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Abstract: Changes in biodiversity owing to vegetation degradation resulting from widespread 

urbanization demands serious attention. However, the connection between vegetation 

degradation and urbanization appears to be complex and nonlinear, and deserves a series of 

long-term observations. On the basis of the Normalized Difference Vegetation Index (NDVI) 

and the image’s digital number (DN) in nighttime stable light data (NTL), we delineated the 

spatiotemporal relations between urbanization and vegetation degradation of different 

metropolises by using a simplified NTL calibration method and Theil-Sen regression. The 

results showed clear and noticeable spatiotemporal differences. On spatial relations, rapidly 

urbanized cities were found to have a high probability of vegetation degradation, but in reality, 

not all of them experience sharp vegetation degradation. On temporal characteristics, the 

degradation degree was found to vary during different periods, which may depend on different 

stages of urbanization and climate history. These results verify that under the scenario of a 
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vegetation restoration effort combined with increasing demand for a high-quality urban 

environment, the urbanization process will not necessarily result in vegetation degradation on 

a large scale. The positive effects of urban vegetation restoration should be emphasized since 

there has been an increase in demand for improved urban environmental quality. However, 

slight vegetation degradation is still observed when NDVI in an urbanized area is compared 

with NDVI in the outside buffer. It is worthwhile to pay attention to landscape sustainability 

and reduce the negative urbanization effects by urban landscape planning. 

Keywords: urbanization stage; vegetation variation; nighttime light; NDVI; Theil-Sen slope 

 

1. Introduction 

In the past 50 years, while cities have experienced population growth and land consumption, the pressures 

on vital ecosystem functions have escalated rapidly [1,2]. Urbanization, which means a population shift from 

rural to urban areas, is often accompanied by urban expansion and land use change. To interpret the land 

consumption pressures, the impact of urbanization has been documented in the growing literature on the 

urban–rural gradient, which shows consistent changes in species richness and species composition [3–5]. 

With worldwide land cover change, biogeochemical cycles, hydrologic systems, and climate and biodiversity 

change driven by urbanization, increasing numbers of ecologists have accepted that urban areas are hot 

spots that drive environmental change on multiple scales [6]. These hot spots are estimated not only to 

be current threats for ecosystems but also will probably last for a long period in developing nations. The 

global urban population will reach 5 billion by 2030 [7] and will increase by 2.7 billion, nearly doubling 

today’s urban population of 3.4 billion by 2050 [8], which indicates that the dramatic urbanization 

phenomenon will continue. Therefore, the threat of changes in biodiversity with an increase in global 

urbanization is a concern that needs to be brought to the foreground [9].  

The total vegetation in urban and suburban areas is an important indicator of urbanization pressure 

on biodiversity, because plants can be lost during either the initial habitat transformation or the landscape 

fragmentation processes [5]. Vegetation degradation, which means a reduction in the available biomass, 

often represents as a decline in the vegetative ground cover. Vegetation degradation triggered by a change 

of land cover to impervious surfaces in urban areas may result in eco-environmental threats with net 

primary production reduction and surface temperature variation [10,11]. However, some opposite 

perspectives have recently put forward a different relation, which suggest some urbanization factors can 

enhance urban vegetation activity [12]. The plant growth in urban areas might be promoted by warmer 

temperature and greater tropospheric CO2 concentration [13,14]. Because the value of urban ecosystem 

services has been deeply rooted in landscape management [15], green infrastructure investments are 

supported and some negative urbanization effects are mitigated by landscape planning [16,17]. On balance, 

the interconnection between vegetation degradation and urbanization seems to be a complex and nonlinear 

system [12]. 

Accordingly, a hypothesis can be proposed that the spatiotemporal relations between urbanization 

and vegetation degradation are diversified and may relate to the stage of urbanization and geographical 

location. However, a systematic evaluation of the spatiotemporal trends of vegetation activities across 
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multiple cities over large areas is still lacking [12]. The Normalized Difference Vegetation Index (NDVI) 

has been adopted as an effective index for describing the dynamics of urban vegetation [18,19]. As a remote 

sensing index, NDVI can indirectly estimate gross and net primary productivity, biomass, and green leaf 

area in a variety of grassland and forest ecosystems [20–24]. If a regular distribution of NDVI variation 

rate on the urban–rural gradient exists, the landscape is likely to experience a negative effect related to 

urbanization on vegetation. Therefore, in this article, the NDVI variation rate is adopted as a vegetation 

degradation indicator that can be extracted across multiple cities over large areas. 

