Nighttime Light Derived Assessment of Regional Inequality of Socioeconomic Development in China
Abstract
:1. Introduction
2. Data and Methods
2.1. Visible Infrared Imaging Radiometer Suite (VIIRS) Nighttime Light Imagery
2.2. Economic and Demographic Data
2.3. Inequality Analysis Methods at Multiple Levels
3. Results
3.1. Relationships between Nighttime Light, Gross Domestic Product, and Population
3.2. Inequality Estimation
Province | NTL | Population | GDP | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
G | Gw | T | Tw | Lasym | G | T | Lasym | G | Gw | T | Tw | Lasym | |
Beijing | 0.42 | 0.17 | 0.26 | 0.05 | 0.84 | 0.46 | 0.30 | 1.04 | 0.60 | 0.38 | 0.55 | 0.27 | 0.98 |
Tianjin | 0.49 | 0.34 | 0.37 | 0.19 | 0.97 | 0.26 | 0.12 | 1.23 | 0.58 | 0.42 | 0.78 | 0.32 | 1.45 |
Hebei | 0.29 | 0.22 | 0.11 | 0.08 | 1.04 | 0.25 | 0.09 | 0.88 | 0.35 | 0.22 | 0.17 | 0.08 | 0.98 |
Shanxi | 0.21 | 0.19 | 0.07 | 0.06 | 1.01 | 0.21 | 0.06 | 0.91 | 0.21 | 0.18 | 0.07 | 0.05 | 1.13 |
Inner-Mongolia | 0.40 | 0.34 | 0.22 | 0.21 | 1.08 | 0.33 | 0.16 | 0.88 | 0.43 | 0.34 | 0.25 | 0.19 | 1.00 |
Liaoning | 0.37 | 0.18 | 0.22 | 0.05 | 1.39 | 0.30 | 0.14 | 1.36 | 0.47 | 0.23 | 0.38 | 0.09 | 1.28 |
Jilin | 0.52 | 0.18 | 0.39 | 0.05 | 1.23 | 0.35 | 0.17 | 1.18 | 0.45 | 0.13 | 0.29 | 0.03 | 1.20 |
Heilongjiang | 0.57 | 0.29 | 0.51 | 0.19 | 1.30 | 0.49 | 0.35 | 1.21 | 0.58 | 0.32 | 0.54 | 0.21 | 1.27 |
Shanghai | 0.54 | 0.23 | 0.46 | 0.10 | 0.89 | 0.38 | 0.24 | 1.18 | 0.42 | 0.24 | 0.36 | 0.11 | 1.37 |
Inner-Mongolia | 0.40 | 0.34 | 0.22 | 0.21 | 1.08 | 0.33 | 0.16 | 0.88 | 0.43 | 0.34 | 0.25 | 0.19 | 1.00 |
Liaoning | 0.37 | 0.18 | 0.22 | 0.05 | 1.39 | 0.30 | 0.14 | 1.36 | 0.47 | 0.23 | 0.38 | 0.09 | 1.28 |
Jilin | 0.52 | 0.18 | 0.39 | 0.05 | 1.23 | 0.35 | 0.17 | 1.18 | 0.45 | 0.13 | 0.29 | 0.03 | 1.20 |
Heilongjiang | 0.57 | 0.29 | 0.51 | 0.19 | 1.30 | 0.49 | 0.35 | 1.21 | 0.58 | 0.32 | 0.54 | 0.21 | 1.27 |
Shanghai | 0.54 | 0.23 | 0.46 | 0.10 | 0.89 | 0.38 | 0.24 | 1.18 | 0.42 | 0.24 | 0.36 | 0.11 | 1.37 |
Jiangsu | 0.37 | 0.25 | 0.21 | 0.10 | 1.13 | 0.20 | 0.06 | 1.05 | 0.37 | 0.24 | 0.19 | 0.09 | 1.20 |
Zhejiang | 0.42 | 0.17 | 0.25 | 0.05 | 1.07 | 0.33 | 0.15 | 0.89 | 0.40 | 0.16 | 0.22 | 0.04 | 1.06 |
Anhui | 0.39 | 0.31 | 0.25 | 0.16 | 1.15 | 0.33 | 0.16 | 0.96 | 0.34 | 0.30 | 0.21 | 0.15 | 1.32 |
Fujian | 0.40 | 0.14 | 0.21 | 0.03 | 1.01 | 0.28 | 0.11 | 1.23 | 0.36 | 0.12 | 0.17 | 0.03 | 1.13 |
Jiangxi | 0.38 | 0.21 | 0.19 | 0.09 | 0.96 | 0.34 | 0.17 | 0.70 | 0.30 | 0.25 | 0.13 | 0.12 | 1.05 |
Shandong | 0.32 | 0.21 | 0.14 | 0.08 | 1.08 | 0.28 | 0.11 | 0.90 | 0.30 | 0.24 | 0.13 | 0.10 | 1.02 |
Henan | 0.34 | 0.25 | 0.20 | 0.10 | 1.08 | 0.30 | 0.13 | 0.92 | 0.32 | 0.23 | 0.17 | 0.09 | 1.38 |
Hubei | 0.49 | 0.34 | 0.50 | 0.21 | 1.40 | 0.31 | 0.14 | 1.07 | 0.49 | 0.32 | 0.42 | 0.16 | 1.27 |
Hunan | 0.44 | 0.37 | 0.34 | 0.24 | 1.16 | 0.22 | 0.07 | 0.95 | 0.40 | 0.30 | 0.27 | 0.16 | 1.08 |
