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Abstract: We recruit an online labor force through Amazon.com’s Mechanical
Turk platform to identify clouds and cloud shadows in Landsat satellite images.
We find that a large group of workers can be mobilized quickly and relatively
inexpensively. Our results indicate that workers’ accuracy is insensitive to wage,
but deteriorates with the complexity of images and with time-on-task. In most
instances, human interpretation of cloud impacted area using a majority rule was more
accurate than an automated algorithm (Fmask) commonly used to identify clouds and
cloud shadows. However, cirrus-impacted pixels were better identified by Fmask
than by human interpreters. Crowd-sourced interpretation of cloud impacted pixels
appears to be a promising means by which to augment or potentially validate fully
automated algorithms.
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1. Introduction

The detection of clouds and cloud shadows (CCS) is an important initial step for many analyses based
on Landsat imagery. In recent years, strides have been made towards the development of automated,
computer-based methods to accomplish this task (e.g., [1–3]). While these automated algorithms have
been shown to process Landsat scenes with high levels of speed and accuracy, there remains room for
human CCS interpretation in various stages of the analysis.

For example, human interpreters will still be needed to prepare reference images, which can then be
used as benchmarks to assess the accuracy of automated tools. Furthermore, in some cases a simple
binary judgment for the presence or absence of CCS may be all that is needed. This information is
readily available at the scene level (i.e., estimated percent cloud cover), but may also be valuable for
smaller spatial units (i.e., one or more counties or similar administrative units) or for areas that cross
multiple scenes (i.e., large watersheds). In such cases human visual inspection may actually be faster
than subjecting the entire scene(s) to a computational cloud screening program (e.g., Fmask [1]). Third,
in some applications, or for some cloud types, a more accurate identification of CCS beyond what can
be expected from computer-based operations will be needed. In that case human post-processing of
computer-screened imagery may be helpful.

However, the sheer volume of such human CCS tasks may quickly exhaust the capacity of most
remote sensing work groups in public or private institutions. Enlisting a local team of permanent or even
part-time CCS interpreters might raise budgetary issues, especially if new workers require new office
space, locally competitive salaries, and benefits packages. Noting that screening images for clouds and
cloud shadows requires relatively little technical expertise, and can be performed from any PC, laptop,
tablet, or even smart phone that is connected to the internet, we instead propose to outsource the CCS
interpretation task to a global workforce recruited from online labor markets, such as Amazon.com’s
Mechnical Turk.

In recent years such online “crowdsourcing” has been used for remote sensing tasks such as land
cover interpretation [4–6], disaster management [7,8], and detection of forest fires [9]. These efforts
are based on human volunteers providing geographic input via web sites or from their mobile device.
This recent trend of incorporating the public at large in remote sensing and GIS-type research is often
referred to as “Volunteered Geographic Information” (VGI) (e.g., [10]). However, ours is the first study
to provide insights into the suitability of a global workforce to perform CCS interpretation, with focus on
the criteria of speed, cost, and accuracy. Our project is based on interdisciplinary collaboration between
experts in remote sensing, information technology, and applied economics.

Our initial results are encouraging: Online interpreters can be recruited almost instantaneously, and
the job acceptance rate is high enough to process a large number of images within a short time frame, at
least for the relatively simple tasks we asked for in this initial effort. Furthermore, online interpreters are
reasonably accurate, even with limited training. They are also affordable, with hourly-equivalent wages
of $3–$5 producing a 100% job uptake rate for our targeted time frame. We find that wage primarily
affects participation rates and thus project completion time, while it has little effect on accuracy. In
contrast, accuracy is affected by image complexity and work load, with a measurable fatigue effect
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setting in after the first processed image. Our data also allow for the identification of the role of
demographic characteristics on workers’ performance.

2. Methods

2.1. The Mechanical Turk Online Labor Market

Amazon’s Mechanical Turk (MT) is a “crowdsourcing” internet market place where individuals or
businesses (aka “requesters”) post human intelligence tasks (aka “HITs”), which are completed by
workers (aka “providers,” or, more colloquially, “turkers”). MT was launched in late 2005, with
original HITs focusing primarily on soliciting feedback for web sites, tagging images, or rating products.
However, in recent years the MT platform has increasingly been used by social scientists to conduct
behavioral research, e.g., via surveys or economic experiments (e.g., [11–13]). The emerging consensus
out of these efforts is that MT provides easy access to a large, stable, and diverse subject pool, and
that this type of research can be completed at much lower cost and within a much shorter time frame
than would be required for, say, mail surveys or on-campus lab experiments with locally recruited
participants [12]. As discussed in [13] the main drawback of using MT for some research projects
may be that the turker community is generally not representative of the targeted population of research
subjects, since demographic prerequisites (e.g., certain gender or age group) cannot be reliably enforced
in anonymous online markets such as MT. However, for many applications, such as ours, this is not of
central importance.