The Defense Meteorological Satellite Program (DMSP)/Operational Line-Scan System (OLS) nighttime 

stable light data (NTL) s been demonstrated to be an effective data source for mapping urban expansion 

and urbanization dynamics at a large spatial scale [25–30]. NTL not only can be applied to urban area 

extraction, but also widely reflect population density, economic activity, and energy use in an urban  

area [31–35]. Therefore, the image’s digital number (DN) may take on a growing trend in rapidly urbanized 

areas of developing countries. However, the DN may seem relatively stable in the core urban areas of 

developed countries, because of saturation at the highest value. To find the differentiation of nighttime 

light change among various cities, urbanization trends derived from DN were calculated and compared 

with the NDVI variation rates in the same geographical extent. 

In light of the hypothesis that the spatiotemporal relations between urbanization and vegetation 

degradation should show differences, the study presented here contains four major parts. (a) To develop a 

simplified calibration method on NTL series to extract the urbanization area of the world’s metropolises; 

(b) To detect the variation trends of vegetation and urbanization by Theil-Sen regression [36,37]; (c) To 

classify the metropolises and differentiate between different relations in the variation trends; (d) To 

discuss the impact of human factors on vegetation changes in urbanization. 

2. Data 

2.1. Data Sources 

A long-term NDVI series was obtained from the Vegetation Index and Phenology (VIP) Research Lab at 

the University of Arizona, with a spatial resolution of 0.05° (approximately 5.6 km). For this data set, 

multisensor data sets include the Advanced Very High Resolution Radiometer (AVHRR), the Moderate 

Resolution Imaging Spectroradiometer (MODIS), and the Visible Infrared Imager Radiometer Suite 

(VIIRS), and daily surface reflectance data were fused to build a homogeneous vegetation cluster  

model [38]. Then, monthly MODIS NDVI composed by MOD09GA as the MODND1M data set was 

downloaded from the Geospatial Data Cloud, Chinese Academy of Sciences, as a cross-reference to VIP 

NDVI. The maximum value composite (MVC) method was then adopted to derive the annual maximum 

NDVI in each year [39,40]. Version 4 of the NTL data was obtained from National Geophysical Data 

Center at the National Oceanic and Atmospheric Administration , with the background noise in the 

composite defined as zero and the final data values ranging from 1 to 63 [41]. The NTL data set included 

data acquired by six different DMSP satellites: F10, F12, F14, F15, F16, and F18 with 30-s grids, spanning 

−180° to 180° longitude and −65° to 75° latitude [42]. Furthermore, the global land cover map, 

GlobCover 2009, was downloaded from European Space Agency (ESA) as a cross reference to NTL 

data. The data specifications are listed in Table 1. 
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Table 1. Data specifications of the four data sets adopted in this study. 

Products and Sensors Time Period Resolution Data Source Processing 

DMSP/OLS NTL 1992 to 2012 Yearly/30-s grids 

National Geophysical Data Center at the 

National Oceanic and Atmospheric 

Administration 

Averaging the pixel values 

of each city’s urbanization 

area to derive the annual DN 

VIP NDVI 
June 1981 to 

December 2010 
Monthly/5.6 km 

Vegetation Index and Phenology Research 

Lab at the University of Arizona 

MVC method to derive the 

annual maximum NDVI 

MODIS MODND1M NDVI 
February 2000 to 

December 2010 
Monthly/1 km 

Geospatial Data Cloud,  

Chinese Academy of Sciences 

MVC method to derive the 

annual maximum NDVI 

GlobCover 2009 2009 Single year/300 m European Space Agency (ESA) Visually compare with NTL 

2.2. Study Areas 

We selected 50 large metropolises with wide areas to represent the most clearly urbanized places around 

the world. To diversify the distribution, we dispersed the metropolises across the continents (Table 2). The 

city selection was based on a comprehensive qualitative recognition for population, economy, climate, 

country, and distance from each other. If a number of big cities were in accordance with the climate condition 

or economic level, only the best known city was selected. For example, Mumbai, Dhaka, Karachi, and 

New Delhi all are similar metropolitan areas, but New Delhi is best known in South Asia because it is 

the capital of India. Therefore, representativeness was an important factor in our selection. Finally, no 

more than three metropolises were chosen from the same country, except for the United States, which 

includes 14 metropolitan areas with large tracts of built-up land and high nighttime light dispersed around 

the locale. 

Table 2. The distribution of the selected metropolises. 

Continent Metropolis 

Asia 
Beijing, Shanghai, Guangzhou, Taipei, Singapore, Bangkok, Dubai, New Delhi, Tehran, 

Tokyo, Kyoto, Seoul 

Europe 
London, Liverpool, Berlin, Athens, Lisbon, Madrid, Barcelona, Rome, Milan, Paris, 

Brussels, Stockholm, Moscow, Saint Petersburg, Istanbul 

North America 
Mexico City, New York, Miami, Houston, Dallas, Phoenix, Atlanta, Los Angeles, St. Louis, 

Washington D.C., Cleveland, Detroit, Boston, Chicago, Minneapolis, Toronto, Montreal 

