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Abstract: This work estimated and validated the land surface temperature (LST) from 

thermal-infrared Channels 4 (10.8 µm) and 5 (12.0 µm) of the Visible and Infrared 

Radiometer (VIRR) onboard the second-generation Chinese polar-orbiting FengYun-3A 

(FY-3A) meteorological satellite. The LST, mean emissivity and atmospheric water vapor 

content (WVC) were divided into several tractable sub-ranges with little overlap to 

improve the fitting accuracy. The experimental results showed that the root mean square 

errors (RMSEs) were proportional to the viewing zenith angles (VZAs) and WVC. The 

RMSEs were below 1.0 K for VZA sub-ranges less than 30° or for VZA sub-ranges less 

than 60° and WVC less than 3.5 g/cm2, provided that the land surface emissivities were 

known. A preliminary validation using independently simulated data showed that the 

estimated LSTs were quite consistent with the actual inputs, with a maximum RMSE 
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below 1 K for all VZAs. An inter-comparison using the Moderate Resolution Imaging 

Spectroradiometer (MODIS)-derived LST product MOD11_L2 showed that the minimum 

RMSE was 1.68 K for grass, and the maximum RMSE was 3.59 K for barren or sparsely 

vegetated surfaces. In situ measurements at the Hailar field site in northeastern China from 

October, 2013, to September, 2014, were used to validate the proposed method. The result 

showed that the RMSE between the LSTs calculated from the ground measurements and 

derived from the VIRR data was 1.82 K. 

Keywords: land surface temperature; FengYun-3A VIRR; split window; land surface 

emissivity; water vapor content 

 

1. Introduction 

Land surface temperature (LST), as one of the direct driving forces for the surface energy balance at 

the interface between the surface and the atmosphere, is a key parameter in the physics of land surface 

processes at regional and global scales [1,2]. Many studies on evapotranspiration, climate change, 

surface energy budgets, the hydrological cycle, vegetation monitoring, urban climate and environments 

require knowledge of LST [3–5]. Consequently, having access to reliable estimates of LST is crucial 

over large spatial and temporal scales, such as when using satellite observations in thermal-infrared 

(TIR) channels [1,6,7]. 

Many algorithms have been proposed and developed for estimating the LST from polar-orbit 

satellite data [8–13] and geostationary satellite data [14–16]. Li et al. [1] comprehensively reviewed 

the current algorithms and noted that the challenges for estimating LST from satellite data include 

corrections for the effects of the atmosphere and the land surface emissivity (LSE). However, these 

two issues are very difficult to address, because the LST, the LSEs and the downward atmospheric 

radiance are coupled, and the large variability in the vertical profiles of atmospheric water vapor and 

temperature results in highly variable atmospheric absorption, emission and emission-reflection. 

Consequently, the accurate retrieval of the LST from satellite measurements is very difficult. 

As far as the validation of satellite-derived LST is concerned, many efforts have focused on satellite 

sensors, including Thematic Mapper/Enhanced Thematic Mapper Plus (TM/ETM), Advanced 

Spaceborne Thermal Emission and Reflection Radiometer (ASTER), Advanced Very High Resolution 

Radiometer (AVHRR), Along-Track Scanning Radiometer (ATSR), Advanced Along-Track Scanning 

Radiometer (AATSR), Moderate Resolution Imaging Spectroradiometer (MODIS), Spinning 

Enhanced Visible and Infrared Imager (SEVIRI) and Visible Infrared Imaging Radiometer  

Suite (VIIRS) data [12,17–29]. The methods proposed for LST validation are generally grouped  

into three categories: temperature-based method (T-based), radiance-based method (R-based)  

and inter-comparison. 

The T-based method directly compares the satellite-derived LST with in situ LST measurements  

at the satellite overpass [17–22,26–28]. This method strongly depends on the accuracy of the  

ground-measured LSTs and their representation at the satellite pixel scale. Because the LST varies 
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significantly over space and time, the T-based method is often restricted to homogenous surfaces, such 

as lakes and densely vegetated areas. 

The R-based method uses the satellite-derived LST and the in situ atmospheric profiles measured at 

the satellite overpass time, as well as the LSE as initial inputs to simulate the radiance at the top of the 

atmosphere (TOA). Comparing the simulated satellite-measured TOA radiances and adjusting the 

initial LST to minimize the difference between the simulated and measured radiances, the accuracy of 

the retrieved LST is obtained from the difference between the adjusted LST and the initial  

satellite-derived LST [12,23]. This method does not require ground LST measurements, but does 

require LSE and measured atmospheric profiles at the satellite overpass time, so it depends on the 

accuracies of the atmospheric profiles and the LSE at the pixel scale. 

The inter-comparison method only compares the satellite-derived LST with a well-validated LST 

product from another satellite [24,25,29]. This method does not require any ground measurements, and 

it can be used anywhere if the well-validated LST product is available. However, because of the large 

spatial and temporal variations in the LST, this method is very sensitive to the scale differences over 

space, time and viewing angle between the two sensors. 

The present work aims to estimate accurately the LST from Chinese FengYun-3A satellite data by 

using a split-window technique and then to validate the proposed algorithm using different methods. 