2.2. The Cloud Interpretation Task

The Human Intelligence Task we presented to MT workers was implemented as an interactive web
mapping application embedded in the MT interface as an “ExternalQuestion” [14]. This interactive
application, written in the PHP programming language, was executed from the MT user interface
when a worker previewed, and subsequently accepted the HIT. When the HIT was accepted, the MT
infrastructure created an “assignment,” recording the association between the HIT ID and worker ID.
The embedded application was then initialized with variables from the MT parent window to uniquely
but anonymously identify the worker (for purposes of ensuring one response per worker), and to specify
the ordering of the CCS interpretation tasks (see below).

Our HIT application was structured around four components, implemented as tabs within its user
interface: (1) An informed consent form that introduced the research team, described the HIT in general
terms, and assured participants of the anonymity of all collected data; (2) a short (about two pages)
training module; (3) the actual CCS interpretation task, described below in further detail; and (4) a brief
exit survey, collecting information on basic demographics, professional background, and feedback on
the training module and the CCS detection task. Logic within the web application ensured that each step
had to be completed before the next step could be accessed. However, participants had the option to
skip questions in the exit survey. Upon completion of these four steps, the interpretation results from (3)
were submitted back to MT, thus flagging the Assignment as complete and inserting it into a queue to be
approved by the Requester (the VT project team) for payment. The exit survey results were submitted
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separately to an external survey provider and associated with the MT interpretation results after the fact
based on the Assignment ID.

Based on trial runs with VT students and faculty, we estimated that the completion of these four tasks
should take an average worker between 15 and 25 min, with one minute spent on reading the informed
consent form, two to three minutes to read through the training module, two to three minutes to work
through the exit survey, and the remaining time allocated to the actual CCS task. As is standard practice
with MT HITs, workers had the opportunity to take breaks and come back to their assignment later.
However, the entire HIT had to be completed by the final day of the research phase within which the
HIT had been posted (see below) to receive compensation. Workers were paid promptly after completing
the HIT, regardless of achieved accuracy in the CCS tasks. We decided not to link payment to achieved
accuracy at this early stage of this ongoing research effort for two reasons: First, we wanted to establish
a baseline for accuracy without any links to compensation. Second, in a full-fledged implementation of
cloud-sourcing with many different satellite images it would be infeasible to check each submission for
accuracy. We were therefore interested in finding out what levels of accuracy can be achieved without
the threat of lost compensation.

2.2.1. Extending the Mechanical Turk Framework to Support Interactive Mapping Applications

In order to effectively identify CCS on remotely sensed images, it is necessary for workers to view
the interpretation unit in context and at different scales. Although the identification, categorization, and
interpretation of individual images are common uses for MT in other fields, none of the standard image
interpretation templates available for use in MT provide this functionality. Therefore, for the actual
interpretation task it was necessary for us to use MT’s capability to embed external HTML content
to integrate an interactive web mapping application, built using the ESRI ArcGIS API for JavaScript,
and hosted from Virginia Tech’s on-premises GIS server infrastructure. The application consumed two
principal data feeds: an ESRI ArcGIS Server “ImageService” of the entire Landsat scene containing
the subsets used for interpretation, and a “MapService” containing the set of polygon grids used as a
visual indication of the interpretation units. The ImageService allowed us to programmatically change
the band combinations chosen to render the scene, as described below in more detail. The grids were
created by recursively subdividing the well-known Web-Enabled Landsat Data (WELD) tiling scheme.
By standardizing on regular subdivisions of the WELD hierarchy, we introduce the possibility for others
to efficiently reproduce our mapping units. The polygon geometry of the grids was transferred to a
graphics layer within the client application, and dynamically symbolized in response to user interaction
events, providing a visual feedback to the workers that an interpretation had been completed. Once all
grid tiles in each of the three interpretation tasks were complete, the interpretation results (cloud-free,
or cloud impacted) were written to an invisible HTML form object in the embedded web application,
from which they were posted back to MT upon completion of the HIT. This approach allowed us to
overcome the limitations of the MT user interface and include geospatial content in HITs in a manner
not previously implemented on that platform.

By designing our HIT as an external web application, we were able to deliver a user experience that
provided more opportunity for interaction with the map than would be afforded by the unmodified MT
interface. The workers’ task was to click on each individual grid tile and select “completely cloud free”
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or “impacted by cloud or shadow” from a pop-up menu. In addition, workers could zoom in and out using
“plus” and “minus” buttons in the image viewer, or by scrolling the wheel on their mouse. The initial
zoom level was set to show a closely cropped version of the entire image with all tiles visible. Users
could then zoom in or out in discrete steps, each representing a doubling (halving) of the representative
fraction of the previous step. Furthermore, workers could move (“pan”) through the image at any zoom
level by holding down the left mouse button and dragging the image in the desired direction. They also
had the choice of two types of display modes, color infrared and a grey-scale display of thermal band
10. Workers had the ability to change between the two display options at any time using a drop-down
list at the bottom of the image viewer. Only one commonly used false color band combination was used
to minimize confounding effects on interpreter accuracy of multiple options, and to decrease time spent
switching between display modes. The thermal band was included because of its suitability for locating
clouds, which are typically much cooler than the ground surface.

