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Abstract: Eddy-covariance carbon dioxide flux measurement is an established method to estimate
primary productivity at the forest stand level (typically 10 ha). To validate eddy-covariance
estimates, researchers rely on extensive time-series analysis and an assessment of flux contributions
made by various ecosystem components at spatial scales much finer than the eddy-covariance
footprint. Scaling these contributions to the stand level requires a consideration of the heterogeneity
in the canopy radiation field. This paper presents a stochastic ray tracing approach to predict
the probabilities of light absorption from over a thousand hemispherical directions by thousands
of individual scene elements. Once a look-up table of absorption probabilities is computed,
dynamic illumination conditions can be simulated in a computationally realistic time, from which
stand-level gross primary productivity can be obtained by integrating photosynthetic assimilation
over the scene. We demonstrate the method by inverting a leaf-level photosynthesis model with
eddy-covariance and meteorological data. Optimized leaf photosynthesis parameters and canopy
structure were able to explain 75% of variation in eddy-covariance gross primary productivity
estimates, and commonly used parameters, including photosynthetic capacity and quantum yield,
fell within reported ranges. Remaining challenges are discussed including the need to address the
distribution of radiation within shoots and needles.

Keywords: laser scanning; canopy structure; gross primary productivity; eddy covariance;
data fusion

1. Introduction

Monitoring forest productivity not only widens our ecological understanding, but is increasingly
used as a diagnostic tool for evaluating silvicultural practices and testing compliance with political
regulations regarding sustainable resource use. From an ecological point of view, information
about forest productivity is often indicative of biodiversity richness [1] and can be used to explain
how anthropogenic influences and climatic changes affect forest health and functioning [2]. A key
variable is the gross primary productivity (Pg) that defines the uptake of carbon from the atmosphere
before any losses due to respiration are subtracted. Estimates of Pg are based on the amount
of photosynthetically active radiation that is absorbed by the canopy (Eac) and its pathways in
photosynthesis [3–5]. The modelling of Pg is challenging, however, due to the size and variability
of the global forest resources, the multitude of environmental drivers, and the lack of control over
these drivers in the field. As a result, a wide range of models exists that operate at a wide range of
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temporal and spatial scales. To validate these models, a hierarchical strategy is generally adopted
where Pg models at broad scales are calibrated and validated using models and sampling techniques
at finer scales.

At broad spatial scales, such as regional to global, forest productivity models represent the
canopy either as a single big leaf that extends across the landscape [3,4,6] or as a stack of foliage
layers that provide for the modelling of vertical transfer of visible and thermal radiation [7,8].
At these model scales, the net lateral transport of energy is assumed to be zero and the models
are often parameterized using remote sensing estimates of incident short- and long-wave radiation
and stand-level estimates of canopy structure, site nutrition, and hydrology [6,9–11]. Paramount
to the calibration and validation of these models is the eddy-covariance (EC) method that provides
estimates of Pg at stand level (Pgs) from high-frequency measurements of the vertical wind velocity,
and carbon dioxide (CO2) and water vapour (H2O) mixing ratios [12]. Pgs is obtained by subtracting
daytime EC-measured net ecosystem exchange of CO2 (NEE) from daytime ecosystem respiration
(Re) usually estimated using the relationship between nighttime EC-measured NEE and soil or
air temperature. Currently, a global network of over 500 EC installations provides biome-specific,
long-term information about variability in Pgs within footprints of around 10 ha.

For homogeneous forest stands on horizontal terrain, the error bound on NEE obtained with
the EC method is less than 50 g¨C¨m2¨year´1 with long-term measurements and independent flux
measurements of individual ecosystem components adding additional confidence [13]. For example,
measurement of CO2 exchange can be undertaken at scales ranging from leaf to tree level (using
chambers or cuvettes) and can be used in support of EC-data acquisition. At these fine scales, the
heterogeneity of the canopy structure requires a consideration of vertical as well as lateral transport
of energy [14]. To compute the three-dimensional (3D) canopy radiation field, an analytic approach is
widely used that represents the stand as a series of conical and ellipsoidal crown envelopes for which
smooth, radial transitions in leaf density can be specified (e.g., [5,15–17]. More recent approaches have
adopted stochastic ray tracing to simulate the scattering of light within increasingly heterogeneous
plant canopies, based on first principles [18–21]. In ray tracing, the scattering and absorption
of individual photons is simulated by computing intersections between light rays and the scene
and by sampling light propagation from material-specific bi-directional reflectance (transmittance)
distribution functions (BRDF and BTDF, respectively). Ray tracing enables the simulation of absorbed
radiation for individual canopy elements (Eal) and holds significant potential to scale Pg estimates
from the stand level to finer scales where experiments can be increasingly controlled. Virtual 3D
canopies can be generated using tree-growing algorithms that are based on a recursive application of
a set of growing rules [22–24]. To limit data dimensionality, a clump of leaves may be represented by
its convex hull [24] or as a planar polygon or plate-like shoot model that exhibits scattering properties
similar to the assembly of individual leaves or needles [25,26]. Recent studies have demonstrated the
combined use of tree-growing algorithms and time-of-flight laser scanning technology [27,28] for the
reconstruction of virtual forest canopies [29–33].

Ray tracing simulations are computationally expensive and require the use of accelerating
structures that group scene elements into hierarchical bounding volumes or regular grids to speed
up ray-intersection tests [34,35]. These accelerating structures provide performance gains for fixed
illumination conditions; however, they do not provide additional gains for cases where illumination
conditions are dynamic, i.e., when the distribution of radiation across leaves is to be studied over time
and for different sun angles and cloudiness conditions. As a result, the application of ray tracing for
scaling between Pgl and Pgs estimates over extensive time series remains challenging.

