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Abstract: The National Meteorological Satellite Center in Korea retrieves land surface 

temperature (LST) by applying the split-window LST algorithm (CSW_v1.0) to 

Communication, Ocean, and Meteorological Satellite (COMS) data. Considerable errors 

were detected under conditions of high water vapor content or temperature lapse rates during 

validation with Moderate Resolution Imaging Spectroradiometer (MODIS) LST because of 

the too simplified LST algorithm. In this study, six types of LST retrieval equations 

(CSW_v2.0) were developed to upgrade the CSW_v1.0. These methods were developed by 

classifying “dry,” “normal,” and “wet” cases for day and night and considering the relative 

sizes of brightness temperature difference (BTD) values. Similar to CSW_v1.0, the LST 

retrieved by CSW_v2.0 had a correlation coefficient of 0.99 with the prescribed LST and a 

slightly larger bias of −0.03 K from 0.00K; the root mean square error (RMSE) improved 

from 1.41 K to 1.39 K. In general, CSW_v2.0 improved the retrieval accuracy compared to 

CSW_v1.0, especially when the lapse rate was high (mid-day and dawn) and the water vapor 

content was high. The spatial distributions of LST retrieved by CSW_v2.0 were found to be 

similar to the MODIS LST independently of the season, day/night, and geographic locations. 

The validation using one year’s MODIS LST data showed that CSW_v2.0 improved the 

retrieval accuracy of LST in terms of correlations (from 0.988 to 0.989), bias (from  

−1.009 K to 0.292 K), and RMSEs (from 2.613 K to 2.237 K). 

OPEN ACCESS



Remote Sens. 2015, 7 1778 

 

Keywords: land surface temperature; split-window algorithm; COMS; MODIS 

 

1. Introduction 

Land surface temperature (LST) is an important factor that controls the sensible heat flux and latent 

heat flux [1–3], and it has been used as a biophysical indicator of the land surface in many studies where 

estimates of the radiation balance, temperature, and evapotranspiration rates were determined. 

Moreover, LST is used often in studies of urban heat islands [4–9]. In all of these studies, LSTs observed 

at high temporal and spatial resolutions are required to ensure the usability of the data [10–13]. However, 

since the land surfaces are composed of various elements and specific heat is small, LST, which is more 

prone to temporal/spatial variations than other meteorological elements, is not sufficiently accurate 

compared to other field observation data [13,14]. 

Recently, with the remarkable advancements in remote sensing technologies, satellite data with 

relatively high temporal/spatial resolutions and accuracy are becoming more readily available for various 

research applications, such as the surface energy balance, data assimilations of various numerical 

models, and climate change. Accordingly, many algorithms have been developed to retrieve LST from 

various satellite products [11,12,15–20]. Over time, the performances of LST algorithms have greatly 

improved because of advances in the spatial resolving power of geostationary weather satellites and 

increases in the radiation resolving power and observation cycles [3,21–26]. Considering the large 

spatial/temporal variations of LST, recent attempts at and on-site applications of LST retrieval from 

geostationary meteorological satellite data have been very promising [27–31]. 

Cho and Suh (2013) developed an algorithm (CSW_v1.0) that retrieves LST from satellite data 

collected with the Communication, Ocean, and Meteorological Satellite (COMS), South Korea’s first 

geostationary satellite [25]. An evaluation of the retrieval accuracy of LST retrieved by CSW_v1.0 with 

Moderate Resolution Imaging Spectroradiometer (MODIS) LST yielded satisfactory results, with an 

annual average bias of −1.009 K, a root mean square error (RMSE) of 2.613 K, and a correlation 

coefficient of 0.988. However, in cases where there was a high lapse rate (i.e., a large difference between 

the LST and air temperature), which happens mostly during dawn and at mid-day, and in cases where 

there was a large brightness temperature difference (BTD), which happens mostly when water vapor or 

aerosol concentrations are high, the retrieval accuracy was found to decrease noticeably. This may be 

explained by the fact that the algorithms that retrieve the LST from the satellite data are very sensitive 

to water vapor amounts and lapse rates, as noted by Kerr et al. [32]. This is mainly caused by the different 

and non-linear absorption properties of water vapor and aerosols between two infrared channels, 

although the two infrared channels of COMS are located at the window region. Therefore, to improve 

the accuracy of retrieved LST, accurate understanding and consideration of the water vapor distribution 

as well as the lapse rate are required in the LST retrieval process [12,33,34]. However, realistically, this 

is not easy to consider because water vapor and aerosols (these have large but different influences on the 

wavelength band of 8–13 μm, which is an atmospheric window region) have large short-term variations 

and uneven distributions. According to Goïta and Royer [35], an uncertainty for water vapor of  