Figure 1. Landsat subsets for online experiment. First row: Easy image, second row:
Medium image, third row: Difficult image. Left column: Infrared mode, right column:
Thermal mode. Plus/minus zoom button shown in upper left hand corner.
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2.2.2. Landsat Scene Selection and Minimum Mapping Unit

We selected three Landsat scene subsets containing a range of cloud impacts from the same Landsat 8
image of WRS2, path 14, row 35, collected on 1 June 2013. The three image subsets (henceforth referred
to as images) differed in the degree of cloud cover, cloud fragmentation, cloud density, and amount of
surface cover that could potentially be confused with clouds or cloud shadow. Remote sensing experts
at Virginia Tech (VT) classified the subsets as “easy” (E), “medium difficulty” (M), and “difficult” (D).
Each subset covers approximately 5.5 square kilometers (km2) of terrain, and was overlaid with a grid
of 64 equally-sized squares of 0.086 km2. This corresponds to approximately 95 Landsat pixels per grid
cell. The grid size was selected to balance the trade-off between time to complete the interpretation task
and a reasonable minimum mapping unit to assess interpreter accuracy.

The three images are depicted in Figure 1, arranged by row from easy to difficult. The left column
shows each image in infrared mode, while the right column presents each image in thermal mode.
For comparison purpose, the images are shown at different zoom levels. The adjustment buttons for
magnification are shown in the upper left hand corner of each scene.

Figure 2 shows an example of a selected cell with the pop-up menu for the binary CSC-impact choice.
The selection window for the infrared/thermal color selection is visible directly underneath the image.

Figure 2. Example of selected cell for CSC impact decision. The selected cell is highlighted
with a blue frame. Previously interpreted cells are shaded and have a red (impacted) or a
green (CCS-free) frame.
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2.3. Experimental Design

The overall design of our online experiment is given in Table 1. We implemented the project in late fall
2013 in three phases, each lasting two weeks (Monday through Sunday of the following week). For each
phase, we posted six versions of our HIT (listed as six different, concurrent HITs on the MT web site),
each with a different ordering of the three images, as shown in the table. For each version, in turn, we
posted 120 identical copies (called “assignments” in MT jargon). Importantly, each copy of each version
and phase had to be completed by a different individual to guard against any learning effects beyond
the information acquired through the training module and the actual tasks. This was implemented by
capturing and storing each worker’s MT identification number, and blocking any attempts to complete
additional assignments of any of our HITs. Workers were informed of this policy in the brief description
of the HIT that is visible at the MT web site before they decided to accept it. As can be seen from the
table, the three phases had identical designs except for the wage, which we set at $0.5 in the initial phase,
followed by $1 in phase II, and $1.5 in phase III.

Table 1. Experimental Design.

Phase I

time frame 18 November to 1 December 2013
image sequence EMD EDM MED MDE DEM DME total

target sample size 120 120 120 120 120 120 720
wage $0.50 $0.50 $0.50 $0.50 $0.50 $0.50

Phase II
time frame 2 December to 15 December 2013

image sequence EMD EDM MED MDE DEM DME total
target sample size 120 120 120 120 120 120 720

wage $1.00 $1.00 $1.00 $1.00 $1.00 $1.00

Phase III
time frame 16 December to 29 December 2013

image sequence EMD EDM MED MDE DEM DME total
target sample size 120 120 120 120 120 120 720

wage $1.50 $1.50 $1.50 $1.50 $1.50 $1.50

E = easy, M = medium, D = difficult image; with respect to cloud/cloud shadow complexity.

Our design thus allows for the identification of the following four effects: (1) A wage effect, for both
accuracy of CCS interpretation, and job uptake rates (and thus the actual time to reach the target sample
size for each phase); (2) An image complexity effect, i.e., the effect of CCS difficulty on accuracy; (3) A
learning-by-doing and/or fatigue effect, i.e., the change of accuracy over the three image tasks regardless
of ordering; and (4) A sequencing effect, i.e., the effect of the ordering of images by degree of difficulty
on accuracy. In addition, we kept track of total completion time for each worker.

The project was announced a few days prior to each phase at two popular blog sites for MT
participants, Turker Nation [15] and Mturk Forum [16]. Workers’ feedback was collected via the
exit survey, and through an e-mail account that was established specifically for this project. Given
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the importance of a HIT’s meaningfulness on job uptake rates and workers’ productivity discussed
in [17], we announced in both the description of the HIT and the turker blogs that their input will “help
us identify images that are suitable for research on forest health and forest change.”

2.4. Econometric Analysis

We estimate a linear regression model that seeks to explain variation in the outcome variable yij , the
percentage of accurately interpreted cells by worker i for image j, as a function of wage (captured by
the binary indicator variables “medium wage” and “high wage”), complexity (captured by the binary
indicator variables “medium complexity” and “high complexity”), image sequencing (captured by the
binary indicator variables “2nd image” and “3rd image”), and worker demographics. The latter group
of explanatory variables includes a binary indicator for college education (“college”), a binary indicator
for task-relevant professional or educational background (“background”), an indicator for “male” and
an indicator for the U.S. as the current country of residence. We also take advantage of the fact that
we collected three sample points from each worker. This allows us to control for unobserved effects at
the individual level (for instance, ability to concentrate, resolution of computer screen, ambient noise
level or distractions during the completion of the HIT, etc.) by stipulating the regression error term to
include an individual-level random effect ui, in addition to an observation-specific, or idiosyncratic error
term εij .