Section 2 describes the data, including satellite data and in situ measurements. Section 3 presents the 

theory associated with the LST retrieval and the simulations using the atmospheric radiative transfer 

model, MODerate resolution atmospheric TRANsmission (MODTRAN). The results and discussion 

are presented in Section 4, where the sensitivity analyses in terms of the uncertainty in the LSEs and 

atmospheric water vapor content (WVC) and the instrument noise are given. Section 5 provides 

validations using the simulated data, the MODIS LST product and in situ measurements. Finally, 

conclusions are presented in Section 6. 

2. Data 

2.1. FY-3A Satellite Data 

FengYun-3A (FY-3A) was launched on 27 May 2008, by the Taiyuan Launch Center, China. The 

second-generation polar-orbiting meteorological satellite carries ten payloads of optical and 

microwave sensors to collect a range of remote sensing data. The missions are meteorological 

forecasting, environmental change evaluation, natural disaster monitoring, etc. One of the major 

sensors is the Visible and Infrared Radiometer (VIRR), which includes seven visible and near-infrared 

channels and three infrared channels. The channel wavelengths of the instrument are depicted in  

Table 1. 

The thermal-infrared Channels 4 (centered at 10.8 µm) and 5 (centered at 12.0 µm) data observed 

by the VIRR at the TOA were used to estimate the LST, and the seven visible and near-infrared 

channels were used to determine the LSE in this work. 
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Table 1. Specifications of the VIRR channels: spectral ranges and spatial resolutions. 

IFOV, instantaneous field of view; NEΔT, noise-equivalent temperature difference. 

Channel No. Spectral Range (µm) IFOV (km) NE Δρ (%) NE ΔT (300 K) Dynamic Range (ρ or T) 

1 0.58–0.68 1.1 0.1% 0%–100% 

2 0.84–0.89 1.1 0.1% 0%–100% 

3 3.55–3.93 1.1 0.3 K 180–350 K 

4 10.3–11.3 1.1 0.2 K 180–330 K 

5 11.5–12.5 1.1 0.2 K 180–330 K 

6 1.55–1.64 1.1 0.15% 0%–90% 

7 0.43–0.48 1.1 0.05% 0%–50% 

8 0.48–0.53 1.1 0.05% 0%–50% 

9 0.53–0.58 1.1 0.05% 0%–50% 

10 1.325–1.395 1.1 0.19% 0%–90% 

2.2. MODIS Satellite Data 

MODIS is a sensor aboard the NASA Earth Observing System (EOS) Terra satellite launched in 

1999 and Aqua satellite launched in 2002. The passive imaging spectroradiometer consists of 36 

spectral channels covering the visible and infrared wavelengths, from approximately 0.4 to  

14.0 µm [30]. MODIS is intended to satisfy a diverse set of atmospheric, oceanographic and terrestrial 

science observational requirements. The data used in this work are the MOD11_L2, MOD03 and 

MCD12Q1 products provided by NASA Goddard Space Flight Center (GSFC) Level 1, the 

Atmosphere Archive and Distribution System (LAADS) [31] and the NASA-developed EOS 

Clearinghouse (ECHO) [32]. 

MOD11_L2 is an LST/LSE product that retrieves the LST from a generalized split-window  

algorithm [10], and LSEs are determined for Channels 31 and 32 via the classification-based 

emissivity method [33] at a 1-km spatial resolution. The LST product is used to cross-validate the LST 

estimated from the FY-3A VIRR data. MOD03 is the geolocation field data that are calculated for each 

1-km MODIS instantaneous field of view (IFOV) for all daytime orbits. The geodetic latitude, 

longitude and satellite zenith angle of the geolocation fields are used in the inter-comparison. 

MCD12Q1, the MODIS land cover type yearly level 3 (L3) global 500-m sine (SIN) grid product, is 

classified by the International Geosphere-Biosphere Programme (IGBP) 17-class scheme [34]. This 

product is combined with the MOD11_L2 LST product to cross-validate the estimated VIRR LSTs for 

different land cover types. 

2.3. In Situ Measurements 

Experimental campaigns were conducted at the Hailar field site in Northeastern Inner Mongolia, 

China (49°21′N, 120°07′E). Figure 1 shows the location of the study site. The central area of the 

experiment is approximately 0.4 km2. The area has a cold temperate, semi-humid and semi-arid 

continental monsoon climate with a mean annual temperature of −2 °C and a mean annual rainfall of 

approximately 350 mm. The field site is a homogenous area fully covered by grasses and crops.  

To ensure that the ground measurements of LST are representative at the satellite pixel scale, four 

infrared radiometers, SI-111, commercialized by Apogee Instruments, Inc., Roseville, CA, USA, were 



Remote Sens. 2015, 7 3254 

 

uniformly installed at an interval of 120 m at the field site. SI-111 measures thermal-infrared radiance 

in the 8.0–14.0 µm range and obtains brightness temperatures with an absolute accuracy of ±0.2 K. 

The sensors with a field of view (FOV) of 44° were mounted at a 2.0-m height to observe an area of 

approximately 2.0 m2. An additional SI-111 faces the sky at 53° with respect to the zenith and 

measures the spectral downwelling longwave radiance, which is used to correct for the reflected 

atmospheric component [35]. All station measurements recorded every 10 s were stored as one-minute 

averages from October, 2013, to September, 2014. In addition, to reduce the influence of the external 

environment on the measured infrared radiance, a wireless net observation system was adopted to 

transfer the radiances to a computer terminal. 

 

Figure 1. Location of the study site (the four red points in the red rectangle show the 

locations of the installed infrared radiometers). 