±0.5 g·cm−2 can lead to a LST error of 2.5 K. Wan and Dozier suggested that the water vapor amount, 
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LST, and lapse rate should be considered quantitatively when calculating LST with the split-window 

method under conditions where the column water vapor amount is large and the satellite zenith angle 

(SZA) exceeds 45° [12]. 

As a method for lowering the sensitivity to water vapor content, Sun and Pinker [3] proposed a  

non-linear split-window algorithm, and Sobrino and Raissouni [36] and Sobrino et al. [37] developed 

split-window algorithms that parameterize the effects of water vapor. In the case of the lapse rate, 

Sobrino and Romaguera [26] and the MODIS Land Surface Group separated algorithms into day and 

night by taking into account the time-dependent variation between LST and surface emissivity. In brief, 

the retrieval accuracy can be improved by developing multiple retrieval equations taking into 

consideration the non-linear characteristics of factors such as water vapor/aerosols and lapse rate, which 

affect the accuracy of the retrieved LST [38]. 

In this study, to minimize the drawbacks of CSW_v1.0, which was developed by Cho and Suh [25], 

we developed an improved algorithm (CSW_v2.0) that considers the lapse rate and water vapor/aerosol 

effects, which are different between day and night and in space and time. We think that separation of 

LST retrieval equations according to the lapse rate and atmospheric conditions can improve the retrieval 

accuracy because the effects of water vapor/aerosols and lapse rate are non-linear according to their 

amount/magnitude. To evaluate the retrieval accuracy of this upgraded algorithm, we analyzed the 

improvement effects according to the factors that have impacts on LST retrieval and conducted 

comparative evaluations with MODIS LST data. 

2. Data and Methods 

2.1. Data 

In this study, we used IR1 (10.8 µm), IR2 (12 µm), and cloud mask data that were sensed by COMS. 

These data were provided by the National Meteorological Satellite Center (NMSC) of the Korea 

Meteorological Administrator (KMA) [39]; COMS is South Korea’s first geostationary multi-purpose 

satellite, and it is located at an altitude of 36,000 km above Earth’s equator and at a longitude of 128.2°. 

The observation interval for COMS data is 15 min and the spatial resolution is about 4 km. We used one 

year’s satellite data from April 2011 to March 2012. Since the LST can be retrieved from the satellite by 

using the split-window method only when the sky is clear, the retrieval was performed only for pixels 

of clear sky in the cloud mask dataset from COMS. 

The majority of LST retrieval algorithms for the split-window method assume that the surface 

emissivity of each channel is already known. In this study, the surface emissivity data produced with the 

vegetation cover method (VCM) proposed by Valor and Caselles [40] were used, as in the study by Cho 

and Suh [25]. Furthermore, for the atmospheric vertical profile required in the radiative transfer 

simulation process, we used the TIGR (Thermodynamic Initial Guess Retrieval) data from 359 positions 

where the SZA did not exceed 50° from COMS, which was obtained from among the whole 

TIGR2000_6CORPS dataset [41]. The locations of 359 TIGR data sets are shown in Figure 1 along with 

the location of COMS. 
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Figure 1. Spatial distribution of Thermodynamic Initial Guess Retrieval (TIGR) data used 

in this study. The nadir position of COMS is represented by “+”. 

In addition to the limited number of ground observations, the ground-observed LSTs have limitations 

with regards to their ability to serve as validating data for the CSW_v2.0 developed in this study because 

they cannot represent the area-averaged LSTs for the resolution of satellite data, which have large spatial 

variations [13]. As an alternative, this study performed a comparative evaluation with the MODIS LST 

Version 5 product (MOD11_L2, MYD11_L2; Version 5), which is known for its relatively high retrieval 

accuracy with a bias of 1 K and RMSE of 0.7 K [42]; the same methods used in the studies carried out 

by Cho and Suh [25] and Frey et al. [43] are applied here. 