South America Buenos Aires, Sao Paulo, Rio de Janeiro 

Africa Johannesburg, Cairo 

Oceania Melbourne 

The spatial extent of urbanization is usually dependent on data source and research goals. Two items 

should be noted that DMSP/OLS cannot precisely detect impervious surfaces in urban environments, 

and the urbanization processes can occur outside the built-up land as well. In this article, for the sake of 

vegetation restoration analysis, the boundary should be a little broader than the size of the impervious 

surface. We set the DN in the F182012 descend from 63 at 1 interval and compared the area with land 

cover images from GlobCover 2009 or Google Earth. The stepwise comparison showed that when the DN 

descended to 50, the area contained all the continuous impervious surface area in the 50 metropolises. So 
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in this article, DN > 50 in F182012 was set as the urbanization boundary. It was a little larger than the 

impervious surface area, with relatively high population/economic density. By this extraction, some 

metropolises comprise more than one large city and virtually perform as holistic urban clusters. For example, 

New Delhi, Shanghai, Guangzhou, and Taipei, respectively, represent New Delhi and Delhi, Shanghai 

and Suzhou, Guangzhou and Shenzhen, and Taipei and Xinzhu. That is to say, we only take the name of 

the largest city to name the metropolitan areas for easy recognition in this article (Figure 1). Then the 

annual DN series of the 50 metropolises were built by averaging the pixel values in each city’s 

urbanization area where DN > 50 in F182012. 

 

Figure 1. The boundary of three metropolises: (a) DMPS/OLS NTL in 2012; (b) GlobCover 

2009 land cover map. The legends of the land cover types were merged for the display;  

(c) Image from Google Earth in 2014. 

3. Methods 

NTL data cannot be used directly to extract the dynamics of urbanization, because the DN value of NTL 

data is the average value from archived data without any on-board calibration [30,43]. To confirm the 

continuity and comparability of NTL data, former research was consulted, and the intercalibration method 

was improved to correct the data systematically for urbanization detection [30,42–44]. In this article, a 

simplified intercalibration method was used before the DN yearly series was generated. In the trend 

judgment part, the former research indicated that the unbiased predictor of the Theil-Sen approach was 

suggested as a potential replacement for ordinary least squares for linear regression in remote sensing 

applications [45]. Therefore, the Theil-Sen median trend is used in this article to quantify the variation of 

NDVI and DN. Finally, in the overlay analysis part, after the trend maps are overlaid and the different 
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urbanization types are classified, we can determine whether the urbanization process definitely results 

in vegetation degradation. This procedure can be simplified as in Figure 2. 

 

Figure 2. The flowchart for this research. 

3.1. Calibration and Composition of NTL 

DN values from the same satellite for different years or from different satellites for the same year often 

show discrepancies or abnormal fluctuations, which are partly attributable to unstable spill light [30]. As 

Figure 3 shows, the post-urbanization stage for New York and swift urbanization stage for Beijing are 

evident. However, in Melbourne and Rio de Janeiro, the trend is in fluctuation and is confused because 

increasing and decreasing trends may appear during the same period from different satellites. To make 

the result credible, intercalibration is needed to detect the brightness changes across the time series [46]. 

Faced with this obstacle, Elvidge et al. (2009, 2014) developed a second-order regression model, with 

F121999 used as the reference composite and with Sicily chosen as the reference region [43,46]. The form 

of the calculation is Y = C0 + C1X + C2X2, and calculated values that run beyond 63 are truncated at 63. 

Although some issues are debatable, it is generally reasonable to be focused on the whole statistical 

value rather than particular pixels [33]. 

After comparing the 50 metropolitan areas, we found the DN in New York most stable. Because the 

spatial extent of urbanization has been extracted by F182012, and most of the pixel values in this extent 

are higher than 30 in the former years, F182012 is used as the reference composite, and DN > 30 in New 

York is chosen as the reference region. Also, because we only deal with data ranging from 30 to 63 
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instead of 0–63, a second-order regression model may be insufficient. The inflection point in the 

quadratic curve may not appear in this half of the data range. In fact, we find no significant difference 

between the R2 from the second-order regression model and the first-order regression model. Thus we 

simplified the calculation as Y = aX + b, where X means the DN in the NTL data set and Y means the 

DN after intercalibration. The intercalibration applied on the basis of the offsets and coefficients is listed 

in Table 3. 

Figure 3. Examples of DN values in the urbanization area from different satellites before 

calibration during 1992–2012. 

Table 3. Coefficients of the simplified linear regression models for NTL from 1992 to 2012. 