The work presented herein relies on the modelling of time series of canopy radiation transfer
using stochastic ray tracing. To speed-up ray tracing simulations under dynamic lighting conditions,
we compute a look-up table designed to hold the probabilities of absorbing radiation from over
a thousand hemispherical directions for thousands of scene elements. Once this look-up table is
populated, the absorption of photosynthetically active radiation is computed for each element, with
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only array multiplications, thereby significantly reducing computing costs. To improve computation
time, the virtual forest scene is modelled at a reduced resolution of 50,000 elements, representing
soil, bark and foliage. We demonstrate the inversion of this model and estimate empirical leaf-level
photosynthesis parameters from EC-estimates of Pgs and meteorological measurements. We conclude
by discussing the limitations of this reduced scene fidelity and challenges and opportunities ahead
for the proposed technique.

2. Methods

2.1. Study Area

The study area is located on Vancouver Island, BC, Canada, near the city of Campbell River,
in the Oyster River area about 16 km from the east coast of the island (49˝52’7.8”N, 125˝20’6.3”W,
350 m above mean sea level). The area is a plantation forest consisting of 80% Douglas-fir
(Pseudotsuga menziesii spp. menziesii (Mirb.) Franco), 17% western redcedar (Thuja plicata Donn. ex D. Don),
and 3% western hemlock (Tsuga heterophylla (Raf.) Sarg) [36–38] with main understorey species,
salal (Gaultheria shallon Pursh.), dull Oregon grape (Mahonia nervosa (Pursh.) Nutt.), vanilla-leaf deer
foot (Achlys triphylla (Smith) DC), and various ferns and mosses. The site is located on a northeast
facing 5˝–10˝ slope and has a stand density of 1100 stems ha´1 with tree heights ranging between
30 and 35 m [39], a mean diameter at 1.3 m height of 31 cm [40] and a mean annual increment of
12.1 m3¨ha´1 [38]. The predominant age of the trees was 60 years old in 2009 and the leaf area
index was 7.3 m2¨m´2 [41]. The soil is classified as a humo-ferric podzol and has a gravelly sandy
loam texture and a surface organic layer ranging in depth between 1 and 10 cm [38]. The region
belongs to the dry maritime Coastal Western Hemlock biogeoclimatic subzone (CWHxm) and has a
mean annual precipitation and temperature of 1470 mm and 8.6 ˝C, respectively [40]. Approximately
110 ha of the study area, extending in the prevailing wind directions (NE and SW), was aerially
fertilized with urea at 200 kg¨N¨ha´1 on 13 January 2007 and simulation of the footprint climatology
has demonstrated that this extent contributes to over 80% of the eddy-covariance flux measured at
the flux tower [40,42].

2.2. Data

One 30 ˆ 30 m plot was selected based on its representativeness of the stand conditions [43]
and its close proximity to the eddy-covariance fluxtower. In 2008, ground-based laser scanning
data were acquired with the EVI (CSIRO) full-waveform laser scanner that emits roughly half a
million laser pulses in an upward hemispherical direction and records the reflectance of this laser
light at a sampling rate of 2 Gs/s so that the distance to the scattering surfaces can be determined
at centimeter accuracy, see e.g., Strahler et al. [44] for additional details. By emitting pulses over
a more than hemispherical field of view (i.e., 130 ˆ 360), millions of returns are recorded per scan
and a total of five scans were taken: one in the centre and one per plot corner, to provide for a
comprehensive coverage of plot-level forest structural information relating to stem shape and leaf
area distribution. Half-hourly NEE along with meteorological records including incident diffuse and
total photosynthetically active radiation (Eic), relative humidity and temperature were selected for the
year 2009. NEE was calculated as the sum of above-canopy EC-measured CO2 flux and the estimated
rate of change in CO2 storage in the air column beneath the EC sensors [38]. Diffuse and total Eic
were measured using a BF2 sunshine sensor (Delta-T Devices, Cambridge, UK) mounted on top of
the EC-flux tower (at 45 m). Air temperature and relative humidity were measured at the flux tower
at the 27-m height. Pgs was calculated as daytime Re minus daytime NEE. The former was estimated
using the exponential relationship between measured nighttime NEE and soil temperature at the 2-cm
depth [37].
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2.3. Scene Reconstruction