2.2. Methods 

The existing CSW_v1.0 developed by Cho and Suh [25] expressed the contributions of BTD, surface 

emissivity, and SZA for various atmospheric conditions in a single equation through the simulation of 

Moderate Resolution Atmospheric Transmission Version 4 (MODTRAN4) [44], which is a radiative 

transfer model (RTM). Cho and Suh [25] have provided the development process and retrieval 

performance of the CSW_v1.0 in detail. The CSW_v1.0 is as follows: 

(LST ൌ 29.7890  0.8866	T୍ ୖଵ  2.1443∆T  0.1298∆Tଶ  0.7911ሺsecθ െ 1ሻ 
	56.6851ሺ1 െ εതሻ െ 122.172∆ε). 

(1)

In Equation (1), TIR1 is the brightness temperature of IR1, ∆ܶ  is the BTD of the IR1 and IR2 

channels, θ is the SZA of COMS, εത is the average surface emissivity of the IR1 and IR2 channels, and 

∆ε is the surface emissivity difference (IR1 − IR2). Compared to MODIS LST, the LST retrieved by 

CSW_v1.0 has a bias of −1.009 K, RMSE of 2.613 K, and a correlation coefficient of 0.988. However, 

its retrieval accuracy was found to decrease when the lapse rate ሺ ௦ܶ െ ܶሻ  and BTD were large.  
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Figure 2 is a flow chart that shows the research processes of this study. The major differences from the 

CSW_v1.0 development process are as follows: (1) the RTM simulations were performed during the day 

and night according to lapse rate and (2) separate algorithms were developed for wet/normal/dry states 

according to the size of the BTD to reflect the effects of water vapor and aerosols more specifically. In 

the first stage, the lapse rate conditions prescribed by the RTM simulation were divided into day and night 

conditions to take the lapse rate into consideration in the development process of CSW_v2.0. In 

CSW_v1.0, LST values were prescribed at 2 K intervals from ( ܶ െ 6) K to ( ܶ  16) K to make one 

pseudo match-up dataset; in CSW_v2.0, in contrast, we made two pseudo match-up datasets by prescribing 

from ( ܶ െ 2) K to ( ܶ  16) K for the day, and from ( ܶ െ 6) K to ( ܶ  2) K for the night. The interval 

for the lapse rate condition was set to 2 K like that of CSW_v1.0. For the RTM, MODTRAN4 [44] was 

used, as in CSW_v1.0. 

In the second stage, to consider the effects of water vapor and aerosols, the two pseudo match-up 

datasets simulated earlier were classified into dry and wet conditions according to the critical value of 

BTD. The critical value was determined on the basis of the error analysis results for CSW_v1.0 [25] 

(Cho and Suh, 2013), and in general, those that show large errors when the BTD has a negative value or 

is greater than or equal to 4 K were selected as boundary values. The “dry” algorithm was assigned to 

BTD less than or equal to 0 K since the water vapor content was low and aerosols were dominant in 

general; the “wet” algorithm was assigned to values greater than 4 K since water vapor was dominant; 

and the “normal” algorithm was assigned to values between 0 K and 4 K (Table 1). In this process, the 

single regression equation of CSW_v1.0 was divided into six specific retrieval equations  

(2 (day, night) × 3 (dry, normal, wet)) according to the lapse rate, water vapor content, and aerosol 

conditions (Equations (2)–(7)). As shown in Equations (2)–(7), the effects of water vapor and aerosols 

according to the atmospheric conditions are reflected in the coefficients of BTD and BTD2. 

Table 1. Summary of LST retrieval equations according to the BTD ranges. The number 

indicates the equation number in the text. 

Conditions BTD Ranges LST Equation 

Dry BTD < 0 (2) for Day, (5) for Night 

Dry-Normal −1 ≤ BTD ≤ 1 
Day: weighted sum of (2) and (3) 

Night: weighted sum of (5) and (6) 

Normal 0 < BTD < 4 (3) for Day, (6) for Night 

Normal-Wet 3 ≤ BTD ≤ 5 
Day: weighted sum of (3) and (4) 

Night: weighted sum of (6) and (7) 

Wet BTD > 4 (4) for Day, (7) for Night 

The meanings for each variable are the same as those for Equation (1). The developed algorithms can 

be applied easily to day and night, but temporal discontinuities can occur during twilight and dawn 

because of differences between the algorithms. To resolve this problem, when the Solar Zenith Angle 

(SoZA) for each pixel is between 80° and 100°, it was assumed to be twilight and dawn. Considering 

the SoZA in the developed day and night algorithms, the weight ሺωሻ of Equation (9) was given linearly 

to resolve the discontinuity between the algorithms.  
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Figure 2. Flow chart for the development and retrieval process of land surface temperature 

from COMS data. 

