporal pattern to the magnitude changes of the scattering power
vector shown in Figure 4a, i.e., an increasing trend with thawing for all test sites and relatively little
changes in forested areas.

The relative amplitude of the dominant scattering mechanism p1 generally decreases with the
thawed landscape, leading to an increase of the entropy. A greater decrease in p1 can be found in
forested areas. The seasonal λ1 and p1 values indicate that variations of the scattering mechanisms
by the freeze/thaw transition in forested areas are attributed to increases in the depolarization level
in backscattered signals from a frozen to thawed state.

The seasonal changes of p1 in nonforested areas are much smaller than forested areas, which
indicate that seasonal variations in the backscattered signal are caused by the extreme seasonal
changes in the dielectric properties of the scattering surface rather than the changes of scattering
mechanisms. Nonetheless, differences between mean p1 values in frozen and thawed states are
statistically significant according to the similar hypothesis test discussed in Section 3.1. In addition,
seasonal variations of p1 in nonforested areas exhibit a possibility to distinguish burnt forest
and thermokarst areas. Backscattered signals from the thermokarst region (S2 and G2) can be
characterized by higher p1 values in frozen states, resulting in greater decreases of p1 than in burnt
forest (S1 and G1).
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3.3. Co-Polarization Coherence

In addition to the polarimetric target decomposition techniques, several studies have reported
that the coherence measure between the two co-polarization channels can provide useful information
on the scattering process [39–43]. The co-polarization coherence on the HV-polarization basis (ρHHVV)
and the circular-polarization basis (ρRRLL) can be expressed as [29]:
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The magnitude of ρHHVV can be another good indicator of depolarization. It will be zero for a
completely random signal and one for a pure polarized signal. A high degree of coherence between
HH and VV can be found in the single surface scattering case, while the multiple or volume scattering
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results in low coherence values. Consequently, ρHHVV can be a useful scatter type discriminator
between forested or built–up areas and bare surfaces [22,39,43].

In contrast, the circular polarization coherence is not appropriate to distinguish surface and
volume scattering, since lower ρRRLL values can be found in both scattering types. A high coherence
rather indicates the dominance of double-bounce scattering [39,40]. In addition, ρRRLL has been found
to be very sensitive to surface roughness [39,42].

Figure 7 shows the variations of ρHHVV and ρRRLL between frozen and thawed conditions. The
spatial and temporal trends of the ρHHVV values are similar to those of the relative amplitude of
the dominant scattering mechanism p1 in Figure 5, since both p1 and ρHHVV can be a measure of
the depolarization level in the backscattered signal. Greater seasonal changes can be observed in
forested areas, while ρHHVV shows smaller or almost no changes in the S1 and G1 sites. Particularly,
differences between mean values in frozen and thawed states show statistically no significance in the
G1 site. Higher ρHHVV values in the S2 and G2 sites in the frozen condition lead to greater seasonal
variations than those in burnt forests.

In the case of ρRRLL, spatial and temporal patterns are quite distinct from those in other
polarimetric parameters. While ρRRLL shows enhanced contrast between different scattereres in
nonforested areas, there are statistically no differences between mean ρRRLL values in frozen and
thawed states, except for the seasonal changes in the S1 and G1 sites. Results indicate a great potential
to differentiate permafrost surficial features almost independently with extreme seasonal changes in
the dielectric properties of the scattering medium.

The co-polarization coherences on the HV-polarization basis and the circular-polarization basis
offer complementary information on the scattering properties. Figure 8 displays the movement of the
mean ρHHVV versus ρRRLL values between frozen and thawed conditions to aid the discrimination of
different scattering types in the permafrost active layer. Two forest sites show a greater magnitude
of changes than others. Their locations on the ρRRLL–ρHHVV plane move along the ρHHVV axis with
thawing. Change vectors of nonforested areas have similar magnitudes, but different directions and
locations on the ρRRLL–ρHHVV plane. The ρHHVV versus ρRRLL points of two sites in the lower left
quadrant of the image, which are probably situated on the thermokarst region (S2 and G2), also move
along the ρHHVV axis. They are distinguished from forests by higher ρHHVV values, while ρRRLL
discriminates scattering properties between shrublands and sparsely-vegetated areas. However,
change vectors of the two test sites situated on the burnt forests, S1 and G1, are aligned with the
ρRRLL axis, but point in the opposite direction: ρRRLL increases in sparsely-vegetated areas, while
it decreases in shrubby areas. Although these results should be justified with appropriate in situ
information, it is clear that certain differences between permafrost surficial features can be captured
by the co-polarization coherences.
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4. Summary and Conclusions

Seasonal freezing and thawing patterns of the permafrost active layer are spatially and
temporally heterogeneous, resulting in a large range of seasonal or annual variability of permafrost
ecosystems and periglacial landforms. In addition, recurrent fire disturbance changes land cover, the
surface energy balance and other geophysical and biophysical processes. Spaceborne SAR remote
sensing is one of the most adequate monitoring systems for understanding spatial heterogeneity and
for mapping active layer dynamics with high spatial resolution. However, the interpretation of SAR
signals from spatially heterogeneous targets with variable dielectric properties can be limited without
understanding the actual scattering processes. In order to maximize the usability of SAR data in
permafrost monitoring, this study aims to evaluate scattering properties in different land cover types
and their variabilities associated with the freeze/thaw transition of the active layer.