A 3D virtual forest scene was reconstructed from the ground-based laser scanning data using
a modeling approach described by [33]. Briefly, single scans are projected onto a panoramic plane
where individual pixels show range (m) to target. Individual tree stems are detected from the
panoramic projection using image segmentation and filtering criteria. Image segmentation is used
to detect surface edges and continuous surfaces that show sharp and gradual changes in range,
respectively. Continuous surfaces relate to ground, foliage and stem objects and hence filtering
criteria, including auto-correlation along surface edges and segment lengths are used to separate
stem segments from other targets in the scans. Three-dimensional stem objects were created using
the range information and diameter estimates derived from the laser scanning data. All scans and
stem objects were merged to a common coordinate system that was clipped to the plot boundaries
(i.e., 30 m ˆ 30 m). Overlapping stem objects were merged into a single object that was assigned
the average stem attributes obtained from the individual scans. From the co-registered point cloud,
a canopy height model (CHM), a digital elevation model (DEM), and a delineation of individual
crowns [45] were obtained. Gaps due to data occlusion along the stem segments were filled
using linear interpolation and the stem tips were extrapolated by tracing the local point cloud
geometry [46]. Using the stem information, individual tree growing spaces were derived based
on 2D Voronoi tesselation for horizontal slices across a regular vertical interval. A template tree
crown was constructed using Arbaro [23] (Figure 1): computer animation software for the realistic
modelling of crown architecture based on simple geometric parameters such as branch lengths and
insertion angles of child-branches in relation to their parent branches. Scaled copies of the crown
template were then fitted to the virtual scenes. In contrast to skeletal tree structures produced by
Arbaro that contain a high level of structural detail (Figure 2a), the template tree used in this study
had a much coarser resolution to reduce computation time. Recent studies have explored efficient
means to abstract shoots and whorls using a series of projection planes (e.g., [25,26]). The template
tree used in this study was constructed using a layered series of planar polygons producing a much
reduced scene complexity (Figure 2b). This abstraction was chosen to demonstrate the proposed
concept, acknowledging that a comprehensive treatment of needle-level details at plot scale requires
dedicated computing facilities and more advanced acceleration techniques. The chosen level of
abstraction foremost affects transmissions from oblique incidence angles, as well as within-shoot
distributions of Eal and re-collision and escape probabilities (e.g., [26]). Effects on the latter are
considered small, however, in the PAR band. For each first-order branch, a planar polygon was fit to
its principle stem and all of its sub-stems. This fit was computed as a two-dimensional triangulation
of vertices (i.e., height-coordinates were not used in triangulating). The structural fidelity was chosen
to resemble the clumping of foliage into crowns, but did not include clumping of needles into
shoots or clumping of shoots around whorls [47,48]. To provide for the simulation of un-collided
transmission within whorls, gap fractions (GFK) were assigned to the facets of the planar polygons.
Whorl-level gap fraction was estimated as the fraction of visible sky (15%) in digital photographs
taken underneath isolated Douglas-fir branches [33]. To assess model sensitivity to GFK, three
scenarios were considered throughout the remaining analysis, for gap fractions of 10%, 15%, and
20%, respectively. Un-collided transmission τu amounts to the gap fraction when the incidence angle
is perpendicular and drops with the cosine of the incidence angle. Finally, the combined area of
all planar polygons was chosen to match 1{ p1´ 0.15q of stand LAI. The 3D scene was stored in the
OBJ-file format (formerly Wavefront technologies, now Alias Systems Corp., Toronto, ON, Canada)
as a sequence of individual, connected triangles, comprising a total of 102 trees. The integrity
of the virtual scene was validated using full-waveform derived canopy gap probabilities [49] and
gap probabilities derived through simulation (see [33], for further details). Validation of the ray
tracer was achieved by means of conservation-of-energy tests, introspection of traced paths using 3D
interactive visualization, and four RAMI baseline test cases relating to foliar absorptance and canopy
transmission [33].
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Figure 1. An illustration of the level of detail in Arbaro tree modelling software. 

 
Figure 2. (A) Forest plot reconstructions representing individual stems; and (B) a coarser level of 
detail, where foliage clustered around branches is represented as planar polygons. 

2.4. Canopy Radiation Modeling 

The virtual scene can be used in a ray tracer that simulates the propagation of individual photons 
and their interactions with the scene. Photons travel along lines that may intersect with surface 
elements. At the location of the nearest intersection, a fate is computed as to whether the photon is 
absorbed, scattered, or penetrates the element freely without collision. A constant Lambertian 
scattering probability was used across all scene elements representing foliage, , (ߩ = 0.05, ߬, =0.02) and a constant Lambertian reflectance for all soil and bark elements, ௦ and  respectively (ߩ௦ = ߩ = 0.1). For a Lambertian surface, the direction of scattering (i.e., reflection or transmission) 
is independent from the photon incidence angle and follows a cosine-weighted hemispherical 
probability distribution where the reflected intensity drops with the cosine angle [35,50]. Earlier work 
[18,51] showed the use of ray tracers for the simulation of transmittance, reflectance, and absorptance 
by virtual plant canopies. In forward ray tracing simulations, photons are emitted from a horizontal 
reference plane that is located just above the 3D scene and interactions with the scene are computed 
for fixed illumination and viewing conditions. The requirement to simulate a large number of rays to 
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Figure 2. (A) Forest plot reconstructions representing individual stems; and (B) a coarser level of
detail, where foliage clustered around branches is represented as planar polygons.

2.4. Canopy Radiation Modeling

The virtual scene can be used in a ray tracer that simulates the propagation of individual
photons and their interactions with the scene. Photons travel along lines that may intersect with
surface elements. At the location of the nearest intersection, a fate is computed as to whether
the photon is absorbed, scattered, or penetrates the element freely without collision. A constant
Lambertian scattering probability was used across all scene elements representing foliage, pl ,
`

ρl “ 0.05, τc,l “ 0.02
˘

and a constant Lambertian reflectance for all soil and bark elements, ps

and pb respectively pρs “ ρb “ 0.1q. For a Lambertian surface, the direction of scattering
(i.e., reflection or transmission) is independent from the photon incidence angle and follows a
cosine-weighted hemispherical probability distribution where the reflected intensity drops with
the cosine angle [35,50]. Earlier work [18,51] showed the use of ray tracers for the simulation
of transmittance, reflectance, and absorptance by virtual plant canopies. In forward ray tracing
simulations, photons are emitted from a horizontal reference plane that is located just above the 3D
scene and interactions with the scene are computed for fixed illumination and viewing conditions.
The requirement to simulate a large number of rays to obtain a realistic distribution of canopy
radiation makes the use of ray tracers, challenging when illumination conditions are dynamic and
updates to the radiation budgets are needed in real-time [52]. The current method populates a look-up
table (LUT) of which the rows correspond to scene elements ppq and columns to sky directions pφi, θiq.
Each table element corresponds to the probability (Pabs) of absorbing photon flux (µmol¨ s´1) that
passes the reference plane from direction pφi, θiq by canopy element p, so that the sum of probabilities
across rows corresponds to canopy absorptance from direction pφi, θiq. Using this LUT, the irradiance
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that is absorbed by a scene element can be estimated by integrating radiance over directions pφi, θiq

weighted by Pabs:

Eal ppq “
Are f

Ap
¨

x
Pabs pp, φi, θiq ¨ Lic pφi, θiq ¨ cos pθiq ¨ sin pθiq ¨ dθi¨ dφi (1)

In Equation (1), Are f ¨
s

Lic pφi, θiq ¨ cos pθiq ¨ sin pθiq ¨ dθi¨ dφi expresses the flux of photons
received over a projected solid angle that passes through the reference plane that is located just
above the highest scene element. Inclusion of Pabs in the integral determines the fraction of photons
passing the reference plane from the projected solid angle Ω

`

”
s

cosθi¨ sinθi¨ dθi¨ dφi
˘

that are
absorbed by scene element p and accounts for the orientation of the elements as well as shading,
and multi-scattering between the elements. Pabs is computed as the fraction of photons from direction
pφi, θiq that is absorbed by element p. Finally, division by Ap normalizes this absorbed quantity to
µmol photons m´2¨ s´1.

To improve computing time, the sky was sampled using a Capitulum sampling distribution
that owes its name to the resemblance to the distribution of seeds in a sunflower head. Samples were
distributed about the zenith so that the distance to that axis decreased exponentially with the sample’s
rank and the angular distance between samples was approximately a constant of 2π{n (e.g., [53,54]).
The hemisphere was covered with 1366 samples, so that the average solid angle was 0.0046 mrad.
To avoid edge effects for the small study plot, cyclic boundaries were applied so that a ray from
direction pφi, θiq escaping the scene at location px, y, zq was made incident from the opposite side of
the scene.

Half-hourly radiances L (µmol¨photons¨m´2¨ s´1¨ sr´1) were computed from diffuse and total
Eic. Diffuse radiance was assumed to be homogeneous across the hemisphere, and direct radiance
and sun position were computed using Ephem, a library for astronomical computations available to
the Python programming language. Direct radiance was then assigned to the hemispherical sample
that was located closest to the sun’s position, determined using a KD-tree. Absorbed radiation at the
canopy element level (µmol¨photons¨m´2¨ s´1) was computed for every hour between 5 a.m. and
9 p.m. PST, for the majority of the growing season between 1 May and 17 September 2009.

2.5. Photosynthesis Modeling

A leaf-level photosynthesis model was developed based on a non-rectangular hyperbolic
relationship between Pgl and Eal , following [55]. This model is parameterized by photosynthetic
capacity (Pmax) that defines the asymptote, the quantum yield (α) that defines the initial slope when
photosynthesis is electron transport limited, and the duration of the initial linear response (χ) that is
larger for cells than for leaves and larger for leaves than for canopies (e.g., [55]):

Pgl pPmax, α, χ, Ealq “
α¨ Eal ` Pmax ´

b

pα¨ Eal ` Pmaxq
2
´ p4¨χ¨ α¨ Eal¨ Pmaxq

2¨χ
(2)

Down-regulation of photosynthesis is expected when the leaf is light saturated and when
photosynthesis is limited, for example, by water availability or when the carboxylation rate of the
Calvin cycle due to temperature or nutrient supplies is suboptimal. This effect of down-regulation
was added to the photosynthesis model using air temperature (T) and relative humidity (h) modifiers
that, for this purpose, were modelled as symmetric bell-shaped functions, acknowledging that
investigations into asymmetry and alternative function shapes are outside the scope of this paper:

Tmod

´

Tlag, Topt, βT

¯

“ e
´p
|Topt ´ Tlagptq|

βT
q

2

(3)
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hmod

´

hlag, βh

¯

“ e
´p

100%´ hlagptq
βh

q

2

(4)

where Topt is the optimal temperature for photosynthesis, and Tlag and hlag are the temporally lagged
temperature and relative humidity conditions that were derived following [56]. For temperature, this
equation has the form:

Tlag ptq “ p1´ γTq ¨ T ptq ` γT¨ Tlag pt´ 1q (5)

where T ptq represents the temperature at time t, and γT defines the lag (γT PR , 0ď γT ď 1). The
relative humidity modifier is analogous to that for temperature.

Two additional modifier functions were tested to include a seasonal adjustment of
photosynthetic capacity that corresponds to different phenological stages of tree growth and the
effects of acclimation of the photosynthetic capacity to prevalent PAR [21,57]:

Emod pp, knq “ e´krub¨ LAIppq (6)

Dmod
`

D, Dopt, βD
˘

“ e
´p

Dopt ´Dptq
βD

q

2

(7)

krub defines the decrease of nitrogen content with canopy depth and LAI is the cumulative leaf
area index at facet p and is zero at the top of the canopy, D is growing degree days and was for this
study computed as the mean daytime temperature minus 10 ˝C accumulated over days, starting from
1 May 2009. The down-regulation of Pmax and α was modeled as the product of an optimal value for
conditions when photosynthesis is not limited and modifier functions:

Pmax “ Popt¨ Tmod¨ hmod
α “ αopt¨ Tmod¨ hmod

(8)

The resulting leaf model has at most eleven parameters
(χ, Popt, αopt, Topt, Dopt, βh, βT , βD, γh, γT , krub). Stand-level Pgs for a specific moment in time t
was computed through integration over all canopy elements n:

Pgs pΘ; Eic, T, h; tq “
n
ÿ

p“1

Pgl pΘ; Eic, T, h; tq ¨
Ap

Are f
(9)