Guangdong | 0.46 | 0.26 | 0.32 | 0.11 | 1.11 | 0.31 | 0.14 | 1.07 | 0.57 | 0.35 | 0.55 | 0.19 | 1.20 |
Guangxi | 0.38 | 0.25 | 0.23 | 0.10 | 1.17 | 0.29 | 0.12 | 0.90 | 0.33 | 0.18 | 0.16 | 0.05 | 1.23 |
Chongqing | 0.47 | 0.38 | 0.37 | 0.23 | 0.91 | 0.23 | 0.08 | 1.05 | 0.42 | 0.29 | 0.26 | 0.14 | 0.95 |
Sichuan | 0.48 | 0.34 | 0.56 | 0.19 | 1.35 | 0.33 | 0.19 | 1.15 | 0.45 | 0.22 | 0.45 | 0.08 | 1.30 |
Guizhou | 0.21 | 0.21 | 0.07 | 0.08 | 1.31 | 0.22 | 0.06 | 1.28 | 0.33 | 0.20 | 0.15 | 0.07 | 1.14 |
Yunnan | 0.49 | 0.31 | 0.42 | 0.15 | 1.12 | 0.37 | 0.20 | 1.03 | 0.51 | 0.27 | 0.41 | 0.12 | 1.13 |
Tibet | 0.34 | 0.36 | 0.16 | 0.22 | 1.23 | 0.33 | 0.14 | 0.86 | 0.52 | 0.31 | 0.37 | 0.19 | 1.14 |
Shaanxi | 0.54 | 0.42 | 0.40 | 0.31 | 1.02 | 0.32 | 0.14 | 1.20 | 0.47 | 0.26 | 0.30 | 0.11 | 1.18 |
Gansu | 0.38 | 0.29 | 0.24 | 0.14 | 1.46 | 0.33 | 0.16 | 0.79 | 0.39 | 0.37 | 0.26 | 0.23 | 1.16 |
Qinghai | 0.50 | 0.18 | 0.33 | 0.07 | 0.98 | 0.52 | 0.38 | 1.20 | 0.65 | 0.33 | 0.57 | 0.23 | 1.03 |
Ningxia | 0.44 | 0.22 | 0.21 | 0.09 | 1.21 | 0.22 | 0.05 | 1.36 | 0.47 | 0.28 | 0.25 | 0.14 | 1.33 |
Xinjiang | 0.39 | 0.29 | 0.21 | 0.15 | 0.92 | 0.42 | 0.25 | 1.03 | 0.50 | 0.43 | 0.31 | 0.31 | 0.92 |
Mean | 0.41 | 0.26 | 0.28 | 0.13 | 1.12 | 0.32 | 0.15 | 1.05 | 0.43 | 0.27 | 0.31 | 0.14 | 1.16 |
3.3. Spatial Multi-level Inequality of Nighttime Light
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Fan, C.C.; Sun, M. Regional inequality in China, 1978–2006. Eurasian Geogr. Econ. 2008, 49, 1–18. [Google Scholar] [CrossRef]
- Pedroni, P.; Yao, J.Y. Regional income divergence in China. J. Asian Econ. 2006, 17, 294–315. [Google Scholar] [CrossRef]
- Li, Y.; Wei, Y.D. Multidimensional inequalities in health care distribution in provincial China: A case study of Henan Province. Tijdschr. Econo. Soc. Geogr. 2014, 105, 91–106. [Google Scholar] [CrossRef]
- Liao, F.H.; Wei, Y.D. Dynamics, space, and regional inequality in provincial China: A case study of Guangdong Province. Appl. Geogr. 2012, 35, 71–83. [Google Scholar] [CrossRef]
- Roberts, M.; Deichmann, U.; Fingleton, B.; Shi, T. Evaluating China’s road to prosperity: A new economic geography approach. Reg. Sci. Urban Econo. 2012, 42, 580–594. [Google Scholar] [CrossRef]
- Zhou, X. Economic transformation and income inequality in urban China: Evidence from panel data. Am. J. Soc. 2000, 105, 1135–1174. [Google Scholar] [CrossRef]
- Qin, D.; Cagas, M.A.; Ducanes, G.; He, X.; Liu, R.; Liu, S. Effects of income inequality on China’s economic growth. J. Policy Model. 2009, 31, 69–86. [Google Scholar] [CrossRef]
- Zhang, Z.; Yao, S. Regional inequalities in contemporary China measured by GDP and consumption. Econ. Issues-stoke trent 2001, 6, 13–30. [Google Scholar]
- Wei, Y.D. Multiscale and multimechanisms of regional inequality in China: Implications for regional policy. J. Contemp. China 2002, 11, 109–124. [Google Scholar] [CrossRef]