3. Methodology 

3.1. Radiative Transfer for the Split-Window Algorithm 

Based on radiative transfer theory, for a cloud-free atmosphere in thermodynamic equilibrium, the 

channel radiance ܤሺ ܶሻ measured at the TOA in the TIR channel is approximately [36]: 

ሺܶ݅ሻ݅ܤ ൌ ሻ߬݅ݏሺܶ݅ܤ݅ߝ  ݅_݉ݐܴܽ
↑  ሺ1 െ ݅_݉ݐሻܴܽ݅ߝ

↓ ߬݅ (1)

where ܶ  is the channel brightness temperature observed in channel i at the TOA, ܤ  is the Planck 

function, ܤሺ ܶሻ is the radiance emitted by a blackbody at temperature ௦ܶ (i.e., LST; hereafter, LST is 

used interchangeably with ௦ܶ ߝ ,(  (i.e., LSE; hereafter, ߝ  is used interchangeably with LSE) is the 

channel emissivity in channel i, ߬ is the total atmospheric transmittance along the target to the sensor 
path in channel i, ܴ௧_

↑  is the thermal-path atmospheric upwelling radiance in channel i and ܴ௧_
↓  is 

the channel downwelling atmospheric radiance from the entire hemisphere in channel i divided by pi. 

It is possible to obtain an expression for LST if Equation (1) is applied to two adjacent channels in one 
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atmospheric window. This two-channel technique is based on the fact that the atmospheric attenuation 

due to the radiation emitted by the surface is proportional to the difference between the at-sensor 

radiances measured simultaneously in two infrared channels [10,37–39]. 

3.2. Algorithm Development for FY-3A VIRR Data 

To develop an LST retrieval algorithm for FY-3A VIRR data, the atmospheric radiative transfer 

model, MODTRAN 4 [40], was used to simulate at-sensor radiance with the appropriate  

thermal-infrared channel response function of the VIRR. Figure 2 shows the corresponding spectral 

response functions of the FY-3A VIRR channels. For comparison, the spectral response functions of 

MODIS TIR Channels 31 (centered at 11.0 µm) and 32 (centered at 12.0 µm) are also shown in  

this figure. 

 

Figure 2. Spectral response functions of FengYun-3A (FY-3A) VIRR Channels 4 and 5 

and MODIS Channels 31 and 32. 

To broaden atmospheric variations to cover all possible real situations, two radiosonde observation 

databases are considered. One database is the latest version of the Thermodynamic Initial Guess 

Retrieval (TIGR), i.e., TIGR2002, which was constructed by the Laboratoire de Meteorologie 

Dynamique (LMD) to represent a worldwide set of atmospheric situations (2311 radio soundings) from 

polar to tropical atmospheres with varying water vapor amounts (0.1 to 8.0 g/cm2) and varying 

atmospheric surface temperatures (231 K to 315 K) [41]. The other database is the six standard 

atmospheric profiles for the tropics, mid-latitude summer, mid-latitude winter, sub-arctic summer,  

sub-arctic winter and 1976 United States standard atmosphere (US76) in MODTRAN 4. Because we 

only accounted for atmospheric variation in clear-sky conditions for LST retrievals, the TIGR2002 

profiles with a relative humidity (RH) greater than 90% are discarded, considering that this high RH 

seldom occurs under clear-sky conditions. In addition, the profiles with a low-level warm layer that is 

more than 10 K warmer than the surface are also discarded, because the inversion could cause a 

negative atmospheric correction when used in the split-window technique [42]. Therefore, 1396 

representative atmospheric situations in which the lowest atmospheric temperature ܶ  ranges from  
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231 K to 315 K and WVC ranges from 0.06 g/cm2 to 6.44 g/cm2 are extracted from TIGR2002. In 

total, 1402 atmospheric profiles are used in our simulations. 

Accounting for the angular dependence of the TOA radiance and the maximum VIRR viewing 

zenith angle (less than 65° from nadir), six viewing zenith angles (VZAs) (0°, 33.56°, 44.42°, 51.32°, 

56.25° and 60°), corresponding to secant (VZA) = 1.0, 1.2, 1.4, 1.6, 1.8 and 2.0, respectively, are used 

in the MODTRAN simulations. Using the VZAs and the radio soundings mentioned above as 
MODTRAN input, we can obtain the channel atmospheric parameters (߬, ܴ௧_

↑ , ܴ௧_
↓ ) with spectral 

integration of the channel response function for each VZA and each atmospheric profile. 

For a more realistic simulation, the LSTs are reasonably varied according to the atmospheric 

temperature ܶ  in the lowest layer of the atmospheric profiles. Specifically, the LST varies from  

ܶ െ 5 K to ܶ  15 K in steps of 5 K for ܶ  290 K and from ܶ െ 5 K to ܶ  5 K in steps of 5 K 

for ܶ ൏ 290 K. Moreover, considering most land cover types, an average emissivity ߝ ̅between 0.90 

and 1.0 (a 0.02 interval) and an emissivity difference Δε between −0.02 and 0.02 (a 0.005 interval) 

exist for VIRR Channels 4 and 5 [10]. To demonstrate the assumption of emissivity, Figure 3 shows 

the emissivities of VIRR Channels 4 and 5 and the range of the emissivity difference Δε between the 

two TIR channels, as calculated from 146 spectrum samples of soil, vegetation, water and snow in the 

University of California Santa Barbara (UCSB) spectral database [43] and the Johns Hopkins 

University (JHU) [44] spectral database. 