2.6. Model Inversion

In forward mode, stand-level Pgs is obtained by integrating leaf-level assimilation over the
canopy. In inverse mode, the leaf model parameters are inferred using the EC-estimates of Pgs, T,
h, and simulated Eal . Model inversion is achieved numerically by minimizing the cost function:

argmin
Θ

ÿ

t

“

Pgs, sim pΘ; Eic, T, h; tq ´ Pgs, EC ptq
‰2 (10)

where Pgs,sim and Pgs,EC are the simulated and EC-derived estimates of Pgs obtained from Equation (9)
and methods described in Section 2.2, respectively. A number of optimization techniques
exist [58] and in this study, the Levenberg-Marquardt method was applied that minimizes the cost
function iteratively and requires initial estimates of the parameter set Θ used to define leaf-level
photosynthetic assimilation. To study the effects of different down-regulation functions, four cases
were considered (Table 1): The first case ignores down-regulation and uses fixed values for Pmax

and α across all photosynthetic scene elements, pl . The second case investigates down-regulation of
photosynthetic capacity and quantum yield based on temperature and relative humidity conditions.
The third case includes the seasonal adjustment of photosynthetic capacity and the fourth case
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includes the acclimation of foliage elements to sun and shade conditions, following [57]. To establish
convergence, χ was constrained to 0.9, which is slightly higher than 0.8 used by [17] yet within the
range specified by [59] for leaf-level photosynthesis (i.e., 0.5 to 0.9). In addition, some parameter
values used in cases three and four were fixed to estimates obtained from cases two and three,
respectively. Temperature parameters (i.e., βT , γT , Topt) were fixed in case three and both temperature
and relative humidity parameters (i.e., βT , γT , Topt, βh, γh) in case four. Initial values for free
parameters were 10 µmol¨C¨m´2¨ s´1, 0.1 µmol¨C¨µmol´1 photons, 20 ˝C, 1000 ˝C¨days, 100%,
20 ˝C, 1000 ˝C days, 0, 0, 0.5 for Popt, αopt, Topt, Dopt, βh, βT , βD, γh, γT , and krub, respectively.
All 2094 half-hourly data points were used in optimization. A test with bootstrapping (20 iterations)
to obtain parameter uncertainties for cases two and three resulted in no significant change in
parameter estimates (results not shown), while bootstrapping could not be performed for case four
due to hardware limitations. Figure 3 provides an overview of the modeling design and embedded
test functionality to assess the verisimilitude of the model and effects of model approximations.
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PAR = photosynthetically active radiation.

Table 1. Overview of the different model inversion cases, the down-regulation mechanisms
investigated and their fixed and free parameters.

Case Enabled Modifier Functions Fixed Parameters Free Parameters

1 None χ Popt, αopt
2 hmod, Tmod χ Popt, αopt, Topt, γh, γT , βh, βT
3 hmod, Tmod, Dmod χ, Topt, γT , βT Popt, αopt, Dopt, γh, βh, βD
4 hmod, Tmod, Dmod, Emod χ, Topt, γT , βT , βh, γh Popt, αopt, Dopt, βD , krub
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3. Results

The geometrically explicit model of canopy structure provided estimates of Eal by numerically
integrating down-welling diffuse and direct PAR. Figure 4 shows a 2D histogram of Eal for elements pl
within 5 m of the plot centre vertical axis, for a clear and a cloudy day in May 2009, using GFK = 15%.
The graph shows a large variation in Eal throughout the canopy and negligible absorption of radiation
in the lower canopy for which two main causes can be identified: First, the forest plot was modelled
using template crowns that exhibit no decay of foliage due to shading. However, when trees grow
in stands, some leaves fall below the compensation point where gross CO2 uptake equals respiration
and foliage is shed; this phenomenon was not included in scene construction (Section 2.3). Second,
a more technical concern, relates to the sampling density of photons in the Monte Carlo ray tracing
simulations. Accurate sampling of light absorption in the lower canopy requires the simulation of a
larger number of photons; however, as the larger contribution to Pgs is made by the upper third of the
canopy, the effects of restricted sample sizes on Pgs estimates are limited [21,59].
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positive bias among a selection of the simulation results, and an overall low fraction of explained 
variation (r2 = 0.66). To investigate this bias, data points were stratified by ܶ and ℎ (Figure 6). Plots 
along the horizontal are stratified by ܶ  and along the vertical by ℎ . For ܶ  and ℎ  close to the 
optimum for photosynthesis, i.e., towards cooler temperatures and a relative humidity between 75% 
to 100%, a clear linear relationship between simulated and eddy-covariance derived ܲ௦  was 
observed, whereas with distance from this meteorological optimum the relationship between 
simulated and measured productivity weakens and eventually becomes absent (i.e., for ܶ around 25 
°C and ℎ < 50%). 

Figure 4. Simulation results of absorbed PAR for 6:00 PST (a) and 13:00 PST (b) on the cloudy day
of 3 May 2009; and for 6:00 PST (c) and 16:00 PST (d) on a sunny day (8 May 2009) plotted as a 2D
heat map. The gap fraction, GFK, of photosynthetic scene elements, pl , was set to 15%. The x-axis
is incident PAR (µmol photons m´2¨ s´1) and the y-axis is height above the ground level at the plot
centre. Colours represent observation frequency for an arbitrary, constant bin size.