- Li, Y.; Wei, Y. The spatial-temporal hierarchy of regional inequality of China. Appl. Geogr. 2010, 30, 303–316. [Google Scholar] [CrossRef]
- Fleisher, B.M.; Chen, J. The coast–noncoast income gap, productivity, and regional economic policy in China. J. Comp. Econ. 1997, 25, 220–236. [Google Scholar] [CrossRef]
- Hare, D.; West, L.A. Spatial patterns in China’s rural industrial growth and prospects for the alleviation of regional income inequality. J. Comp. Econ. 1999, 27, 475–497. [Google Scholar] [CrossRef]
- Sutton, P.; Roberts, D.; Elvidge, C.; Baugh, K. Census from Heaven: An estimate of the global human population using night-time satellite imagery. Int. J. Remote Sens. 2001, 22, 3061–3076. [Google Scholar] [CrossRef]
- Sutton, P.C.; Elvidge, C.D.; Ghosh, T. Estimation of gross domestic product at sub-national scales using nighttime satellite imagery. Int. J. Ecol. Econ. Stat. 2007, 8, 5–21. [Google Scholar]
- Henderson, J.V.; Storeygard, A.; Weil, D.N. Measuring Economic Growth from Outer Space; National Bureau of Economic Research: Providence, RI, USA, 2009. [Google Scholar]
- Doll, C.H.; Muller, J.-P.; Elvidge, C.D. Night-time imagery as a tool for global mapping of socioeconomic parameters and greenhouse gas emissions. AMBIO 2000, 29, 157–162. [Google Scholar]
- Doll, C.N.H.; Muller, J.-P.; Morley, J.G. Mapping regional economic activity from night-time light satellite imagery. Ecol. Econ. 2006, 57, 75–92. [Google Scholar] [CrossRef]
- Ghosh, T.; Powell, R.L.; Elvidge, C.D.; Baugh, K.E.; Sutton, P.C.; Anderson, S. Shedding light on the global distribution of economic activity. Open Geogr. J. 2010, 3, 148–161. [Google Scholar]
- Small, C.; Pozzi, F.; Elvidge, C.D. Spatial analysis of global urban extent from DMSP-OLS night lights. Remote Sens. Environ. 2005, 96, 277–291. [Google Scholar] [CrossRef]
- Ma, T.; Zhou, C.; Pei, T.; Haynie, S.; Fan, J. Quantitative estimation of urbanization dynamics using time series of DMSP/OLS nighttime light data: A comparative case study from China’s cities. Remote Sens. Environ. 2012, 124, 99–107. [Google Scholar] [CrossRef]
- Zhang, Q.; Seto, K.C. Mapping urbanization dynamics at regional and global scales using multi-temporal DMSP/OLS nighttime light data. Remote Sens. Environ. 2011, 115, 2320–2329. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Baugh, K.E.; Kihn, E.A.; Kroehl, H.W.; Davis, E.R.; Davis, C.W. Relation between satellite observed visible-near infrared emissions, population, economic activity and electric power consumption. Int. J. Remote Sens. 1997, 18, 1373–1379. [Google Scholar] [CrossRef]
- Chand, T.K.; Badarinath, K.; Elvidge, C.; Tuttle, B. Spatial characterization of electrical power consumption patterns over India using temporal DMSP-OLS night-time satellite data. Int. J. Remote Sens. 2009, 30, 647–661. [Google Scholar] [CrossRef]