Satellite Year a b R2 Satellite Year a b R2 

F10 

1992 0.50 26.61 0.74 

F15 

2000 0.57 23.28 0.83 

1993 0.48 28.80 0.75 2001 0.64 19.89 0.84 

1994 0.54 23.70 0.72 2002 0.70 15.93 0.87 

F12 

1994 0.52 26.46 0.82 2003 0.52 27.78 0.88 

1995 0.60 21.64 0.79 2004 0.50 29.38 0.89 

1996 0.63 19.66 0.81 2005 0.51 29.03 0.88 

1997 0.52 26.30 0.77 2006 0.46 32.07 0.92 

1998 0.53 26.38 0.79 2007 0.44 33.15 0.88 

1999 0.73 13.71 0.82 

F16 

2004 0.51 27.41 0.82 

F14 

1997 0.44 32.16 0.84 2005 0.50 29.57 0.90 

1998 0.47 31.24 0.86 2006 0.53 27.54 0.89 

1999 0.49 29.30 0.87 2007 0.71 16.16 0.89 

2000 0.84 7.65 0.88 2008 0.55 25.79 0.89 

2001 0.62 20.32 0.83 2009 0.65 18.75 0.84 

2002 0.51 27.24 0.79 
F18 

2010 1.21 −15.91 0.91 

2003 0.62 21.21 0.87 2011 0.56 23.71 0.76 
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After the intercalibration, intra-annual composition and inter-annual series corrections are common 

methods used to remove any unstable or inconsistently lit pixels [30]. Because these pixels may disturb 

the stability of DN series, we treat them as noisy pixels to be eliminated. We define that the conditional 

statement DNn-1 − DNn ≥ 3 and DNn+1−DNn ≥ 3 (n ∈ [1993, 2011]) is probably the noise. There is a low 

probability that the DN from last year and next year are close, and the intervals between the current year 

and these before and after years change sharply. This finding is based on the concept of urbanization as 

a successive process, and the present urbanization stage is related to the past and future. The moving 

average method is adopted to smooth the series, with three years in succession adopted by an inverted 

sequence that started from 2011. The noise pixel would be replaced by the mean value of the other DN 

on the same position in the before and after years. The not-noise pixel would get the mean value of all 

DN on the same position in these three years. Finally, some examples of the smooth result are shown in 

Figure 4. By calibration, the tendency may seem more reasonable than the initial NTL data. 

Figure 4. Examples of DN values of the urbanization area from different satellites after 

calibration during 1992–2012. F10–F18 express the original DN value, and the “average” 

line was the final value after calibration. 

3.2. Variation Trend Judgement 

We calculated trends on the basis of annual DN and annual maximum NDVI by Theil-Sen slope and 

used the Mann-Kendall method to test the significance. The Theil-Sen slope estimator is the median of 

the slopes calculated between observation values at all pairwise time steps [47]. It is calculated between 

observations Xj and Xi at pairwise time steps tj and ti [48]: 

݈݁ݏ ൌ ݊ܽ݅݀݁ܯ ቆ ܺ െ ܺ

ݐ െ ݐ
ቇ (1)

where for NDVI variation, slope > 0 means restoration and slope < 0 means degradation. 
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Similar to the Theil-Sen procedure, the Mann-Kendall test examines the slopes between all pairwise 

combinations of samples, where each data point is treated as the reference for the data points in successive 

time periods [47]. The indicator of Kendall’s S is defined as [49] 

ܵ ൌ   ݔሺ݊݃݅ݏ െ ሻݔ



ୀାଵ

ିଵ

ୀଵ

 (2)

൫x݊݃݅ݏ െ ൯ݔ ൌ ቐ

1 ݂݅ ݔ െ ݔ ൏ 0
0 ݂݅ ݔ െ ݔ ൌ 0
െ1 ݂݅ ݔ െ ݔ  0

 (3)

where n is the length of the time series, and xi and xj are observations at time i and j, respectively. When 

there is independent and identical distribution between data values, then the variance is given  

by [50,51]: 

Varሺܵሻ ൌ
݊ሺ݊ െ 1ሻሺ2݊  5ሻ

18
ൌ σଶ (4)

where	σ	is the standard deviation. Then the equation for Mann-Kendall significance (Z) is computed by  

ܼ ൌ

ە
ۖ
۔

ۖ
ۓ

S െ 1

ඥܸܽݎሺܵሻ
ݎ݂ ܵ  0

0 ݎ݂ ܵ ൌ 0
ܵ  1

ඥܸܽݎሺܵሻ
ݎ݂ ܵ ൏ 0

 (5)

where |ܼ|  1.96 (equivalent to p	 0.05) is judged as significant. 