Figure 5 shows the flux-tower derived Pgs,EC versus simulated Pgs,sim without the use of modifier
functions for down-regulation (i.e., case 1) and using GFK = 15%. The scatter plot shows a positive
bias among a selection of the simulation results, and an overall low fraction of explained variation
(r2 = 0.66). To investigate this bias, data points were stratified by T and h (Figure 6). Plots along
the horizontal are stratified by T and along the vertical by h. For T and h close to the optimum for
photosynthesis, i.e., towards cooler temperatures and a relative humidity between 75% to 100%, a
clear linear relationship between simulated and eddy-covariance derived Pgs was observed, whereas
with distance from this meteorological optimum the relationship between simulated and measured
productivity weakens and eventually becomes absent (i.e., for T around 25 ˝C and h < 50%).
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Figure 5. Model inversion for case 1 (2094 observations, no cross validation): absence of down-
regulation functions. Shown is (a) the correlation with eddy-covariance derived gross primary 
productivity estimates; (b) the distribution of measured and simulated estimates of gross primary 
productivity against incident photosynthetically active radiation; (c) average diurnal responses. See 
Table 1 and text for an overview of parameters used for the different cases and Table 2 for an overview 
of parameter estimates obtained through model inversion. 

 

Figure 6. A stratification of the data points shown in Figure 5 into temperature and relative  
humidity classes. 

Figure 5. Model inversion for case 1 (2094 observations, no cross validation): absence of
down-regulation functions. Shown is (a) the correlation with eddy-covariance derived gross primary
productivity estimates; (b) the distribution of measured and simulated estimates of gross primary
productivity against incident photosynthetically active radiation; (c) average diurnal responses. See
Table 1 and text for an overview of parameters used for the different cases and Table 2 for an overview
of parameter estimates obtained through model inversion.
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Figure 7 shows the behaviour of the modifier functions (y-axis) as they deviate from the
optimum environmental condition (e.g., optimal temperature or relative humidity) expressed along
the x-axis, and a scaling parameter that controls the pace of down-regulation with distance from the
optimal condition.
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Using the modifier functions Tmod and hmod (i.e., case 2), the photosynthetic capacity was found
optimal at humid conditions (h > 75%) and a temperature of 19.5 ˝C. With the exception of χ, the
duration of the initial linear portion of the light response curve, the optimization was unconstrained
and photosynthetic capacity and quantum yield were obtained within their reported ranges [55,59].
For example, the quantum yield αopt was found to be 0.097 (Table 2) which is among the lower
range (i.e., 0.09 to 0.11 µmol¨C¨µmol´1 photons) reported by [55] for the leaf level, while values for
optimal photosynthetic capacity are commonly found between 11 and 27 µmol C m´2¨ s´1 for the leaf
level (e.g., Jones 1992 in [59]). Figure 8 demonstrates improvements in using the modifier functions
(cases 2–4) for the same GFK used in Figures 4–6 (i.e., GFK = 15%). The scatter plot (Figure 8a)
shows a much improved correspondence with Pgs,EC; however, the results indicate that biases remain
that are associated with the diurnal response averaged over the study period (Figure 8g) and the
seasonal course of Pgs,EC (Figure 8j). Underestimates at noon may indicate that light inhibition of
foliage respiration is underestimated in EC data. The decline in Pgs,EC shows a more linear course
from 13:00 PST onward than Pgs,sim. This may indicate that down-regulation of photosynthesis is
more linear with changes in relative humidity than what is currently modelled using the bell-shaped
modifier functions. For example, Makela et al. [11] have used a linear function and a threshold
to model temperature effects on the light use efficiency, and used an exponential relationship
with vapour pressure deficit. Seasonal trends in Pgs can be expected and result from different
phenological stages of growth. To capture seasonal variation, the third case was investigated where
Tmod parameters were fixed to estimates obtained in case two and parameters for hmod and Dmod were
unconstrained (Figure 8b,e,h,k). The correspondence with Pgs,EC further improved from r2 = 0.71 to
r2 = 0.74 and the results showed no significant bias between months. Inclusion of shade acclimation
of leaves in case four caused a minor improvement in the correlation with Pgs,EC (Figure 8c) and an
improved precision at Noon and during the afternoon can be observed (Figure 8i), where presumably
the distribution of radiation across the canopy matches the nitrogen allocation profile. Finally, Table 2
shows the sensitivity of photosynthesis parameters to changes in gap fractions, GFK.
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Table 2. Overview of parameter estimates obtained through model inversion.

GFK Case Popt αopt Topt Dopt βh βT βD γh γT krub

10

1 8.545 0.089 - - - - - - - -
2 10.896 0.097 19.554 - 112.424 24.251 - 0.632 0.121 -
3 12.481 0.104 19.554 1005.216 103.788 24.251 1710.711 0.694 0.121 -
4 65.984 0.153 19.554 994.088 103.788 24.251 1700.244 0.694 0.121 0.411

15

1 8.546 0.089 - - - - - - - -
2 10.896 0.097 19.544 - 112.485 24.242 - 0.632 0.121 -
3 12.480 0.104 19.544 1005.115 103.826 24.242 1710.440 0.694 0.121 -
4 65.524 0.153 19.544 993.867 103.826 24.242 1700.426 0.694 0.121 0.409

20

1 8.544 0.089 - - - - - - - -
2 10.892 0.097 19.542 - 112.495 24.231 - 0.633 0.121 -
3 12.478 0.104 19.542 1004.874 103.832 24.231 1710.720 0.694 0.121 -
4 64.873 0.152 19.542 993.612 103.832 24.231 1701.675 0.694 0.121 0.406
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Figure 8. Three model inversion cases (2094 observations, no cross validation) using different 
modifier functions to downregulate the theoretical optimal photosynthetic capacity and quantum 
yield. Shown are the correlation with eddy-covariance derived gross primary productivity estimates 
(a–c); the distribution of measured and simulated estimates of gross primary productivity against 
incident photosynthetically active radiation (d–f); average diurnal responses (g–i); and seasonal 
variation in the residuals (j–l). See Table 1 and text for an overview of parameters used for the 
different cases and Table 2 for an overview of parameter estimates obtained through model inversion. 