ܵܮ) ௗܶ௬/ௗ௬ ൌ 25.2630  0.9094 ூܶோଵ  3.6544 ܦܶܤ  ଶܦܶܤ	0.4427 െ

2.7314	ሺߠܿ݁ݏ െ 1ሻ  44.9390 ሺ1 െ ሻ̅ߝ െ 153.993  (ߝ∆
(2)

ܵܮ) ௗܶ௬/. ൌ 11.7969  0.9548 ூܶோଵ  1.3027 ܦܶܤ  ଶܦܶܤ	0.2092 

0.2506	ሺߠܿ݁ݏ െ 1ሻ  56.4788 ሺ1 െ ሻ̅ߝ െ 110.799  (ߝ∆
(3)

ܵܮ) ௗܶ௬/௪௧ ൌ 79.1358  0.6801 ூܶோଵ  6.2170 ܦܶܤ െ ଶܦܶܤ	0.2131 

1.6207	ሺߠܿ݁ݏ െ 1ሻ  61.7844 ሺ1 െ ሻ̅ߝ െ 127.603  (ߝ∆
(4)

ܵܮ) ܶ./ௗ௬ ൌ 32.0297  0.8834 ூܶோଵ  1.6431 ܦܶܤ െ ଶܦܶܤ	0.7119 െ

3.1955	ሺߠܿ݁ݏ െ 1ሻ  39.8000 ሺ1 െ ሻ̅ߝ െ 144.0990  (ߝ∆
(5)

ܵܮ) ܶ./. ൌ 10.4334  0.9590 ூܶோଵ  1.3623 ܦܶܤ  ଶܦܶܤ	0.1935 

0.2044	ሺߠܿ݁ݏ െ 1ሻ  51.3197 ሺ1 െ ሻ̅ߝ െ 86.8015  (ߝ∆
(6)

ܵܮ) ܶ./௪௧ ൌ 29.2220  0.8323 ூܶோଵ  10.6588 ܦܶܤ െ ଶܦܶܤ	0.8091 

0.8938	ሺߠܿ݁ݏ െ 1ሻ  53.6692 ሺ1 െ ሻ̅ߝ െ 88.480  (ߝ∆
(7)

(LST ൌ ω ൈ ܵܮ ௗܶ௬  ሺ1 െ ߱ሻ ൈ ܵܮ ܶ.) (8)
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(ω ൌ െ ଵ

ଶ
ൈ ሺSoZAሻ  5 ሺ80°  SoZA  100°ሻ,

ω ൌ 1.0	ሺSoZA  80°ሻω ൌ 0.0 ሺSoZA  100°ሻ) 
(9)

In Equations (8) and (9), ω represents the weight, and ܵܮ ௗܶ௬  and ܵܮ ܶ  are the LST values 

retrieved by applying the day and night algorithms, respectively. When the SoZA was less than or equal 

to 80°, the day algorithm was applied, and when it was greater than or equal to 100°, the night algorithm 

was applied. Furthermore, as shown in Table 1, reflecting ±1 K in the critical value of BTD for the 

developed algorithms between dry and normal, and between normal and wet, the discontinuities between 

the algorithms were resolved by linearly assigning the weights ሺωሻ of Equations (11) and (13). 