At the observation level our model can thus be concisely expressed as

yij = α+wiβw + sjβs + xijβx + ziβz + ui + εij, with

ui ∼ n
(
0, σ2

u

)
, εij ∼ n

(
0, σ2

ε

) (1)

where α is a general intercept term, vector wi captures the wage indicators, sj collects the complexity
and sequencing indicators for the satellite images, xij is a vector of (optional) interaction terms
between wage, complexity, and sequencing, zi captures demographic indicators, the β terms are
corresponding model coefficients, and the error terms have been introduced above. Following standard
convention we stipulate them to be independently normally distributed with mean zero and variances σ2

u

and σ2
ε , respectively.

2.5. Interpretation Comparison with Fmask

The majority-rule interpretation of each grid cell across all three phases of our study was compared
with results from Fmask. Fmask is an object-based cloud and cloud shadow detection algorithm
developed specifically for Landsat by [1]. It has been validated against a global reference dataset, and
shown to produce an average overall cloud accuracy of 96.4% [1]. Given the proven track record of this
algorithm for Landsat data we selected it for comparison with our MT results. If any pixel within a given
grid cell was flagged as CCS impacted by Fmask, the entire grid cell was considered CCS impacted. The
results of this comparison are given in the next section.
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3. Results and Discussion

3.1. Descriptive Results

Table 2 shows valid sample counts and basic summary statistics for participating workers. As is
evident from the table, we fell considerably short of our target sample size of 720 in phase I. Based on
worker feedback and given the steeply increased job uptake rates for phases II and III, we presume that
this is largely due to the low wage of $0.50 for what amounted to 20–22 min of work. When we doubled
the wage for phase II we reached our target sample in 11 days. Phase III, with an additional 50% wage
increase was completed in eight days. This observed positive relationship between job uptake rates and
wages in crowdsourcing markets is consistent with similar findings reported in [12,13,18]. However, due
to residual technical glitches, some workers managed to submit multiple applications. Dropping these
repeat-cases reduced the effective sample size to 684 in phase II and to 500 in phase III, as shown in the
table. Fortunately, though, these sample counts were evenly distributed over the six versions based on
image ordering for all three phases.

Table 2. Summary Statistics.

Phase I Phase II Phase III All

number of valid completed HITs * 392 684 500 1576
number of valid completed surveys ** 335 614 451 1400

female 42% 42% 38% 41%
workers located outside the U.S. 30% 15% 18% 20%
Indian workers if non-U.S. 79% 89% 82% 83%
college or graduate degree 61% 56% 52% 56%
current student 20% 22% 28% 24%
background related to this task 7% 9% 6% 8%

elapsed time per HIT (minutes), mean 22.8 20.2 20.4 20.9
(std) (9.4) (7.9) (8.6) (8.6)
accuracy (% correct of 64 cells)
easy image, mean 87.6% 87.9% 87.9% 87.8%
(std) (12.5%) (13.5%) (13.2%) (13.2%)
medium image, mean 83.0% 84.5% 84.1% 84.0%
(std) (15.2%) (13.7%) (14.9%) (14.5%)
difficult image, mean 74.5% 75.6% 75.1% 75.2%
(std) (12.2%) (12.2%) (12.0%) (12.2%)

* HITs with all four components completed, each by a unique worker ID; ** Surveys by unique workers with all
questions completed; std = standard deviation.

Approximately 85%–90% of valid HITs also feature fully completed exit surveys, and the
demographic statistics given in rows three through eight in Table 2 are based on these cases. Close
to two thirds of participants were male, with little fluctuation across phases. The majority of workers
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gave the United States as their “country of residence.” The proportion of foreign workers was highest in
phase I (30%), presumable because they perceived the $0.50 wage as relatively more attractive compared
to U.S. participants. Most of these foreign workers live in India, as shown in row five of the table. Our
participants were well-educated, with over 50% reporting to hold at least a college degree, and between
one fifth and one fourth indicating to be currently enrolled at a university, college, or vocational school.
In contrast, only 6%–10% of workers reported having an educational or professional background that
involved tasks similar to those requested in our application.

As captured in rows nine and ten of the table, the average elapsed time between acceptance and
submission of the HIT amounted to 20–22 min across all three phases, with the longest elapsed time
recorded for phase I (close to 23 min). This is likely related to the larger contingent of foreign
participants in phase I, and corresponding longer time requirements to work through the consent
form, training manual, and exit survey. The bottom set of rows in Table 2 provides means and
standard deviations for accuracy rates, measured as the average over all workers of the percentage of
correctly coded cells for a given image, relative to a benchmark interpretation performed by a remote
sensing expert at VT. As can be seen from the table, aggregate accuracy remained relatively stable for
each image across the three phases. In contrast, and as expected, aggregate accuracy declines with
increasing image complexity, dropping from 88% for the easiest image to 75% for the most challenging
satellite scene.