4. Results 

4.1. Vegetation Variation Trend  

Evaluating global long-term vegetation trends on the basis of NDVI is not a new topic in Earth 

observation studies [52,53]. However, when the trend is calculated in different periods, the results may 

vary significantly. The vegetation degradation and restoration trends during five periods are calculated by 

the Theil-Sen slope estimator and the Mann-Kendall test (Figure 5). Although the Earth has experienced 

wide vegetation variation during 1981 to 2010, non-significant variations appeared to be the main process 

in the later stage from 1996 to 2010. The significant degradation is remarkable in Outback Australia and 

Southwest Asia. However, because desert is the main cover type in these regions, the absolute quantity of 

greenness does not change a great deal. No strong evidence indicates that the degradation in these regions 

have direct relations to urbanization. The east of America, west of Europe, and east of China, where  

high-density areas consisting of cities are distributed among large volumes of cultivated land, experienced 

vegetation restoration during 1981–1995 (Figure 5a,d). Many regions have experienced a vegetation 

restoration process despite a large number of highly urbanized cities in these regions. However, it is 

unclear whether this restoration has some relation to urbanization. 
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Figure 5. Global land vegetation degradation and restoration trends indicated by  

NDVI variation: for (a) 1981–2010; (b) 1986–2010; (c) 1991–2010; (d) 1996–2010; and  

(e) 2001–2010. 

4.2. Light Variation Trend 

One the basis of the annual DN series from 1992 to 2012, the urbanization trend of every metropolis 

can be calculated by the Theil-Sen slope (Table 4). To delineate the urbanization stages, we divided them 

into five classifications by urbanization speed: Rapid, Relatively Fast, Moderate Speed, Relatively Slow, 

and Sluggish. After ranking the slope, we established that each class has 10 cities in a high-low slope 

sequence. Most of the metropolitan areas in the Rapid classification are in Asia, whereas a large number 

of North America and Western Europe metropolises have Relatively Slow or Sluggish classifications. As 

Figure 6 shows, the urbanization recognized by remote sensing clearly varies. In the post-urbanization 

stage of London and Boston, the urban sprawl process is weak, which indicates that their economic growth 

does not rely on urban expansion. However, the swift urbanization stage in East Asia indicates that the 

economic growth in these cities is accompanied by a substantial increase of impervious surfaces in 

suburban areas. As the land cover type changes severely, vegetation degradation may be difficult to avoid 

in this urbanization stage. 
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Figure 6. Urban expansion in several samples from 1992 to 2012. The definition of urbanization 

threshold is DN ≥ 50 after calibration, and the extent in the layout is only for the core area of 

the metropolis or the urban clusters. Guangzhou signifies the Pearl River Delta urban clusters. 

Table 4. Classification of the urbanization trend of metropolises during 1992–2012. Each 

class has 10 cities in a high-low slope sequence. 

Classification Metropolis or the Urban Clusters Range of Slope 

Rapid (R) Shanghai, Dubai, Beijing, Cairo, Guangzhou, New Delhi, Bangkok, Tehran, Phoenix, Istanbul 0.76–1.58 ** 

Relatively Fast (RF) Lisbon, Singapore, Seoul, Moscow, Taipei, Saint Petersburg, Madrid, Atlanta, Dallas, Sao Paulo 0.51–0.74 ** 

Moderate Speed (MS) 
Athens, Milan, Johannesburg, Rome, Houston, Melbourne, Mexico City, Buenos Aires, Barcelona, 

Rio de Janeiro 
0.25–0.51 ** 

Relatively Slow (RS) Berlin, Los Angeles, Washington D.C., St. Louis, Chicago, Minneapolis, Kyoto, Miami, Tokyo, Paris 0.13–0.21 ** 

Sluggish (S) 
Toronto, Detroit, Cleveland 0.08–0.13 ** 

Brussels, Liverpool, London, Montreal, Boston, Stockholm 0–0.08 

** Significance at the p < 0.05 level. The slope was calculated by the Theil-Sen method, and in the Mann-Kendall 

method, 1.96 was set as the threshold of significance. 

4.3. Correlation between Light and Vegetation 

The mean value of NDVI for all the pixels in each urbanization area was calculated during 1992–2010, 

and the relations between mean NDVI and mean DN were diverse. Four samples in Northeast Asia show 
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that when light increases, the variation trend of mean NDVI is uncertain (Figure 7). For these four cities, 

Tokyo’s classification of urbanization trend is Relatively Slow; Seoul’s classification is Relatively Fast, 

with the increase mainly during 1992–2002; and the classification of Beijing and Shanghai, which 

experienced high-speed urban growth, is Rapid. As the scatterplot shows, a positive correlation exists in 

Tokyo, but a negative correlation exists in Shanghai, whereas in Seoul and Beijing, the two indicators are 

nearly uncorrelated. The correlations between mean NDVI and mean DN among the world’s metropolises 

in each year are drawn in Figure 8. In the early years, because many cities did not have such high DN, high 

positive correlations appear, which mean the higher the light, the more the vegetation biomass. This finding 

maybe attributed to the location of high DN cities in warm regions with the climate benefits vegetation 

growth, whereas more evidence is needed to support this conjecture. Nevertheless, the positive correlation 

declined and negative correlation appeared in later periods, when cities have relatively higher DN value. 