(LST ൌ ω ൈ ܵܮ ௗܶ௬  ሺ1 െ ߱ሻ ൈ ܵܮ ܶ ) (10)

(ω ൌ െଵ

ଶ
ൈ ሺBTD െ 0Kሻ  ଵ

ଶ
ሺെ1K  BTD  1Kሻ,	

ω ൌ 1.0	ሺBTD  െ1Kሻω ൌ 0.0 ሺBTD  1Kሻ) 
(11)

(LST ൌ ω ൈ ܵܮ ܶ  ሺ1 െ ߱ሻ ൈ ܵܮ ௪ܶ௧ ) (12)

(ω ൌ െଵ

ଶ
ൈ ሺBTD െ 4Kሻ  ଵ

ଶ
ሺ3K  BTD  5Kሻ,	

ω ൌ 1.0	ሺBTD  3Kሻω ൌ 0.0 ሺBTD  5Kሻ) 
(13)

In Equations (10)–(13), the BTD represents the brightness temperature difference, ω is the weight, 
and LSTୢ ୰୷, LST୬୭୰୫ୟ୪, and LST୵ୣ୲ are the LST values retrieved by the dry/normal/wet algorithms, 

respectively. By applying the linear weights for the discontinuities between six specific retrieval 

equations, we could derive improved LST retrieval algorithms that minimize the time-dependent 

discontinuities among the algorithms (CSW_v2.0). 

3. Results 

3.1. Evaluation of the CSW_v2.0 Algorithm 

To evaluate the improvement effects of CSW_v2.0, a comparison was made with the retrieval 

accuracy of CSW_v1.0. For this, the LST that was prescribed in the simulation process of RTM 

(prescribed LST) and the LST that was retrieved by the algorithm (estimated LST) were compared. To 

estimate the LST, the brightness temperature of IR channels 1 and 2 simulated with the RTM, the 

prescribed surface emissivity, and the SZA data of atmospheric vertical data points were substituted into 

the retrieval equation. Because the SoZA that is required to decide between the day and night modes 

cannot be calculated from the data retrieved by radiative transfer simulations, they were substituted with 

the differences ሺ∆Tሻ between the temperature and LSTs provided in the simulation and corresponding 

atmospheric temperatures. LSTs less than or equal to (Ta – 2) K were assigned to the night mode 

algorithm and those greater than or equal to (Ta + 2) K to the day mode algorithm, with the values in 

between assumed to be twilight and dawn. The LST was estimated by substituting the weight ሺωሻ of 

Equation (15) that meets the ∆T condition of Equation (14). 

Figure 3 shows (a) scatter plots and (b) bias distributions between the estimated and prescribed LSTs; 

the graphs demonstrate that both algorithms retrieve LST properly. CSW_v2.0 has considerably reduced 

the problem where CSW_v1.0 underestimated in the 300–320 K range. However, the problem of 

overestimation in the range 270–290 K was not resolved satisfactorily. CSW_v2.0 not only maintained 
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the high retrieval accuracy with a 0.99 correlation between the prescribed LST and −0.03 K bias, but 

also reduced the RMSE from 1.41 K to 1.39 K. Although bias for the two algorithms displayed a dense 

normal distribution at 0 K, the standard deviation of the CSW_v2.0 bias was 1.19 K compared to 1.35 

K for the CSW_v1.0 bias, which demonstrates that the error was decreased. 

(LST ൌ ω ൈ ܵܮ ௗܶ௬  ሺ1 െ ߱ሻ ൈ ܵܮ ܶ.) (14)

(ω ൌ ଵ

ସ
ൈ ∆T  ଵ

ଶ
ሺെ2 ܭ ൏ ∆T ൏ 2 ,ሻܭ

ω ൌ 1.0 ൫∆T 2 K൯

ω ൌ 0.0 ሺ∆T  െ2 Kሻ) 

(15)

 

Figure 3. (a) Scatter plot and (b) histogram of the difference between the prescribed LST 

and the estimated LST using COMS split-window LST retrieval algorithms, Version 1 (left) 

and Version 2 (right), for the full range of simulation conditions given in Table 2. 

Table 2 outlines the number of data points for each condition of the major factors evaluated with the 

entire pseudo match-up dataset that was composed through the simulations of RTM (MODTRAN4). In 

the cases for the lapse rates and surface emissivity differences, an adequate number of simulations were 

conducted according to the experimental design conditions. However, in the case of the BTD, the number 

of simulated data varied depending on the BTD values because of the characteristics of the TIGR data 

used in the simulation process; particularly, since cases with large amounts of aerosols or extremely high 
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humidity levels (e.g., −2 K and 6 K) rarely happen, the number of simulated data was small compared 

to other conditions. Furthermore, the number of simulated data points varied between the SZAs because 

there were not many TIGR points over the islands in Southeast Asia [25] (Cho and Suh, 2013). 