 

Figure 3. Value of emissivity and range of emissivity differences between VIRR Channels 

4 and 5. JHU, Johns Hopkins University; UCSB, University of California Santa Barbara. 

For a given LST, in combination with the atmospheric parameters (߬, ܴ௧_
↑ , ܴ௧_

↓ ), ௦ܶ and ߝ, the 

channel brightness temperature ܶ (i = 4, 5) at the TOA can be determined according to Equation (1) 

with the inverse of Planck’s law. At this stage, ௦ܶ is directly related to the TOA-measured brightness 

temperature ܶ  (i = 4, 5). In total, for the TIGR2002 database, 257,256 situations represent the 

simulated database for the LST estimation and for calculating the regression coefficients; 1188 

situations are obtained for the six standard MODTRAN 4 atmospheres to validate the present 

algorithm, for each VZA. 

Figure 4 shows the relationship between ௦ܶ െ ସܶ  and ସܶ െ ହܶ  calculated for all of the  

above-mentioned conditions with six sub-ranges of WVC between 0 and 6.5 g/cm2; for a mean 
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emissivity 1 =̅ ߝ, the emissivity difference Δε = 0, and VZA = 0°. From this figure, one can see that the 

relationship between ௦ܶ െ ସܶ  and ସܶ െ ହܶ  varies with the WVC sub-ranges. Therefore, the WVC 

should be divided into sub-ranges to retrieve the LST accurately. Based on Figure 4 and the  

non-linearity of the Planck function for temperature, a quadratic form is proposed [45–47]: 

௦ܶ ൌ ܽ  ܽଵ ∗ ସܶ  ܽଶ ∗ ሺ ସܶ െ ହܶሻ  ܽଷ ∗ ሺ ସܶ െ ହܶሻଶ (2)

where ௦ܶ  is the land surface temperature with surface emissivity ε = 1; ସܶ  and ହܶ  are the TOA 

brightness temperatures of FY-3A VIRR Channels 4 and 5, respectively; and ܽ െ ܽଷ  are the 

coefficients as functions of the WVC and VZA. 

 

Figure 4. Relationship between ௦ܶ െ ସܶ  and ସܶ െ ହܶ  calculated for all of the  

above-mentioned conditions with six sub-ranges of water vapor content (WVC) between  

0 and 6.5 g/cm2; for a mean emissivity ε = 1, the emissivity difference Δε = 0, and the 

viewing zenith angle (VZA) = 0°. 

Figure 5 presents the histograms of the difference between the actual and estimated ௦ܶ (Equation 

(2)) for the WVC sub-range [0, 1.5] and VZA = 0° and the WVC sub-range [5.5, 6.5] and VZA = 60°. 

The root mean square error (RMSE) between the actual and estimated ௦ܶ is 0.11 K for the former  

sub-range and 2.53 K for the latter sub-range at a surface emissivity ε = 1 and emissivity difference  

Δε = 0. The RMSEs obtained for the other WVC sub-ranges and VZAs are between these two values. 

Not all of the radiation sources at the Earth’s surface are blackbodies with emissivities equal to one. 

The most common land cover surface emissivity must be taken into account in the development of the 

split-window algorithm. Prata et al. [48] showed that a 1% emissivity uncertainty can affect LST 

values by approximately 0.7 K. Consequently, for different values of the numerical experiments 

mentioned above, as conducted by Wan and Dozier [10], the average emissivities are divided into two 

groups: 0.90 to 0.96 and 0.94 to 1.0. Note that the Planck function is a non-linear function of the LST. 

To obtain a nearly non-linear function with linear segments for accurately retrieving the LST, there 

must be some segment overlap. Therefore, the atmospheric WVCs are divided into six sub-ranges with 

an overlap of 0.5 g/cm2. The LSTs, ௦ܶ, are divided into five sub-ranges with an overlap of 5 K. Details 

on the various intervals of WVC and LST are presented in Table 2. We then retrieve the LST by using 

a split-window algorithm as follows [49]: 
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௦ܶ ൌ ܾ  ܾଵ ∗ ସܶ  ܾଶ ∗ ሺ ସܶ െ ହܶሻ  ܾଷ ∗ ሺ ସܶ െ ହܶሻଶ  ܾସ ∗ ሺ1 െ ሻ̅ߝ  ܾହ ∗ Δ(3) ߝ

where ܾ (i = 0, 5) are coefficients, which can be obtained through statistical regressions for each VZA 

and each sub-range. ߝ  ̅is the average mean emissivity, and Δε is the emissivity difference between 

VIRR Channels 4 and 5. Note that the coefficient ܾ is determined by each VZA and each sub-range, 

so the estimation accuracy of the WVC does not need to be very high for retrieving an accurate LST. 

In practice, when the WVC or LST of a pixel is located in two adjacent sub-ranges, we first calculate 

the distances between the numerical value of the WVC/LST and the central values of the two  

sub-ranges. The coefficients in the sub-range with a shorter distance are used to retrieve the LST. 

(a) (b) 

Figure 5. Histograms of the difference between the actual ௦ܶand the ௦ܶ estimated using 

Equation (2) for (a) the WVC sub-range [0, 1.5] and VZA = 0° and (b) the WVC  

sub-range [5.5, 6.5] and VZA = 60°. 

Table 2. Tractable sub-ranges of WVC and LST to determine the regression coefficients in Equation (3). 