Most previous studies characterizing seasonal variations of L-band signals have been conducted
in the taiga forests areas [10–14]. They have focused primarily on the interpretation of observed
freeze/thaw-related changes in the HH-, HV- and VV-polarization intensities. Based on the
simulation results by forward scattering models, they have provided an interpretation of the seasonal
backscatter changes. The frozen state of the ground and the canopy decreases primarily the canopy
scattering component and, to a minor extent, the ground scattering component.

The seasonal variations of VV and HV responses observed in this study for forested areas are
in good agreement with the observations given in the previous studies. However, there is a slight
difference between the seasonal variations of the HH response observed in this study (about 5 dB)
and that of previous studies (about 3 dB). These characteristic seasonal variations of the backscattered
signal can be attributed to the coupled effect of changes in total backscattered energy and signal
penetration properties caused by the large contrast in the dielectric constant of frozen and thawed
scattering medium. Since snow in winter data could be dry according to the meteorological data,
the influence of the seasonal snow layer on the backscattered signal is neglected in this study.
In order to evaluate scattering mechanisms involved in the observed scattering intensities, this
study places focus on utilization of the fully-polarimetric scattering observation. According to
the polarimetric scattering type indicators, characteristic changes in backscattering coefficients are
attributed to variations of relative scattering contributions rather than total backscatter powers.
In addition, the scattering mechanism changes between frozen and thawed conditions in forested
areas are characterized by a significant increase of the volume scattering contribution among the
received signals. The seasonal changes of the double-bounce scattering contribution and the HHVV
polarization coherence further provide the possibility to discriminate tree species.
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In this study, variations of scattering properties are also examined for non-forested areas. Since
there have been few studies on this issue in non-forested areas, a detailed analysis on seasonal
scattering characteristics in such areas is an important contribution of this study. Four possible
categories that may cover non-forested parts of the study area are selected based on the vegetation
types (shrub versus low or no vegetation) and underlying soil property (recently burnt forests versus
open areas most likely situated on the thermokarst regions).

Shrublands located in the burnt forests show similar temporal backscatter trends to those of
forested areas, but have much fewer increases of the volume scattering contribution with thawing. In
addition, it shows almost no change in the relative contribution of the dominant eigenvalue, while
backscattered power increases with thawing due to increases of the roughness and dielectric constant
of the scattering surface. The scattering properties of the other shrublands situated on the thermokarst
region can be characterized by a greater surface scattering contribution in both frozen and thawed
conditions than shrublands in burnt forests. The relative amplitude of the surface scattering is higher
under frozen conditions. In frozen conditions, microwave signals can penetrate deeper into the
vegetation and organic layers, and radar scattering can be more related to the soil property and
active layer structure. Therefore, differences in polarimetric scattering characteristics between two
shrublands may involve differences in not only the vegetation, but also the soil properties.

In cases of open ground covered with low to no vegetation, both sites show almost no seasonal
variations in the relative scattering contributions of the model-based decomposition, but significant
increases of the total backscattered power. However, some polarimetric parameters, including
the dominant eigenvalue and co-polarization coherences exhibit characteristic differences between
two ground sites only in frozen conditions. According to the literature [23–27], soils and active
layers in forested areas are distinctive from those in open areas by the thermal condition, active
layer thickness, infiltration and evaporation rates, salinity and thickness of the shielding layer.
Consequently, although the causal mechanisms about these characteristic scattering properties cannot
be confirmed at this stage, polarimetric scattering analysis also reveals the possibility of obtaining a
spatially-detailed distribution of the surficial features.

Experimental results demonstrate that fully-polarimetric radar observations, particularly at
the L-band frequency, can be a very useful tool for mapping land cover types and surficial
geocryological characteristics of the permafrost active layer. Therefore, follow-up studies on the
development of classification algorithms will be carried out based on the characteristic seasonal
changes of the polarimetric parameters supported by ground-truth verification. The availability of
in situ measurements is, however, restricted because of sparse measurement stations, limited data
accessibility and a lack of regional details in the documentation. The physical model-based simulation
of polarimetric parameters can be helpful to partly overcome this problem and to effectively
design the classification algorithm. In particular, further theoretical evaluations on the polarimetric
coherences may play an important role in the surficial mapping of permafrost environments with
SAR observations.
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