In order to gain more insights on the drivers of accuracy and to dis-entangle the effects of demography,
task complexity, wage, and image ordering we now turn to our full-fledged econometric analysis.

3.2. Econometric Results

We estimate two versions of our regression model shown in (1). Model M1 omits the interactions xij ,
while they are included in model M2. To guard against additional mis-specification of the distribution
of εij we estimate both models with robust standard errors, clustered at the individual level. By default,
the constant term refers to our omitted benchmark category of “low wage,” “easy image,” “first image in
sequence,” “no college education,” “female,” and “non-USA.” The remaining coefficients thus measure
the differential effect of their indicated category from this benchmark. The data set underlying our
quantitative analysis is available as supplementary online material titled Data S1.

The results for both models are given in Table 3. In general, the estimation results confirm the
preliminary insights gained above from our descriptive examination of the sample data: The effect of
wage is insignificant, while increasing complexity has a negative and significant effect on accuracy, with
error rates increasing by approximately 4% for the medium image and by 13% to 14% for the difficult
image relative to the baseline (easy image). The results also indicate a duration effect, with accuracy
decreasing by approximately 1% for the second image, regardless of complexity. Interestingly, accuracy
does not deteriorate further for the third image. This may hint at a fatigue or possibly boredom effect
for the second image, which is partially compensated by a positive learning-by-doing effect for the third
satellite scene. The remaining noteworthy results flowing from our econometric analysis are a positive
gender effect, with male workers producing close to 2% higher accuracy compared to female turkers, and
a sizable, significant gain in accuracy for U.S. workers over foreign participants (6.5%). As is evident



Remote Sens. 2015, 7 2344

from the table, the interaction terms in model two add relatively little to explain variability in accuracy.
This suggests that the observed main effects for complexity are not sensitive to the wage level or image
sequence (first, second, or third).

Table 3. Estimation results.

M1 M2
Variable Estimate (s.e.) Estimate (s.e.)

constant 83.038 (1.146) *** 83.567 (1.200) ***

medium wage −0.271 (0.687) −0.968 (0.810)
high wage −0.436 (0.744) −0.733 (0.858)
medium complexity −3.815 (0.287) *** −4.431 (0.869) ***
high complexity −12.983 (0.360) *** −13.911 (0.915) ***
2nd image −0.787 (0.345) ** −1.152 (0.635) *
3rd image −0.358 (0.348) −0.326 (0.625)

med. wage * med. complex. - - 1.301 (0.760) *
med. wage * high complex. - - 0.804 (0.907)
high wage * med. complex. - - 0.547 (0.795)
high wage * high complex. - - 0.335 (0.973)

2nd * med. complex. - - −0.070 (1.148)
2nd * high complex. - - 1.156 (0.990)
3rd * med complex. - - −0.308 (1.115)
3rd * high complex. - - 0.235 (1.014)

college −0.508 (0.577) −0.516 (0.577)
background −0.176 (0.972) −0.212 (0.977)
male 1.664 (0.556) *** 1.665 (0.557) ***
USA 6.473 (0.887) *** 6.456 (0.888) ***

σ2
ε 9.230 9.234

σ2
u 8.708 8.700

ρ 0.471 0.470

(s.e) = standard error, clustered at the individual level; *, **, *** = significant at the 10%, 5%, 1% level;
σ2
ε = variance of idiosyncratic error term; σ2

u = variance of individual-specific error term; ρ = fraction of total
error variance attributable to individual-specific error term.

Our observed insensitivity of output quality with respect to compensation is consistent with recent
findings in the crowdsourcing literature. For example, [18] find no effect of wages on the quality of
psychological survey data. Mason and Watts [19] observe a similar lack of compensation effects on
performance for two different tasks, image ordering and word puzzles. Based on a follow-up analysis
they hypothesize that this is due to an anchoring effect, where participants use the offered wage as a
cue as to the value of their contribution to the employer. In [19]’s case, all workers believed they were
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slightly under-paid, regardless of the actual wage they received. According to the authors, this resulted
in a relatively equal effort level across wage rates. A similar anchoring effect may have been at play
in our application as well. In addition, the frequently observed decrease in performance in the labor
market literature due to perceived unfairness in compensation relative to peers (e.g., [20–23]) did not
apply in our case, as all workers received the same wage within a given phase, and wages monotonically
increased over the duration of the project. Third, based on workers’ feedback on the above mentioned
BLOGs and through e-mails suggests that a sizable proportion of participants actually enjoyed the task,
and were thus “intrinsically motivated” to spend due effort on the assignment [24–26].