Variable Tractable Sub-Range Overlap 

Water vapor content (WVC) (g/cm2) [0, 1.5], [1.0, 2.5], [2.0, 3.5], [3.0,4.5], [4.0, 5.5], [5.0, 6.5] 0.5 

Land surface temperature (LST) (K) ≤280, [275, 295], [290, 310], [305, 325], ≥320 5.0 

All of the numerical values of the coefficients given by Equation (3) can be determined through 

statistical regression for each VZA and each sub-range and can be stored in a look-up table. Table 3 

lists, for example, the coefficients ܾ to ܾହ of the split-window algorithm for the six VZAs in the WVC  

sub-range of 1.0 g/cm2 to 2.5 g/cm2 and the LST sub-range of 275 K to 295 K for the two emissivity 

groups. To determine the coefficient ܾ for other VZAs, we can linearly interpolate the six ܾ stored in 

the look-up table as a function of the secant VZA. Similar processes are used to determine the 

coefficients ܾଵ to ܾହ for other VZAs. 
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Table 3. Coefficients of the split-window algorithm for the WVC sub-range of 1.0 g/cm2 

to 2.5 g/cm2 and the LST sub-range of 275 K to 295 K for the two emissivity groups. 

Conditions WVC   [1.0, 2.5] Ts   [275 K, 295 K]  

Emissivity 1/cos(VZA) b0 b1 b2 b3 b4 b5 

ߝ ∈ ሾ0.90, 0.96ሿ 

1.0 6.1589 0.9799 2.1183 −0.0819 50.4947 −97.6539 

1.2 7.2545 0.9764 2.2088 −0.0700 49.9067 −97.4687 

1.4 8.3196 0.9730 2.2919 −0.0579 49.3379 −97.0982 

1.6 9.3640 0.9696 2.3681 −0.0454 48.7807 −96.5531 

1.8 10.3950 0.9662 2.4369 −0.0327 48.2272 −95.8291 

2.0 11.4044 0.9629 2.4995 −0.0199 47.6776 −94.9575 

ߝ ∈ ሾ0.94, 1.0ሿ 

1.0 3.8681 0.9889 1.8190 −0.0395 47.9444 −85.0717 

1.2 4.5454 0.9869 1.9230 −0.0297 47.5162 −86.0962 

1.4 5.1831 0.9850 2.0150 −0.0197 47.0893 −86.6894 

1.6 5.7910 0.9831 2.0973 −0.0094 46.6635 −86.9527 

1.8 6.3789 0.9814 2.1713 0.0009 46.2359 −86.9394 

2.0 6.9440 0.9797 2.2383 0.0113 45.8088 −86.7118 

3.3. Determination of LSEs 

As shown in Equation (3), the mean and differenced LSEs are model inputs. The accuracy of the 

retrieved LST also depends on the accuracy of the LSEs, particularly for dry atmospheric conditions. It 

is therefore preferable to determine the LSEs from the same sensors at the same spatial resolution. An 

NDVI-based threshold method [6] is adopted in this work. The normalized difference vegetation index 

(NDVI) is calculated as ܰܫܸܦ ൌ ሺߩଶ െ ଶߩଵሻ/ሺߩ   ଶ represent the FY-3A VIRRߩ ଵ andߩ ଵሻ, whereߩ

Channel Reflectances 1 (0.58–0.68 µm) and 2 (0.84–0.89 µm). The method determines the LSE 

according to the soil characteristics present in one pixel by considering the following cases. 

3.3.1. Bare Soil Pixels 

Sobrino and Raissouni [46] and Sobrino et al. [6] noted that a NDVI value of 0.2 for bare soil and  

0.5 for full vegetation are appropriate for global applications of a 1-km remotely-sensed land dataset. 

Thus, pixels with NDVI values below 0.2 are considered bare soil in this work. In this case, the typical 

soil spectra from the Johns Hopkins University (JHU) [44] spectral library database are used to 

simulate the VIRR channel reflectances (1–2 and 6–10) and emissivities (4–5) by combining the 

spectral response functions of those channels. Seventeen samples with unique major soil types, 

including clay loam, silty loam, sandy loam and loamy sand, are used in this investigation.  

Two statistical relationships are obtained by correlating the emissivities in Channels 4 and 5 to the 
channel reflectances (ߩ ) for the seven visible and near-infrared channels. The multiple linear 

regression relationships can be written as: 

ூோ_௦ߝ ൌ ܿ   ܿߩ ሺ݅ ൌ 4,5ሻ
ୀଵ~ଶ,~ଵ

 (4)

where ߝூோ_௦  (i = 4, 5) are the bare soil emissivities for Channels 4 and 5, respectively. c is the 

regression coefficient. Figure 6 compares the estimated LSEs to the actual LSEs calculated from the 
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JHU spectra database for various bare soil types. This figure shows that the emissivities for Channels 4 

and 5 can be relatively well described using the visible and near-infrared channel reflectances. These 

fitting results exhibited RMSE (R-square) values between the actual and estimated emissivities: 0.003 

(0.74) for Channel 4, and 0.003 (0.72) for Channel 5. 

 

(a) (b) 

Figure 6. Comparisons of the estimated LSEs and the actual LSEs calculated from the 

JHU spectra database for different bare soil types. 