- Liang, H.; Tanikawa, H.; Matsuno, Y.; Dong, L. Modeling in-use steel stock in China’s buildings and civil engineering infrastructure using time-series of DMSP/OLS nighttime lights. Remote Sens. 2014, 6, 4780–4800. [Google Scholar] [CrossRef]
- Hsu, F.-C.; Elvidge, C.D.; Matsuno, Y. Exploring and estimating in-use steel stocks in civil engineering and buildings from night-time lights. Int. J. Remote Sens. 2013, 34, 490–504. [Google Scholar] [CrossRef]
- Takashima, M.; Hayashi, H. Damage Inventory Estimation for Large Scale Earthquake Disaster Assessment Using Night Time City Light. In Proceedings of the 13th world conference of earthquake engineering, Vancouver, Canada, August 1–6, 2004; pp. 1–6.
- Han, P.; Huang, J.; Li, R.; Wang, L.; Hu, Y.; Wang, J.; Huang, W. Monitoring trends in light pollution in China based on nighttime satellite imagery. Remote Sens. 2014, 6, 5541–5558. [Google Scholar] [CrossRef]
- Doll, C.N. CIESIN Thematic Guide to Night-Time Light Remote Sensing and Its Applications; Center for International Earth Science, Information Network of Columbia University: Palisades, NY, USA, 2008. [Google Scholar]
- Elvidge, C.D.; Baugh, K.E.; Zhizhin, M.; Hsu, F.C. Why VIIRS data are superior to DMSP for mapping nighttime lights. Proc. Asia-Pac. Adv. Netw. 2013, 35, 62–69. [Google Scholar] [CrossRef]
- Baugh, K.; Hsu, F.C.; Elvidge, C.D.; Zhizhin, M. Nighttime lights compositing using the VIIRS day-night band: Preliminary results. Proc. Asia-Pac. Adv. Netw. 2013, 35, 70–86. [Google Scholar] [CrossRef]
- Ma, T.; Zhou, C.; Pei, T.; Haynie, S.; Fan, J. Responses of Suomi-NPP VIIRS-derived nighttime lights to socioeconomic activity in China’s cities. Remote Sens. Lett. 2014, 5, 165–174. [Google Scholar] [CrossRef]
- Li, X.; Xu, H.; Chen, X.; Li, C. Potential of NPP-VIIRS nighttime light imagery for modeling the regional economy of China. Remote Sens. 2013, 5, 3057–3081. [Google Scholar] [CrossRef]
- Shi, K.; Yu, B.; Huang, Y.; Hu, Y.; Yin, B.; Chen, Z.; Chen, L.; Wu, J. Evaluating the ability of NPP-VIIRS nighttime light data to estimate the gross domestic product and the electric power consumption of China at multiple scales: A comparison with DMSP-OLS data. Remote Sens. 2014, 6, 1705–1724. [Google Scholar] [CrossRef]
- Elvidge, C.; Baugh, K.; Anderson, S.; Sutton, P.; Ghosh, T. The night light development index (NLDI): A spatially explicit measure of human development from satellite data. Soc. Geogr. 2012, 7, 23–35. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Sutton, P.C.; Ghosh, T.; Tuttle, B.T.; Baugh, K.E.; Bhaduri, B.; Bright, E. A global poverty map derived from satellite data. Comput. Geosci. 2009, 35, 1652–1660. [Google Scholar] [CrossRef]
- Levin, N.; Duke, Y. High spatial resolution night-time light images for demographic and socio-economic studies. Remote Sens. Environ. 2012, 119, 1–10. [Google Scholar] [CrossRef]
- Earth Observation Group, NOAA National Geophysical Data Center. Available online: http://ngdc.noaa.gov/eog/viirs/download_viirs_ntl.html (accessed on 14 April 2014).