Table 2. The number of pseudo match-up data points according to the simulation conditions. 

ܛ܂ െ  ሻ −6 −4 −2 0 2 4 6 8 10 12 14 16ࡷሺࢇࢀ

Cases 27,643 27,643 27,643 27,643 27,643 27,643 27,643 27,643 27,643 27,643 27,643 27,643 

BTDሺࡷሻ −3 −2 −1 0 1 2 3 4 5 6 7  

Cases 142 1529 18,297 51,455 66,442 67,815 58,758 40,462 20,951 5429 435  

SZA (°) ~10 10~15 15~20 20~25 25~30 30~35 35~40 40~45 45~50    

Cases 924 3696 12,012 21,252 48,048 92,400 78,540 67,452 7392    

∆Emis. −0.012 −0.008 −0.004 0 0.004 0.008 0.012      

Cases 47,388 47,388 47,388 47,388 47,388 47,388 47,388      

Figures 4 and 5 compare the correlation, bias, and RMSE between the prescribed LST and estimated 

LST, respectively, according to the lapse rate and BTD before and after the algorithm was upgraded. 

The bar graphs show the statistics for both versions and the line graphs show the improvement rate. As 

shown in Figure 4, the retrieval accuracy of CSW_v2.0 was higher than that of CSW_v1.0 regardless of 

the lapse rate condition. Particularly, the improvement in retrieval performance was high when the 

difference between temperature and LST was large, presumably because of the development of separate 

LST retrieval algorithms for the lapse rate. However, the improvement rate was rather low when the 

difference between temperature and LST was less than ±2 K; this may have occurred because we 

calculated the weighted average of the retrieved temperatures for the day/night algorithms without 

developing a separate algorithm for this section. Furthermore, the bias and RMSE were greatly improved 

under the condition of large BTD values as a result of the development of three LST retrieval algorithms 

according to the concentrations of water vapor and aerosol in the atmosphere. 

Figure 6 shows the RMSEs between the estimated LST and prescribed LST for CSW_v1.0 (left) and 

v2.0 (center), as well as their differences (right) according to the variables (lapse rates, BTDs, surface 

emissivity differences, SZAs) that affect the retrieval of LST. In the RMSE differences, the size of the 

circles inside the grids represents the improvement rate. In the figure, the white part indicates that there 

are no data that correspond to the condition (Table 2). As noted by Cho and Suh [25], one of the most 

distinctive features of CSW_v1.0 is that the RMSE significantly increases with the increase in the lapse 

rate or BTD value. In addition, the error becomes larger in proportion to the size of the surface emissivity 

difference and SZA value. In CSW_2.0, the RMSE decreased in most of the conditions, thus 

demonstrating the enhanced LST retrieval performance. Specifically, as a result of considering the lapse 

rate and BTD in the algorithm development process, it was found that a high improvement rate could be 

demonstrated when the lapse rate lies between +6 K and +16 K and the BTD is between +4 K and +7 K, 

regardless of the surface emissivity and SZA. However, errors increased in CSW_v2.0 under certain 

conditions, e.g., when the SZA is less than 10° and the lapse rate lies between +2 K and +8 K (Case 1) 

and when the surface emissivity difference is greater than or equal to 0.008 and the BTD is −3 K, i.e., 

under very dry conditions (Case 2). Case 1 may be explained by the small number of TIGR points that 

fell within the range of SZA ≤ 10° (Table 2). In Case 2, it seems that the contradicting effect between 

the atmospheric aerosols and large BTD values caused by large surface emissivity differences between 
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the two infrared channels was not properly reflected in the dry algorithm. This aspect will have to be 

explored later in an in-depth analysis. 

 

Figure 4. Estimation skills (bar graph) and improvement rate (line) of COMS split-window 

LST retrieval algorithms, Version 1 and Version 2, according to the temperature differences 

between LST and air temperature. 

3.2. Validation of CSW_v2.0 Using MODIS LST Data 

To evaluate the LST retrieval performance of CSW_v2.0, LSTs were retrieved using the COMS data 

collected on the 15th and 30th days of each month for one year from April 2011 to March 2012. Since LST 

can be retrieved only when the sky is clear, retrieval was performed only on the pixels of clear sky from 

the cloud mask dataset from COMS for the northern hemisphere, which was obtained from the NMSC of 
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KMA. Furthermore, for the surface emissivity data that are needed when using the split-window method, 

values identical to those of Cho and Suh [25] were used to evaluate the algorithm improvement effects. 