3.3.2. Fully Vegetated Pixels 

Pixels with NDVI values above 0.5 are considered fully vegetated ( ௩ܲ  = 1) [6,46]. Because the 

United States Geological Survey (USGS) spectral library only provides reflectivity spectra and 

because the UCSB spectral library (University of California, Santa Barbara) only provides emissivity 

spectra, the JHU spectral library with both reflectivity and emissivity spectra for different surface types 

was used. Unfortunately, JHU only provides four vegetation spectra (conifer, broadleaf, green grass 

and dry grass), so all four vegetation spectra are used to simulate the VIRR channel reflectances (1–2) 

and channel emissivities (4–5). Two statistical relationships are obtained by correlating the Channel 4 
and 5 emissivities (ߝூோ_௩ସ	 and ߝூோ_௩ହ	) to the NDVI: 

	4ݒ_ூோߝ ൌ 0.889  (5) ܫܸܦ0.119ܰ

	5ݒ_ூோߝ ൌ 0.894  ܫܸܦ0.116ܰ (6)

Comparing the estimated emissivities and the actual emissivities calculated from the JHU spectra 

database shows that the RMSEs (R-squares) are 0.006 (0.97) for Channel 4, and 0.007 (0.95) for  

Channel 5. 

3.3.3. Mixed Pixels 

When the NDVI value is between 0.2 and 0.5, the pixel is a mixture of bare soil and vegetation. The 

emissivity is calculated according to the proportion of the bare soil to the vegetation [6]: 

ூோ_௩ߝ ௩ܲ  ூோೞሺ1ߝ െ ௩ܲሻ  ܥ ሺ݅ ൌ 4, 5ሻ (7)
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The vegetation proportion, ௩ܲ, is calculated by [50]: 

௩ܲ ൌ 
ܫܸܦܰ െ ܫܸܦܰ

௫ܫܸܦܰ െ ܫܸܦܰ
൨
ଶ

 (8)

where ܰܫܸܦ ൌ 0.2  and ܰܫܸܦ௫ ൌ 0.5 . The term ܥ  includes the effect of the geometrical 

distribution on the natural surfaces and the internal reflections (cavity effect) (i.e., for homogeneous 

and flat surfaces ܥ=0). A good approximation for this term is given by: 

ܥ ൌ ൫1 െ ூோ_ೞ൯ሺ1ߝ െ ௩ܲሻߝܨூோ_௩ ሺ݅ ൌ 4, 5ሻ (9)

where F is a shape factor [6], whose mean value is assumed to be 0.55 for VIRR Channels 4 and 5. 
 .ூோ_௩ are obtained using Equations (4)–(6), respectivelyߝ ூோ_ೞ andߝ

3.4. Determination of Atmospheric WVC 

Considering that the WVC is used to determine the optimal coefficients in the LST algorithm, an 

accurate WVC is not required provided that the estimated WVC is within the same sub-range as the 

actual WVC. The method proposed by [51], which utilizes the transmittance ratio of two split-window 

channels to derive the WVC, is used: 

ܥܸܹ ൌ ݀ଵ  ݀ଶ ൈ
߬

߬ 
(10)

߬

߬
ൌ
ߝ
ߝ

ܴ (11)

and: 

ܴ ൌ
∑ ሺ ܶ, െ തܶ݅ሻሺ ܶ, െ ത݆ܶ
ே
ୀଵ ሻ
∑ ሺ ܶ, െ തܶ݅ሻଶே
ୀଵ  (12) 

where ݀ଵ  and ݀ଶ  are unknown coefficients; ߬  and ߬  are the atmospheric transmittances in the  

split-window channels i and j, respectively; the subscript k denotes pixel k; and തܶ and തܶ are the TOA 

mean (or the median) channel brightness temperatures of the N neighboring pixels considered for 

channels i and j, respectively. 
Based on the numerical simulated results of ߬ and ߬ obtained in Section 3.2, coefficients ݀ଵ and ݀ଶ 

are first determined by Equation (10) and are further derived as functions of the secant VZA: 

݀ଵ ൌ 25.156 െ 13.572/ cosሺܸܼܣሻ  2.909/ cosଶሺܸܼܣሻ (13)

݀ଶ ൌ െ25.258  13.677/ cosሺܸܼܣሻ െ 2.931/ cosଶሺܸܼܣሻ (14)

The results of the comparison between the actual input WVC for the MODTRAN simulations and 

the WVC estimated by Equations (10) and (13)–(14) show that the bias and RMSE are 0.08 g/cm2 and  

0.16 g/cm2, respectively, which indicate that the estimated WVC can meet the needs of the proposed 

LST retrieval algorithm. 
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4. Results and Discussion 

4.1. Estimation of LST  

Figure 7 shows the histogram of the difference between the actual ௦ܶ and the ௦ܶ estimated with the 

coefficients corresponding to the sub-range ܹܸܥ ∈ ሾ1.0, 2.5ሿ  and ௦ܶ ∈ ሾ275	ܭ, ሿܭ	295  for two 

emissivity groups and VZA = 0°. The RMSE between the actual and estimated ௦ܶ is 0.28 K for the 

emissivity group ߝ ∈ ሾ0.94, 1.0ሿ and 0.37 K for the other emissivity group ߝ ∈ ሾ0.90, 0.96ሿ. 

 

(a) (b) 

Figure 7. Histogram of the difference between the actual and estimated ௦ܶ for the WVC  

sub-range of 1.0 g/cm2 to 2.5 g/cm2 and the LST sub-range of 275 K to 295 K for  

VZA = 0°. (a) ߝ ∈ ሾ0.90, 0.96ሿ and (b) ߝ ∈ ሾ0.94, 1.0ሿ. 