A poorer performance of non-U.S. workers was also found by [27] in the context of annotating charts
and other visualizations. They suggest language barriers as a possible explanation. In the same vein, [28]
find that non-U.S. workers and participants with English as a Second Language (ESL) were more likely
to fail their “Instructional Manipulation Check” that was designed to assess whether or not participants
were reading instructions carefully. Similarly, [29] report, in the context of a MT experiment involving
content analysis of a web site and numerous incentive schemes, that MT workers from India performed
significantly more poorly (in terms of the number of accurate answers) than U.S. residents. While the
authors do not provide any speculations for this effect, they note that this residence effect is large enough
to dwarf any of their experimental treatment effects. Indian participants are also by far the largest
contingent amongst foreign workers in our case. While language issues may have played some role
in their relatively less accurate CCS interpretation, perhaps due to limitations in comprehending the
training module, anecdotal evidence also suggests that Indian turkers may work under more crowded
and noisy conditions than their American counterparts. This would place them at a clear disadvantage
for tasks that require a high degree of concentration, such as ours. Third, Indian workers may have been
motivated to a lesser degree by our initial statement that their CCS identification efforts benefit research
on forests health and change, perhaps assuming that these forests would be located in the United States.

3.3. Visual Analysis of Accuracy and Comparison with Fmask

Figures 3 through 5 present a visualization of cell-specific accuracy for the three image types. Each
figure depicts the expert benchmark interpretation in the upper left panel, with impacted cells filled in
black. Next to it is a “heat map” that conveys, via cell shading, the percentage of all workers across
all project phases that considered a given cell as CCS-impacted. A darker shading implies a higher
percentage, going from “under 10%” (completely white) to “over 90%” (completely black). The lower
left panel shows, in black, only the cells that were identified as impacted by the majority of workers
(>50% votes). The lower right hand panel shows the cells that were classified as impacted by Fmask.
Thus, a closer resemblance of the patterns for the MT and Fmask results with the expert benchmark
indicates a higher degree of accuracy.

Turning first to the easy image in Figure 3, the workers’ majority interpretation only exhibits one
error of commission (cell (row 7, column 7), likely a wet field), for a total error rate of 1/64 = 1.6%. In
contrast, Fmask misses 5 impacted tiles along the right border of the image, and produces three errors
of commission (cells (2,7), (5,7), and (6,5)), for a total error rate of 12.5%. Thus, for this relatively
straightforward image, humans clearly out-perform the Fmask algorithm in terms of both omission
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and commission of impacted tiles when a majority rule is used. This result may highlight one of the
limitations of Fmask discussed by [1]. That is, the cloud shadows produced by the small, wispy clouds
beyond the right hand side of the image are difficult to detect for the algorithm because the brightness
temperature of the affected pixels is dominated by the underlying land cover. This can be clearly seen in
Figure 1 when comparing the infrared composite to the thermal display for the easy image. In contrast,
the shadows are relatively easy to discern for humans.

Expert benchmark  
(black = CCS impacted) 

MT results 
(darker = higher % of CCS impact choices) 

Fmask results 
(black = identified as CCS impacted) 

MT results – majority vote 
(black = >50 % of CCS impact choices) 

Figure 3. Results for EASY image.

For the image of medium complexity, shown in Figure 4, the four squares at the center of the scene
triggered the highest error rate amongst workers, with 70%–80% “false positives.” In this case, many
workers mistook a bare field for a cloud. This leads to four errors of commission under the majority rule.
However, as for the easy image, human interpretation under a majority rule did not produce any errors
of omission. Fmask performs equally well in terms of omissions (zero), and has less trouble correctly
interpreting the four center squares, only mis-interpreting one of them. However, Fmask additionally
flags a set of fields towards the lower right hand corner of the image as CCS, plus a single cell near the
upper right hand corner (cell (2,6)), for a total count of five errors of commission. The overall error rates
are thus comparable for both approaches for this image, with 6.3% for workers, and 7.8% for Fmask.
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Expert benchmark  
(black = CCS impacted) 

Fmask results 
(black = identified as CCS impacted) 

MT results 
(darker = higher % of CCS impact choices) 

MT results – majority vote 
(black = >50 % of CCS impact choices) 

Figure 4. Results for MEDIUM image.

Expert benchmark  
(black = CCS impacted) 

Fmask results 
(black = identified as CCS impacted) 

MT results 
(darker = higher % of CCS impact choices) 

MT results 
(black = >50 % of CCS impact choices) 

Figure 5. Results for DIFFICULT image.
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For the difficult image, given in Figure 5, human interpreters clearly struggled with the wispy,
semi-transparent cirrus clouds in the left hand portion of the image, missing six tiles in that portion of
the image, plus two others towards the bottom (cells (7,4) and (8,4)) based on majority vote. In contrast,
there are only two errors of commission (cells (6,7) and (7,6), likely a wetter area within a forest patch
and a small clearing along a forest’s edge). Fmask clearly outperforms the turkers for this image, with
only one error of omission (cell (8,4)), and four errors of commission (cells (4,2), (4,6), (7,5) and (7,6)).
The overall error rate is 15.6% for humans, using the majority rule, and 7.8% for Fmask.

Overall, we believe that these results give an encouraging picture of the potential role of human
interpreters for CCS identification. Using a majority rule, humans closely match the expert benchmark
for the easier images. While the wispy clouds in the third image posed a serious challenge to our
workers, this can potentially be ameliorated with better training. Equally important, there appears to be
the potential for synergies using both human interpretation and computational algorithms, given that
there was relatively little overlap of erroneously classified tiles between workers and Fmask for all
three images.