This phenomenon reflects that the relation between urbanization and vegetation may vary not only in 

different regions but also in different periods. 

Figure 7. The relation between mean NDVI and mean light in the urbanization areas  

during 1992–2010 in some Northeast Asia cities. Shanghai signifies the Yangtze River Delta 

urban clusters. 
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Figure 8. The correlation between mean NDVI and mean DN in the urbanization areas 

during 1992–2010 among all the 50 metropolises. 

5. Discussion 

5.1. Delineating the Correlations by Statistical Methods 

To further detect the temporal correlation between vegetation degradation and urbanization, three periods 

are separated: 1981–2010, 1991–2010, and 2001–2010. When the percent of vegetation degradation pixels 

is calculated in the period 1991–2010 for the defined urbanization area, the degradation percent will drop 

when the urbanization area is enlarged, which reveals that some large cities may experience vegetation 

restoration rather than degradation. However, the correlation is relatively weak (Figure 9a). Furthermore, 

the correlation between the percent of vegetation degradation pixels and the slope of light variation trend 

is also weak, which means a higher urbanization speed possibly causes more vegetation degradation on 

a macroscopic scale (Figure 9b). This finding verifies that the urbanization process is not necessarily 

resulting in vegetation degradation to a great extent. The climate history and urbanization stage may 

jointly contribute to the uncertain correlation. 

Figure 9. The relations among urbanization area, percent of degradation pixel, and slope of 

light in all 50 metropolises. 
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To detect the background vegetation variation trend, a 100-km buffer was created from the boundary 

of every metropolis. Then, the percent of vegetation degradation/restoration between the urbanization area 

and the outside buffer was contrasted, and the top 10 vegetation variation percentages during different 

periods were listed (Tables 5 and 6). During the period 1981–2010 (Table 5), some metropolitan areas 

underwent obvious vegetation degradation, but others experienced a vegetation restoration process. The 

degradation may happen in the areas of rapid or relatively fast urbanization, whereas restoration likely 

happens in areas of moderate or slow urbanization. However, some exceptions exist. For example, 

Melbourne and Kyoto underwent obvious vegetation degradation, whereas Moscow and Atlanta experienced 

vegetation restoration processes. These instances maybe attributed more to global climate change than to 

landscape transformation [54,55]. In addition, during the period 1981–2010, the degradation percentages 

in outside buffers are much less than the percentage in the urbanization areas, whereas in most of the 

high restoration cities, the restorations in the urbanization areas are slower than those in outside buffers. 

This phenomenon may be explained in two ways. On the one hand, the characteristics of vegetation 

variation may vary significantly at different urbanization speeds. The fast urbanization cities have a 

higher probability of vegetation degradation. On the other hand, some fast urbanization cities show high 

vegetation restoration. This observation reveals that prevention of vegetation degradation in fast 

urbanization processes is possible. 

Table 5. The top 10 cities with the highest variation percentages in the urbanization area and 

the comparison with outside buffers from 1981 to 2010. 

Name 
Degradation 

Inside 

Degradation 

Outside 

Slope 

(Class) 
Name 

Restoration 

Inside 

Restoration 

Outside 

Slope 

(Class) 

Guangzhou 92.7% 6.9% 0.99 (R) Berlin 98.0% 98.8% 0.21 (RS) 

Istanbul 90.2% 16.5% 0.76 (R) New York 89.1% 98.4% 0.10 (S) 

Tehran 89.5% 69.1% 0.85 (R) Moscow 86.8% 99.4% 0.58 (RF) 

Madrid 88.2% 55.9% 0.54 (RF) Brussels 86.2% 95.6% 0.08 (S) 

Phoenix 87.2% 84.2% 0.77 (R) Atlanta 84.9% 99.8% 0.53 (RF) 

Singapore 86.1% 9.5% 0.71 (RF) London 84.3% 94.9% 0.02 (S) 

Melbourne 82.4% 4.6% 0.38 (MS) Washington D.C. 82.1% 98.6% 0.20 (RS) 

Shanghai 79.6% 14.5% 1.58 (R) Boston 81.5% 97.2% 0.01 (S) 

Kyoto 70.5% 13.8% 0.15 (RS) Stockholm 78.8% 91.9% 0.00 (S) 

Bangkok 70.0% 10.3% 0.85 (R) Minneapolis 75.8% 99.5% 0.17 (RS) 

During the period 2001–2010, with dominant restoration globally observed, the apparent variation is 

different from the period 1981–2010. From the individual cases (Table 6), most of the variation percentages 

are higher in the urbanization areas than in the outside buffer. The top 10 restoration cities are not always 

slow-speed urbanization areas with strong human impact, but the dominant degradation still usually 

happens in high-speed urbanization cities. On the one hand, the degradation percentage in the urbanization 

area is consistently higher than the outside buffer in the top 10 degradation cities. On the other hand, in 

some cities, the restoration percentage can reach more than 95%, but most of the percentage in the outside 

buffer cannot reach that high level. These phenomena may be explained by the positive human effect on 

urban vegetation, such as landscape planning for more green space and regular irrigation of the parks. In 
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addition, a large area of cultivated land in some buffers may have a different variation process compared 

with natural vegetation in other buffers, which results in a complex variation principle. 