- Elvidge, C.D.; Baugh, K.E.; Zhizhin, M.; Hsu, F.-C. Why VIIRS data are superior to DMSP for mapping nighttime lights. Proc. Asia-Pac. Adv. Netw. 2013, 35, 62–69. [Google Scholar] [CrossRef]
- National Bureau of Statistics of China. Tabulation on the 2010 Population Census of China by County; China Statistical Press: Beijing, China, 2011. (In Chinese) [Google Scholar]
- National Bureau of Statistics of China. Urban Statistical Yearbook of China 2012; China Statistical Press: Beijing, China, 2013. (In Chinese) [Google Scholar]
- Shankar, R.; Shah, A. Bridging the economic divide within countries: A scorecard on the performance of regional policies in reducing regional income disparities. World Dev. 2003, 31, 1421–1441. [Google Scholar] [CrossRef]
- Damgaard, C.; Weiner, J. Describing inequality in plant size or fecundity. Ecology 2000, 81, 1139–1142. [Google Scholar] [CrossRef]
- Fan, J.; Ma, T.; Zhou, C.; Zhou, Y.; Xu, T. Comparative estimation of urban development in China’s cities using socioeconomic and DMSP/OLS night light data. Remote Sens. 2014, 6, 7840–7856. [Google Scholar] [CrossRef]
- Fleisher, B.; Li, H.; Zhao, M.Q. Human capital, economic growth, and regional inequality in China. J. Dev. Econo. 2010, 92, 215–231. [Google Scholar] [CrossRef]
- Song, S.; Chu, G.S.-F.; Chao, R. Intercity regional disparity in China. China econo. Rev. 2001, 11, 246–261. [Google Scholar] [CrossRef]
- Li, S.; Xu, Z. The Trend Of Regional Income Disparity In The People’s Republic of China; Asian Development Bank Institute Discussion Papers: Tokyo, Japan, 2008. [Google Scholar]
- Fawley, B.W.; Wen, Y. The great Chinese housing boom. Econ. Synop. 2013. [Google Scholar]
- Yang, D.T. What has caused regional inequality in China? China Econ. Rev. 2002, 13, 331–334. [Google Scholar] [CrossRef]
- Sánchez de Miguel, A.; Zamorano, J.; Gómez Castaño, J.; Pascual, S. Evolution of the energy consumed by street lighting in Spain estimated with DMSP-OLS data. J. Quant. Spectrosc. Ra. 2014, 139, 109–117. [Google Scholar] [CrossRef] [Green Version]
- Elvidge, C.D.; Cinzano, P.; Pettit, D.; Arvesen, J.; Sutton, P.; Small, C.; Nemani, R.; Longcore, T.; Rich, C.; Safran, J. The nightsat mission concept. Int. J. Remote Sens. 2007, 28, 2645–2670. [Google Scholar] [CrossRef]
- Kuechly, H.U.; Kyba, C.; Ruhtz, T.; Lindemann, C.; Wolter, C.; Fischer, J.; Hölker, F. Aerial survey and spatial analysis of sources of light pollution in Berlin, Germany. Remote Sens. Environ. 2012, 126, 39–50. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Y.; Ma, T.; Zhou, C.; Xu, T. Nighttime Light Derived Assessment of Regional Inequality of Socioeconomic Development in China. Remote Sens. 2015, 7, 1242-1262. https://doi.org/10.3390/rs70201242
Zhou Y, Ma T, Zhou C, Xu T. Nighttime Light Derived Assessment of Regional Inequality of Socioeconomic Development in China. Remote Sensing. 2015; 7(2):1242-1262. https://doi.org/10.3390/rs70201242
Chicago/Turabian StyleZhou, Yuke, Ting Ma, Chenghu Zhou, and Tao Xu. 2015. "Nighttime Light Derived Assessment of Regional Inequality of Socioeconomic Development in China" Remote Sensing 7, no. 2: 1242-1262. https://doi.org/10.3390/rs70201242
APA StyleZhou, Y., Ma, T., Zhou, C., & Xu, T. (2015). Nighttime Light Derived Assessment of Regional Inequality of Socioeconomic Development in China. Remote Sensing, 7(2), 1242-1262. https://doi.org/10.3390/rs70201242