In addition, Figure 8 presents the RMSEs between the actual and estimated ௦ܶ as functions of the 

secant VZA for the two emissivity groups with different sub-ranges. Considering that, in reality, a 

lower LST is usually accompanied by low WVC, for the LST less than 280 K, the maximum WVC is  

2.5 g/cm2. For the LST between 275 K and 295 K, the maximum WVC is 5.5 g/cm2. 

As seen from Figure 8, the RMSEs increase as the VZA increases. The RMSEs are below 1 K for 

all sub-ranges of VZA below 30° or for all sub-ranges of VZA below 60° and WVC below 3.5 g/cm2. 

The RMSEs increase dramatically with the increase in the VZA when the WVC is above 3.0 g/cm2, 

with a maximum RMSE of 2.5 K for the sub-range ߝ ∈ ሾ0.94, 1.0ሿ ܥܸܹ , ∈ ሾ5.0, 6.5ሿ  and  

௦ܶ ∈ ሾ305	ܭ,  .ሿ for VZA = 60°ܭ	325

Note that, in practice, the LST is estimated in two steps for actual satellite data. First, the 

approximate LSTs are estimated using Equation (3) with the coefficients derived for the entire range of 

LST provided that the sub-ranges of the emissivity and WVC are known; then, more accurate LSTs are 

estimated again using Equation (3), but with the coefficients ܾ െ ܾହ corresponding to the sub-range of 

LST, which is determined according to the approximate LST obtained in the first step. Figure 8 also 

shows the RMSEs between the actual ௦ܶ and the ௦ܶ estimated with the coefficients obtained for the 

entire range of LSTs. 
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Figure 8. RMSEs between the actual and estimated ௦ܶ as functions of the secant VZA for 

various sub-ranges in two emissivity groups. 
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4.2. Sensitivity Analysis 

As Wan and Dozier [10] noted, the errors in the LST estimated by the split-window algorithm 

mainly result from the uncertainties in instrument noise, atmospheric properties and LSEs. These three 

sources of uncertainties are analyzed below. 

4.2.1. Instrument Noise (NEΔT) 

The noise-equivalent temperature differences (NEΔT) for FY-3A VIRR Channels 4 and 5 are both  

0.2 K, as specified in Table 1. To determine the significance of the instrument NEΔT on the retrieval 

of LST, a Gaussian random distribution error of 0.2 K is added to the simulated TOA brightness 

temperatures ସܶ and ହܶ in Equation (3). We then estimate the LST using Equation (3) with the noisy 

TOA brightness temperatures and compare it to the actual LST. For ߝ ∈ ሾ0.94, 1.0ሿ, ܹܸܥ ∈ ሾ1.0, 2.5ሿ 
and ௦ܶ ∈ ሾ275	ܭ,  ሿ, as an example, the effect of the instrument NEΔT on the LST retrieval isܭ	295

small, with an RMSE of 0.34 K. In contrast to the RMSE of 0.28 K for no-noise cases, the retrieval 

accuracy of the LST is changed by 21% for NEΔT = 0.2 K. 

4.2.2. Land Surface Emissivity 

From Equation (3), one can see that the accuracy of the LST retrieval related to the LSE is mainly 

dependent on the uncertainties in ሺ1 െ ௌ் due to the uncertainty in ሺ1ߪ ሻ̅ and Δε. The LST errorߝ െ  ሻ̅ߝ
and Δε can be estimated by: 

ௌ்ߪ ൌ ටܾସ
ଶߪሺ1 െ ሻଶߝ  ܾହ

ଶߪሺ∆ߝሻଶ (15)

where ܾସ and ܾହ are the regression coefficients obtained in Section 3.2. For ௦ܶ ∈ ሾ275	ܭ,  ሿ andܭ	295

ܥܸܹ ∈ ሾ1.0, 2.5ሿ  for two emissivity groups at VZA = 0, as an example, and assuming that the 

uncertainties in ሺ1 െ  ሻ̅ and Δε are approximately 1%, we can obtain an LST error of 0.97 K for theߝ

high emissivity group ߝ ∈ ሾ0.94, 1.0ሿ and 1.1 K for the low emissivity group ߝ ∈ ሾ0.90, 0.96ሿ. 

4.2.3. Atmospheric WVC 

It is well known that the WVC is not easily determined from satellite data. Note that the WVC is 

divided into six sub-ranges with an overlap of 0.5 g/cm2 in the present spilt-window algorithm. The 

WVC overlap can be divided into two adjacent sub-ranges. Specifically, the two sub-ranges 

correspond to two pairs of coefficients ܾ െ ܾହ. Therefore, the effect of the uncertainty in the WVC on 

the LST retrieval is mainly due to the incorrect sub-range selection of the WVC. In this work, we aim 

to analyze the effect of the WVC overlap on the LST retrieval. The WVC overlap for  

ܥܸܹ ∈ ሾ1.0, 1.5ሿ in the high emissivity group ߝ ∈ ሾ0.94, 1.0ሿ can be divided into two sub-ranges: 

ܥܸܹ ∈ ሾ0.0, 1.5ሿ and ܹܸܥ ∈ ሾ1.0, 2.5ሿ. We first estimate the LST with ܹܸܥ ∈ ሾ1.0, 1.5ሿ using the 

coefficients corresponding to the sub-ranges ߝ ∈ ሾ0.94, 1.0ሿ ܥܸܹ , ∈ ሾ0.0, 1.5ሿ  and  

௦ܶ ∈ ሾ275	ܭ,  ሿ; the RMSE between the actual and the estimated LST is 0.21 K. When using theܭ	295

coefficients corresponding to the sub-ranges ߝ ∈ ሾ0.94, 1.0ሿ ܥܸܹ , ∈ ሾ1.0, 2.5ሿ  and  
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௦ܶ ∈ ሾ275	ܭ,  ሿ, the RMSE is 0.26 K. This result shows that the uncertainty in the WVC canܭ	295

affect the accuracy of the LST retrieval by 24%. 