 

Figure 5. Same as Figure 4 except the data shows the brightness temperature difference. 

As is well known, there are only a limited number of ground observation data points that can evaluate 

the accuracy of LSTs derived from satellites [11]. In this study, MODIS (MOD11_L2, MYD11_L2, 

Version 5) LST was used as an alternative method for the comparative evaluation because it is known for 

its relatively high retrieval accuracy, as shown in the studies of Cho and Suh [25] and Frey et al. [38]. 

Since LST is subjected to large spatiotemporal variations, the spatiotemporal resolutions of the two 

datasets were matched under strict conditions to ensure an unbiased comparison, as in other studies such 

as that by Cho and Suh [25]. First, we selected the MODIS pixel, for which the distance from the center 

of each pixel was closest, while the observation time difference between two satellite data points was less 
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than ±5 min. Since the spatial resolution of COMS IR1 and IR2 was 4 km whereas that of MODIS LST 

was 1 km, the comparison was performed via simple mean comparisons only when all the surrounding 25 

(5 × 5) pixels for the selected MODIS pixel were land and when the sky was clear. 

 

Figure 6. Distributions of RMSEs for two COMS split-window LST algorithms, Version 1 

(left) and Version 2 (middle), and their differences (right) according to the different 

impacting factors. 
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Figure 7. Spatial distribution of COMS LST and MODIS LST data and their differences for 

the two selected days during autumn and spring. 

Figures 7–9 show the LSTs retrieved from CSW_v2.0 and MODIS LST and the spatial distribution 

of their differences according to season and day/night. Only the pixels that satisfy the aforementioned 

spatiotemporal matching conditions were compared, and the data collected at an interval of 15 min were 

compiled and expressed in one chart per day. Therefore, discontinuities can be observed along the path 

of MODIS on the spatial distribution. As shown in the figures, the spatial distributions of COMS LST 

and MOIDS LST were similar regardless of the season and day/night, and the differences for the two 

temperatures were distributed within a range of ±5 K. Furthermore, CSW_v2.0 does not seem to contain 

systematic errors since the temperature differences for the two datasets are diversely distributed 

depending on the season, day/night, and geographic location. Consequently, most of the negative 

deviations of CSW_v1.0 at night, mentioned by Cho and Suh [25], were resolved. 
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Figure 10 shows the scatter plots between the MODIS LST and the LST retrieved by CSW_v2.0 for 

different seasons. The LSTs retrieved by CSW_v2.0 generally matched well with the MODIS LSTs 

regardless of the season and LST values. However, a remarkable warm bias was exhibited below 260 K 

in April and December and above 300 K in August. Furthermore, regardless of the month, differences 

of 5 K or higher were observed between the two temperature datasets. These differences seem to be 

mainly due to the SZA differences, observation time differences, and cloud sensing limitations between 

the two datasets, as mentioned by Cho and Suh [25]. 

 

Figure 8. Spatial distribution of COMS LST and MODIS LST data and their differences for 

the two selected days during the summer. 
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Figure 9. Same as Figure 7 except during the winter. 

Table 3 shows the comparison of the results for the validation of the LSTs retrieved by CSW_v1.0 

and CSW_v2.0 with MODIS LST according to the total time. The correlation coefficient was slightly 

improved for the day mode in most months, but in contrast, it was reduced in the night mode in all 

months. In relation to bias and the RMSE, the retrieval performance was improved for the night mode 

in most of the months, but it was reduced for the day mode in some autumn and winter months. In 

general, compared to CSW_v1.0, CSW_v2.0 showed improvements in regards to the correlation (from 

0.988 to 0.989), bias (from −1.009 K to 0.162 K), and RMSE (from 2.613 K to 2.237 K), and it was 

successful at retrieving LSTs at a similar level to MODIS.  
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Figure 10. Scatter plot of COMS LST versus MODIS LST for the selected months.  