The result shows clearly that the effect of human impact on vegetation varies greatly. Spatiotemporal 

difference cannot be ignored when detecting this effect. On temporal characteristics, the degradation trend 

from the urbanization process is unstable in time series, and the speed of the urbanization process effect 

on vegetation degradation percentage is difficult to verify. On spatial relations, geographical location may 

bring consistency to the adjacent metropolis. The adjacent pairs of Berlin and Brussels and New York and 

Boston both represent similar vegetation variation trends. This finding means that a homogenous climate 

may strongly influence the vegetation variation direction. 

Table 6. The top 10 cities with the highest variation percentages in the urbanization area and 

the comparison of outside buffers from 2001 to 2010. Dubai is the unique city with mean 

NDVI < 0.2. 

Name 
Degradation 

Inside 

Degradation 

Outside 

Slope 

(Class) 
Name 

Restoration 

Inside 

Restoration 

Outside 

Slope 

(Class) 

Shanghai 78.5% 38.3% 1.58 (R) Berlin 100.0% 90.0% 0.21 (RS) 

Houston 65.9% 28.8% 0.39 (MS) Moscow 100.0% 96.1% 0.58 (RF) 

Singapore 59.0% 51.5% 0.71 (RF) Athens 100.0% 88.5% 0.51 (RF) 

Buenos Aires 57.7% 53.9% 0.29 (MS) Johan-nesburg 99.4% 92.8% 0.44 (MS) 

Mexico City 52.2% 31.1% 0.34 (MS) Paris 99.3% 96.0% 0.13 (RS) 

Melbourne 39.5% 5.5% 0.38 (MS) Rio de Janeiro 98.9% 98.7% 0.25 (MS) 

Bangkok 38.4% 23.3% 0.85 (R) Sao Paulo 95.9% 93.7% 0.51 (RF) 

St. Louis 36.8% 10.8% 0.20 (RS) New York 95.3% 91.1% 0.10 (S) 

Guangzhou 36.6% 44.0% 0.99 (R) Detroit 94.7% 97.8% 0.11 (S) 

Beijing 35.1% 12.3% 1.14 (R) Barcelona 93.7% 96.7% 0.29 (MS) 

5.2. Confirmation of the Relation by Different NDVI Data Sets 

The temporal window and grain size of NDVI may influence the credibility of the result. The conclusion 

should be verified at different vegetation states. To explore the credibility, MODIS NDVI with 1-km 

resolution was adopted as a cross-reference data set, and the annual mean values of the pixels have been 

extracted in Figure 10. Although the values are different between the two data sets of MODIS and VIP, 

the change tendency in different years is consistent in Beijing’s urbanization area (Figure 10a). With the 

rapid increase of DN, the ΔMean NDVI calculated by mean NDVI in urbanization areas minus mean 

NDVI in outside buffers reflects a slight vegetation degradation (Figure 10b). However, the variation 

difference between Beijing’s urbanization area and the outside buffer is not distinct. The trend of MODIS 

NDVI or VIP NDVI reflects a slightly increased tendency both in the urbanization area and in the outside 

buffer during 2000–2010. This phenomenon has two implications. On the one hand, the outside buffer in 

Beijing was in a dense and highly vegetated state. The difference between the curves of the two data sets 

is not obvious, which means the vegetation state has been properly considered. On the other hand, on the 

grain size of 1 km and temporal window of 2000–2010, although the urbanization process does not 

definitely result in regional vegetation degradation under a vegetation restoration effort, slight vegetation 

degradation exists when NDVI in the urbanization area is compared with NDVI in the outside buffer 



Remote Sens. 2015, 7 2082 

 

(Figure 10b). This result demonstrates that although rapidly urbanized cities have not experienced sharp 

vegetation degradation, slight vegetation degradation still exists and cannot be ignored. 

(a) (b) 

Figure 10. The vegetation change trends in different statistical objects or data sets for a case 

in Beijing. (a) Difference between the mean NDVI from two data sets of MODIS and VIP 

and (b) variation of ΔNDVI (mean NDVI in urbanization area minus mean NDVI in outside 

buffer) and DN in urbanization area. 