Figure 8. Three model inversion cases (2094 observations, no cross validation) using different modifier
functions to downregulate the theoretical optimal photosynthetic capacity and quantum yield. Shown
are the correlation with eddy-covariance derived gross primary productivity estimates (a–c); the
distribution of measured and simulated estimates of gross primary productivity against incident
photosynthetically active radiation (d–f); average diurnal responses (g–i); and seasonal variation in
the residuals (j–l). See Table 1 and text for an overview of parameters used for the different cases and
Table 2 for an overview of parameter estimates obtained through model inversion.

4. Discussion

This study addressed some challenges around time series analysis of 3D radiative transfer in
heterogeneous forest canopies with relevance for the integration of photosynthetic assimilation at
stand and canopy element levels. The model utilizes three-dimensional canopy structural data to
simulate light transport and photosynthesis at the level of individual scene elements from which
Pgs is derived through integration. Despite the high level of geometric abstraction applied to the
virtual scene, raising questions as to the exact meaning of individual canopy elements, the proposed
method demonstrates significant potential for fusing data from diverse scales. The spatial distribution
of Eal within the canopy was computed by integrating down-welling diffuse and direct PAR corrected
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for the absorption probability that estimates the fraction of photon flux passing through the reference
plane from a specific direction that is absorbed by a specific scene element. The model was
parameterized using 3D structural data that was acquired with laser scanning technology and field
observations of crown architecture, time series measurements of incident diffuse and direct PAR, and
leaf-level photosynthesis parameters. While the virtual scene is constructed in forward modeling
mode, the photosynthetic parameters were determined through model inversion against EC-derived
Pgs. Despite differences in scale between the modeled forest plot and the footprint of the EC flux
tower, the model optimization resulted in simulated Pgs values matching the range of error typical
for the EC technique (e.g., [12,17,60]). Moreover, photosynthesis model parameters Popt and αopt were
found within typical ranges for the leaf level, despite the coarse fidelity that was used to represent
the canopy structure. When sun acclimation was introduced into the model using the nitrogen
allocation parameter, krub, estimates of Popt exceeded those reported in literature, suggesting that
other acclimation models need to be considered (e.g., [61]). Our finding that diffuse Eic is a major
control on Pgs confirms the findings by [62,63]. For example, Cai et al. [63] found that Pgs of this
stand can be effectively modelled with a single big leaf model using the sum of down-welling diffuse
Eic and a fraction (of approximately 20%) of down-welling direct Eic.

A number of limitations of the proposed model remain, including neglecting the understory
vegetation, the fidelity of the three-dimensional forest scene, assumptions of homogeneity of relative
humidity and temperature within the canopy volume. The modelled scene does not represent
individual needles or the clumping of needles into shoots, but rather comprises a limited number
of canopy elements to represent foliage. Shading within shoots establishes significant effects on
quantum yield and photosynthetic capacity [17,64] that are excluded using our coarse-resolution
scene. Inclusion of finer levels of detail is no restriction to the ray tracing method, however, and
is increasingly supported through advances in (mobile) laser scanning technology and other 3D
acquisition techniques. Widlowski et al. [20] have demonstrated the use of ray tracing for scenes
consisting of several millions of elements and for scenes comprising a stand of individual trees at
needle-level resolution. For cases where the data size exceeds computer memory and the scenes
exhibit some repetition in structure (e.g., scenes that represent fractal geometries or a collection of
identical objects), techniques known as instantiation exist to reduce memory requirements (e.g., [35]).
To ensure that absorption probabilities at the level of individual scene elements are accurately
sampled, a higher structural fidelity of scenes requires the simulation of a larger numbers of photons
and requires the use of advanced, optimized ray tracing algorithms. Increasing scene complexity in
ray tracing simulations also provides for studies that investigate the physical mechanisms behind
empirical observations of canopy reflectance and its linkages with leaf optical properties [65] and can
further be used to analyze the distribution of radiation within shoots and needles [64].

While the current study focused on light transport, no links were established between short-
and long-wave radiation and evapotranspiration. Forest canopies provide a level of insulation
to extreme weather conditions and establish more temperate, humid conditions closer to ground
level [66]. The current model does not simulate heat transfer with canopy depth or the effects of latent
heat transfer resulting from evapotranspiration, causing overestimates of drought and temperature
stresses on the lower parts of the canopy. The effects on stand-level gross primary productivity
may be relatively small, however, since the largest photosynthetic contributions come from the
upper canopy (e.g., [59]). Efforts to include thermal energy transfer may incorporate radiosity
modeling [25,52] or using 1D radiative transfer equations, acknowledging that the variability of
temperature within the canopy space is relatively small [61] compared to light gradients [67].
In addition, no leaf-level measurements of photosynthetic parameters were made in this study, and
as a result, no validation or inference around the variability of photosynthetic parameters within the
canopy space can be made at this stage. For comparison, Ibrom et al. [17] estimate that physiological
variability among needles contributes to over 6% of measurements of electron transport rate—i.e.,
analogous to measurements of quantum yield—owing to differences caused by factors including
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shoot morphology and self-shading, leaf acclimation [61] and changes in hydraulic conductance
with height [68]. In addition, the modifier functions did not consider hysteresis to changes in
temperature and relative humidity. It is likely, however, that photosynthesis responds more quickly
to precipitation than to dry conditions. For example, for a drought to have a significant impact on
photosynthesis, a weather record of several weeks may need to be considered, whereas a sudden
event of heavy rain after a prolonged period of dry conditions affects the growth of vegetation more
quickly. Other important considerations that are currently omitted in our model are the co-limitation
effect of nitrogen availability on electron transport and photosynthetic capacity [61], as well as the
acclimation of leaves to seasonal temperature fluctuations [69] and the effects of transient changes in
incident radiation on photosynthetic down-regulation [70].