4. Conclusions

We implement an online experiment that recruits a human workforce to detect CCS in a set of Landsat
images. We find that at hourly-equivalent wage rates of $3–$5, a relatively large number of workers can
be recruited within a short (multi-day) time frame. In contrast, our chosen wage rates did not affect
interpreters’ overall performance, a finding that is consistent with results reported in several other recent
studies involving an online workforce. The main effects we detect in our analysis are a decrease in
accuracy with an increase in image complexity, and for the second image in sequence. In addition, U.S.
turkers produce significantly higher accuracy than foreign (mostly Indian) participants.

Comparing human interpretation results to an automated CCS detection via Fmask, we find some
evidence that there might be cases where human interpreters can improve over Fmask’s assessment.
Further study with a much larger set of images will be needed to provide additional insights on how
computational algorithms and humans could form a quality-enhancing synergy for the processing of
Landsat images. This will be the main focus of the next phase of this ongoing research effort.

Another insight gained from this exploratory phase of our cloud-sourcing project is that our
relatively brief training module could likely benefit from additional examples of “common pitfalls and
interpretation challenges” to better prepare our human interpreters for the actual task. Efforts in that
direction have already been initiated. Furthermore, this improved training module will henceforth be
posted as a separate item on MT, and its completion will be a pre-requisite to gaining access to any
future HITs posted by our group. Since the training will only needed to be completed once by a given
worker, and workers will soon be allowed to complete multiple HITs, this will greatly reduce the time
requirement to complete a given assignment. Further gains in the speed of completion will be achieved by
our new CCS interface, which no longer requires clicking on every single tile, but instead allows for the
selection of adjacent impacted cells via a “lasso” click-and-drag technique. Jointly, these logistical and
technological adjustments will further enhance the economic feasibility of human cloud interpretation.
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This, in turn, will allow us to expand our operation to a much larger scale, with dozens or even hundreds
of Landsat subsets being processed at any point in time for a modest budget.

Finally, there exist additional economic incentives to improve performance that we have not yet
tapped into, such as “random accuracy checks” and their link to compensation, special bonuses that
can be earned by correctly interpreting “tricky” tiles, or the conditioning of repeat employment to task
performance (for an overview of such incentive schemes see [29]). Our ultimate goal is to groom a large
cohort of dependable CCS interpreters with a proven track record, and to make admission into this group
a desirable and valued achievement within the turker community.

Acknowledgments

This research was supported by the Landsat science team of the U.S. Geological Survey through grant
No. G12PC00073.

Author Contributions

Ling Yu managed the implementation of the online experiment, maintained public relations with the
work force, performed econometric estimation of the collected data, and participated in the preparation
of this manuscript. Sheryl Ball provided input on the design of the economic experiment and guidance
on data analysis and the interpretation of results. Christine Blinn developed the online training module,
selected satellite images, and participated in the development of the web interface. Klaus Moeltner
managed the design and budgeting of the economic experiment, guided the econometric analysis of
the data, and took the lead in the preparation of this manuscript. Seth Peery oversaw all web-based
components of the project, developed the framework for integrating map interpretation tasks into
Amazon Mechanical Turk, implemented and launched the Mechanical Turk work assignments, and
assisted in the development of the online training manual. Valerie Thomas participated in the design
of the experiment, provided feedback on the web implementation, and contributed to the preparation of
this manuscript. Randolph Wynne provided feedback and guidance for all project components, acted as
liaison to the grantor, and contributed to the preparation of this manuscript.

Supplementary Materials

The data set underlying our quantitative analysis is available as supplementary online material titled
Data S1.

Conflicts of Interest

The authors declare no conflict of interest.

References

1. Zhu, Z.; Woodcock, C. Object-based cloud and cloud shadow detection in Landsat imagery.
Remote Sens. Environ. 2012, 118, 83–94.

2. Hughes, M.; Hayes, D. Automated detection of cloud and cloud shadow in single-date Landsat
imagery using neural networks and spatial post-processing. Remote Sens. 2014, 6, 4907–4926.



Remote Sens. 2015, 7 2350

3. Fisher, A. Cloud and cloud-shadow detection in SPOT5 HRG imagery with automated
morphological feature extraction. Remote Sens. 2014, 6, 776–800.

4. Fritz, S.; McCallum, I.; Schill, C.; Perger, C.; Grillmayer, R.; Achard, F.; Kraxner, F.;
Obersteiner, M. Geo-Wiki.Org: The use of crowdsourcing to improve global land cover. Remote
Sens. 2009, 1, 345–354.

5. See, L.; Schepaschenko, D.; Lesiv, M.; McCallum, I.; Fritz, S.; Comber, A.; Perger, C.;
Schill, C.; Zhao, Y.; Maus, V.; et al. Building a hybrid land cover map with crowdsourcing
and geographically weighted regression. ISPRS J. Photogramm. Remote Sens. 2015, in press.

6. Fritz, S.; See, L.; McCallum, I.; You, L.; Bun, A.; Moltchanova, E.; Duerauer, M.;
Albrecht, F.; Schill, C.; Perger, C.; et al. Mapping global cropland and field size. Glob. Chang.
Biol. 2015, in press.