5.3. Urbanization Stage and the Effect on Night Light and Vegetation 

The appearance of urbanization can be described as finance aggregation and dwelling expansion, 

which are both related to the night light variation. However, the relation is not simple. As Elvidge (2014) 

described, two axes exists, with positive or negative correlation between GDP and population [46]. When 

the negative correlation appears, the light will shift to uncertainty. Because GDP and population are not 

in synchronization, and finance aggregation does not strictly rely on the landscape pattern, the direct 

driving force on light variation in each city is diverse. As Figure 11a shows, if GDP contributes more than 

population to light growth, the dominant driving force is finance aggregation, or else the dwelling expansion 

will be the main impact. In developing countries such as China, a large number of rural dwellers’ migrate to 

cities, resulting in significant urban expansion. On the contrary, in some developed countries, such as 

the United States, Britain, and Japan, the landscape pattern is relatively stable and finance aggregates 

without serious land cover changes. If economic depression takes place, the light may synchronously 

decline without the landscape pattern changing sharply. Thus the driving force is only drawn on the first 

quadrant. In addition, if GDP increases with a decrease in population, the light variation trend may be 

more similar to the tendency of GDP. Because electric power consumption at night is an economic 

indicator, the correlation between GDP and DN has already been confirmed [33,35]. 

As vegetation activity is more likely to decrease in the circumference of the core urban area, the positive 

effects generated by the urban environment should be emphasized [12,56]. Liu et al. (2014) separate the 
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mechanism model of vegetation change in built-up areas into an early stage and an advanced stage, labeled, 

“aggregation” and “expansion,” respectively (Figure 11b) [57]. In the urban expansion stage, the severely 

changing landscape pattern may result in vegetation biomass decrease, and the impervious surface is 

increased to support the dwelling space requirement. Nevertheless, although the space requirement also 

exists in the urban aggregation stage, the negative effect will be countered by the positive demand for 

urban green space. Consequently, the degradation will convert to restoration with the increased demand 

for quality in the urban environment. However, the restoration process will not last forever, and the biomass 

in urban areas will never be as rich as forest. The concept that “urban vegetation variation is the outcome 

of positive urbanization effect minus negative urbanization effect” is reasonable in describing the relation 

between urbanization and vegetation degradation [57].  

It is important to raise public awareness about how urbanization has an impact on global land-use 

change [58]. However, the ecological effect triggered by urbanization may be difficult to define, because 

the results depend on the spatiotemporal scale [59]. The results of our study confirm that, at least for urban 

biodiversity quantified by vegetation indicator on a macro scale, improving the sustainability and resilience 

of the urban ecosystem function is possible [60]. Because the urbanization process would not necessarily 

result in regional vegetation degradation, economic growth may not be adopted as an excuse for urban 

biodiversity loss. It is worthwhile to pay attention to landscape sustainability and reduce the negative 

urbanization effect by urban landscape planning. 

 

Figure 11. Urbanization stage and the effect on night light and vegetation: (a) relation 

between urbanization stage and light [46], and (b) relation between urbanization stage and 

vegetation [57]. 

6. Conclusions 

In this study, we have developed a new approach for delineating the different relations between 

vegetation degradation and urbanization spatially and temporally through the integrative use of NTL data 

and NDVI data. The result verifies that the urbanization process would not necessarily result in  

large-scale vegetation degradation. The correlations between urbanization and vegetation variation are 

diversified in individual cases. Rapid urbanization cities have a high probability of vegetation degradation. 
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However, although cities in Asia experienced the most rapid urbanization, some cities there did not 

undergo sharp vegetation degradation. Furthermore, with temporal scale variation, the degradation 

degree varies, which reflects different urbanization stages and climate history. Consequently, we relate 

the urbanization effect on night light and vegetation to urbanization stage. In the urban expansion stage, 

the vegetation biomass decrease may be significant. However, when the urbanization turns to an urban 

aggregation stage, positive demand of urban green space may increase. Therefore, economic growth may 

not be adopted as an excuse for urban biodiversity loss. By effective urban landscape planning, urban 

vegetation restoration would replace the degradation, which may contribute to landscape sustainability. 

Our approach has a few limitations. First, the spatial resolution of the VIP data set limits the study to 

focusing on big metropolises rather than small cities. Second, the limitations from coarse resolution and 

the spillover effect indicate that the accuracy of urbanization information extracted using NTL data 

requires further improvement [61–63]. The new NPP-VIIRS data, which has overcome the relatively 

low spatial resolution, the lack of onboard calibration and the pixel saturation issue in DMSP/OLS data, 

is recommended for obtaining higher-quality urbanization information [64]. Third, the lighting reference 

area, New York, has been largely stable over time, but that stability does not mean there is no light 

growth. Fourth, the vegetation variation trend may rely on the NDVI data set, so the trend at the pixel 

level is, in a sense, uncertain. Nevertheless, the long-term temporal trends of the data set are suitable and 

unlikely to be replaced by other data sets. The conclusions are credible on the precondition that the result 

of this article only focuses on the macro scale. Thus, a multi-scale analysis using different data sources 

will be helpful in reducing uncertainty in future studies. 
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