Whereas the parameter values retrieved in this study coincide with typical ranges reported
in literature, caution should be taken towards inference from model inversion, since multiple
combinations of parameter values can result in similar model estimates: an effect known as
equifinality [17] and this particularly holds when larger numbers of parameters are estimated;
however, the finding that most parameter estimates were obtained within previously reported ranges
at the leaf level demonstrates a potential for the combined use of leaf and stand-level measurements
to gain an understanding in the relative importance of physiological processes that establish the
observed eddy-covariance fluxes [17]. Whereas several one-dimensional models exist that produce
similar accuracies against eddy-covariance flux measurements, these models are ultimately limited
in the representation of processes at scales finer than the stand level. Three-dimensional plot-level
models address the fusion of leaf and stand-level CO2 exchange and consider a wide range of
physiological processes. The finer spatial and temporal resolutions covered by these models enhance
the opportunity to couple leaf and stand-level measurements such as obtained from cuvette and leaf
chambers [17] and leaf spectral information [71]. An effective way to combine shoot and canopy
level information may be through the use of proximal narrow-waveband sensors data [72] installed
within eddy-covariance footprints. These sensors provide year-round information about energy
dissipation through the xanthophyll cycle: a predominant mechanisms through which reversible
down-regulation of photosynthesis is achieved [73,74]. Augmenting plot-level models using these
sensor data may provide constraints on parameter ranges to avoid or reduce effects of equifinality,
and can serve to validate the simulated radiation regime at specific locations within the canopy.
Ultimately, the knowledge gained from plot-level Pgs models and in situ sensor network data may be
used to formulate empirical relationships that can be used to calibrate and validate one-dimensional
Pgs models that operate over broader scales.

5. Conclusions

Canopy structure is an important driver for canopy PAR modeling and is an important
component in forest gross primary productivity (Pgs) models as it regulates how portions of diffuse
and direct PAR are distributed throughout the canopy. In this study, a method was presented
that provides for rapid updates of the canopy radiation regime, after an initial, computationally
intense model initialisation phase. The model relies on the population of a look-up table that stores
probabilities of absorbing PAR by individual scene elements and handles the dynamic changes in the
canopy PAR that result from solar tracking and changes in atmospheric conditions. Once canopy
radiation was simulated, a single leaf-level photosynthesis model was used to model canopy
productivity for a time series of over 2000 measurements spread throughout a growing season.
Through optimization of the model parameters to EC-derived Pgs it was found that photosynthetic
assimilation was highest at 19 ˝C and humid conditions and during the mid-season, in agreement
with reported values for this climatic zone. Improvements to the model representation, canopy
structure, and the inclusion of the transfer of long-wave radiation, sensible and latent heat, and
in situ sensor network data have considerable potential to refine these estimates and may lead to
a tighter coupling between eddy-covariance stand level estimates of gross primary productivity
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and leaf-level observations of photosynthesis. Such coupling can be used to gain insight in
function–structure relationships at spatial and temporal scales where laboratory and field knowledge
of photosynthesis meet.
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List of Symbols

Symbol Units * Description

α µmol¨C¨µmol´1¨photons quantum yield
αopt µmol¨C¨µmol´1¨photons theoretical optimum for quantum yield
βh % sensitivity of Pmax to changes in h
βD

˝C¨days sensitivity of Pmax to changes in D
βE µmol¨photons¨m´2¨ s´1 sensitivity of Pmax to changes in Eal
βT

˝C sensitivity of Pmax to changes in T
γh lag in response of Pmax to changes in h
γT lag in response of Pmax to changes in T
θ radians zenith angle
Θ vector of model parameters
ρ reflectance

τc, τu collided and un-collided transmittance, respectively
φ radians azimuth angle
χ duration of initial linear response for eq. 2
ω steradians solid angle;

ş

dω ”
ş

sinφ¨ dθdφ
Ω steradians projected solid angle;

ş

cosθ¨ dω
Ap m2 area of facet p (solid portion for porous facets)

Are f m2 area of reference plane
D ˝C¨days growing degree days

Dmod D modifier
Dopt

˝C¨days optimal growing degree day for photosynthesis
E µmol¨photons¨m´2¨ s´1 photosynthetically active radiation (irradiance)

Eic µmol¨photons¨m´2¨ s´1 E incident on the canopy
Eac µmol¨photons¨m´2¨ s´1 E absorbed by the canopy
Eal µmol¨photons¨m´2¨ s´1 E absorbed by a canopy element

Emod Eal modifier
h % relative humidity

hmod h modifier
krub exponential N-allocation coefficient

L µmol¨photons¨m´2¨ s´1¨ sr´1 radiance
Lic µmol¨photons¨m´2¨ s´1¨ sr´1 radiance at reference plane above canopy
Pabs absorption probability
Pg µmol¨C¨m´2¨ s´1 gross primary productivity
Pgs µmol¨C¨m´2¨ s´1 Pgat stand level
Pgl µmol¨C¨m´2¨ s´1 Pg at canopy element level

Pmax µmol¨C¨m´2¨ s´1 photosynthetic capacity at leaf (pl) level
Popt µmol¨C¨m´2¨ s´1 optimal photosynthetic capacity at leaf (pl) level

p scene element (i.e., facet)
pl , ps, pb foliage, soil, and bark elements, respectively

T ˝C air temperature
Tmod T modifier
Topt

˝C optimal temperature for photosynthesis

* Where the dimensions are not specified, the quantities are dimensionless.
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