(a) Spring/Autumn, (b) Summer, (c) Winter. 
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Table 3. Comparison result between the LST data derived by CSW_v1.0 (CSW_v2.0) and 

MODIS LST data of 2011. Bold characters and red colors indicate the cases improved and 

deteriorated with CSW_v2.0, respectively. 

Mon. 4 5 6 7 8 9 10 11 12 1 2 3 Ave. 

Corr. 
Ver1 0.995 0.995 0.984 0.986 0.968 0.993 0.991 0.991 0.987 0.982 0.990 0.992 0.988 

Ver2 0.995 0.996 0.986 0.990 0.968 0.993 0.992 0.994 0.991 0.983 0.990 0.991 0.989 

Bias 

(K) 

Ver1 −1.506 −2.421 −1.415 −1.220 −0.010 −1.289 0.079 −0.166 −0.004 −1.386 −1.080 −1.692 −1.009 

Ver2 0.224 −0.528 0.743 −0.221 0.717 0.623 1.360 1.089 1.093 −0.393 −0.278 −0.927 0.292 

RMSE 

(K) 

Ver1 2.477 3.056 2.737 2.735 3.175 2.075 1.988 2.136 2.662 3.126 2.506 2.681 2.613 

Ver2 1.854 1.863 2.016 2.033 2.883 1.831 2.134 2.123 2.573 2.724 2.323 2.490 2.237 

4. Summary 

In this study, to resolve the problems of CSW_v1.0 [25], which retrieves LST from the COMS IR1 

and IR2 data, we developed six types of LST retrieval equations (CSW_v2.0) based on the sizes of lapse 

rate and water vapor/aerosol effects.  

For CSW_v1.0, large errors were detected in the cases where superadiabatic lapse rates and inversion 

layers were present and under the conditions of large water vapor and aerosol effects. To solve this 

problem, (1) RTM simulations were performed by dividing the lapse rate condition into day and night 

and (2) six types of LST retrieval equations were developed by classifying the cases as dry, normal, and 

wet depending on the BTD values that consider the effects of water vapor and aerosols. For the pixels 

corresponding to the boundaries between algorithms, a weighted combination algorithm was developed 

and applied to resolve the discontinuities between day/night and LST equations. 

Compared to CSW_v1.0, the upgraded version CSW_2.0 developed in this study maintained high 

levels of correlation between the prescribed LSTs and retrieved LSTs (0.99), had a low bias (−0.01 K), 

and the RMSE improved from 1.41 K to 1.21 K. Particularly, CSW_v2.0 improved the systematic 

problems of CSW_v1.0 that were encountered when inversion layers and superadiabatic lapse rates were 

present and under conditions of large BTD values and surface emissivity differences, and it reduced the 

bias and RMSE by 10–50%. Furthermore, the LSTs were retrieved by applying CSW_v2.0 to the COMS 

data collected on the 15th and 30th day in every month; and as a result of comparing these data with the 

MODIS LSTs, it was confirmed that the LSTs were retrieved within ±5 K regardless of the season, 

day/night, and location. Particularly, CSW_v2.0 resolved many of the problems of CSW_v1.0 that 

involved systematic underestimations of the LST at night. Compared to the COMS LST retrieved with 

CSW_v1.0, those retrieved with CSW_v2.0 showed improvements in the monthly average correlation 

from 0.988 to 0.989, bias from −1.009 K to 0.292 K, and RMSE from 2.613 K to 2.237 K; thus, errors 

were reduced considerably. 

As LST over East Asia can be retrieved over short cycles and with high accuracy using the CSW_v2.0 

developed in this study, it is expected that the proposed method will contribute to accuracy 

improvements in various studies such as those involving urban heat island assessments, air temperature 

estimates, and validations of numerical weather prediction models or climate models. However, 

retrieving the LSTs at dawn and twilight by the weighted combination of day and night LSTs posed a 

problem, i.e., CSW_v2.0 showed decreased retrieval performance compared to CSW_v1.0. Likewise, 
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some conditions (e.g., at night during the autumn and winter) resulted in a lowered retrieval performance 

compared to CSW_v1.0. Therefore, it will be necessary to develop a more elaborate LST retrieval 

algorithm to retrieve the LST within ±2 K in future studies; such a level is required in various LST data 

application fields such as validation of numerical simulations, agriculture, urban heat-island 

assessments, and evapotranspiration estimations. 
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