7. Poser, K.; Dransch, D. Volunteered geographic information for disaster management with
application to rapid flood estimation. Geomatica 2010, 64, 89–98.

8. Horita, F.; Degrossi, L.; Assis, L.; Zipf, A.; de Albuquerque, J. The use of volunteered geographic
information and crowdsourcing in disaster management: A systematic literature review. In
Proceedings of the Nineteenth Americas Conference on Information Systems, Chicago, IL, USA,
15–17 August 2013; pp. 1–10.

9. Hansen, L. Global forest watch-fires: Improving remote sensing through community engagement.
In Proceedings of the Poster Presentation, AAAS 2015 Annual Meeting, San Jose, CA, USA, 15
February 2015.

10. Goodchild, M. Citizen as sensors: The world of volunteered geography. GeoJournal 2007,
69, 211–221.

11. Horton, J.; Rand, D.; Zeckhauser, R. The online laboratory: Conducting experiments in real labor
markets. Exp. Econ. 2011, 14, 399–425.

12. Mason, W.; Suri, S. Conducting behavioral research on Amazon’s Mechanical Turk. Behav. Res.
Methods 2012, 44, 1–23.

13. Berinsky, A.; Huber, G.; Lenz, G. Evaluating online labor markets for experimental research:
Amazon.com’s Mechanical Turk. Polit. Anal. 2012, 20, 351–368.

14. Amazon.com. Amazon Mechanical Turk API Reference: External Question. Available
online: http://docs.aws.amazon.com/AWSMechTurk/latest/AWSMturkAPI/ApiReference_
ExternalQuestionArticle.html (accessed on 17 February 2015).

15. Turker Nation. Available online: http://turkernation.com/ (accessed on 17 February 2015).
16. Mturk Forum. Available online: http://mturkforum.com/forum.php (accessed on 17

February 2015).
17. Chandler, D.; Kapelner, A. Breaking monotony with meaning: Motivation in crowdsourcing

markets. J. Econ. Behav. Organ. 2013, 90, 123–133.
18. Buhrmester, M.; Kwang, T.; Gosling, S. Amazon’s Mechanical Turk: A new source of

inexpensive, yet high-quality data? Perspect. Psychol. Sci. 2011, 6, 3–5.
19. Mason, W.; Watts, D. Financial incentives and the “performance of the crowds”. SIGKDD Explor.

2009, 11, 1100–1108.

http://docs.aws.amazon.com/AWSMechTurk/latest/AWSMturkAPI/ApiReference_ExternalQuestionArticle.html
http://docs.aws.amazon.com/AWSMechTurk/latest/AWSMturkAPI/ApiReference_ExternalQuestionArticle.html
http://turkernation.com/
http://mturkforum.com/forum.php


Remote Sens. 2015, 7 2351

20. Fehr, E.; Gächter, S. Fairness and retaliation: The economics of reciprocity. J. Econ. Perspect.
2000, 14, 159–181.

21. Scott, P. Fairness as a source of hysteresis in employment and relative wages. J. Econ. Behav.
Organ. 2005, 57, 305–331.

22. Falk, A.; Fehr, E.; Zehnder, C. Fairness perception and reservation wages — the behavioral effects
of minimum wage laws. Q. J. Econ. 2006, 121, 1347–1381.

23. Fehr, E.; Klein, A.; Schmidt, K. Fairness and contract design. Econometrica 2007, 75, 121–154.
24. Murdock, K. Motivation and optimal incentive contracts. RAND J. Econ. 2002, 33, 650–671.
25. Bruno, B. Reconciling economics and psychology on intrinsic motivation. J. Neurosci. Psychol.

Econ. 2013, 6, 136–149.
26. Kolstad, J. Information and quality when motivation is intrinsic: Evidence from surgeon report

cards. Am. Econ. Rev. 2013, 103, 2875–2910.
27. Willett, W.; Heer, J.; Agrawala, M. Strategies for crowdsourcing social data analysis.

In Proceedings of the ACM-CHI Conference on Human Factors in Computing Systems, Austin,
TX, USA, 5–10 May 2014.

28. Goodman, J.; Cryder, C.; Cheema, A. Data collection in a flat world: The strength and weaknesses
of Mechanical Turk samples. J. Behav. Decis. Mak. 2013, 26, 213–24.

29. Shaw, A.; Horton, J.; Chen, D. Designing incentives for inexpert human raters. In Proceedings of
the ACM 2011 Conference on Computer-Supported Cooperative Work, Hangzhou, China, 19–23
March 2011.

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/4.0/).


	Introduction
	Methods
	The Mechanical Turk Online Labor Market
	The Cloud Interpretation Task
	Extending the Mechanical Turk Framework to Support Interactive Mapping Applications
	Landsat Scene Selection and Minimum Mapping Unit

	Experimental Design
	Econometric Analysis
	Interpretation Comparison with Fmask

	Results and Discussion
	Descriptive Results
	Econometric Results
	Visual Analysis of Accuracy and Comparison with Fmask

	Conclusions