4.2.4. Total Error 

The total maximum error is calculated according to the expression given by: 

௧௧ߪ
ଶ ൌ ோெௌாߪ

ଶ  ௦ߪ
ଶ  ఌଶߪ  ௐߪ

ଶ  (16)

where ߪ௧௧ is the total error associated with the proposed split-window algorithm, ߪோெௌா is the error 

caused by the proposed algorithm itself, ߪ௦ is the error related to the instrument noise, ߪఌ is the 

error with respect to LSE and ߪௐ is the error caused by the uncertainty in the atmospheric WVC. For 

the sub-ranges ߝ ∈ ሾ0.94, 1.0ሿ, ܹܸܥ ∈ ሾ1.0, 2.5ሿ and ௦ܶ ∈ ሾ275	ܭ,  ሿ, the retrieval accuracy ofܭ	295

the LST related to the algorithm is affected by 0.28 K. The errors caused by the instrument noise, LSE 

and the uncertainty in the atmospheric WVC are 0.21, 0.97 and 0.24 K, respectively. Finally, the total 

error associated with the LST retrieval is approximately 1.1 K. 

5. Validation 

5.1. Validation Using the Simulated Data 

To test the performance of the proposed algorithm, data simulated with the same viewing geometry 

and land surface type conditions, but with the six standard atmospheres provided by MODTRAN 4, as 

mentioned in Section 3.2, are used. The TOA brightness temperatures for VIRR Channels 4 and 5 are 

obtained in combination with the MODTRAN outputs of the atmospheric parameters  
( ߬ ,ܴ௧_

↑ , ܴ௧_
↓ ) and reasonable variations in the ௦ܶ  and ߝ . We then calculate the surface 

temperature using the proposed split-window algorithm. Figure 9 shows a comparison and difference 

histogram of the actual ௦ܶ  and the estimated ௦ܶ  using the proposed algorithm for different types of 

surfaces and atmospheric profiles. The RMSEs listed in this figure stem from estimating the LST at 

various VZAs. The results are quite consistent with the maximum RMSE below 1 K. 

(a) (b) 

Figure 9. Comparisons (a) and difference histogram (b) of the actual LSTs (i.e., the 

MODTRAN 4 input LSTs) and those estimated using the proposed split-window algorithm 

for different types of surfaces, the six standard atmospheric profiles and the  

different VZAs. 
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5.2. Validation Using the MODIS LST Product MOD11_L2 

An inter-comparison method using the MODIS-derived validated LST V5 product MOD11_L2 at a 

1-km resolution is used to validate the proposed LST retrieval algorithm. Considering that the LST at 

the satellite pixel scale rapidly varies with high spatiotemporal variations, the accuracy of the  

inter-comparison method depends on the geographic coordinate matching, temporal matching and 

VZA matching of the two satellite-derived LST products [1,24,25]. 

Considering that the spatial resolutions for VIRR and MODIS are 1.1 km and 1 km, respectively, 

we do not take into account the spatial difference between these two estimated LSTs. The LSTs 

estimated using the proposed method from FY-3A VIRR data are resampled to a 1-km resolution 

according to the nearest-neighbor interpolation method. To avoid the effect of different view times on 

the LST difference between MODIS and VIRR, a region over which both sensors pass at the same 

time is chosen, i.e., Algeria (22.705°N to 29.145°N and 1.173°E to 9.047°E). The observation time of 

the two sensors is 10:30 UTC, 5 January 2010. Figure 10 gives the map of LST estimated from FY-3A 

VIRR satellite data for this inter-comparison region. 

 

Figure 10. Map of LST estimated from FY-3A VIRR satellite data at the observation time 

of 10:30 UTC, 5 January 2010. 

To reduce the effect of different viewing zenith angles, the pixels with VZA differences of less than 

10° are considered. Figure 11 displays the differences between the MOD11_L2 LSTs and FY-3 VIRR 

LSTs as a function of MOD11_L2 LSTs and the corresponding histogram. The different RMSEs are 

calculated according to the different land cover types, which are obtained from the MODIS land cover 

type 2010 L3 global 500-m SIN grid product MCD12Q1 and are classified by the International 

Geosphere-Biosphere Programme (IGBP) 17-class scheme [34]. To match the MODIS and VIRR 

LSTs, the 500-m SIN grid data are projected onto a 1-km Albers equal area projection using the 

MODIS Reprojection Tool (MRT) [52]. Compared with MOD11_L2 LST, the proposed method 

underestimates the VIRR LST, with an RMSE of 2.16 K for a cropland/natural vegetation mosaic,  
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2.37 K for croplands, 1.68 K for grassland, 2.32 K for open shrub land, 2.60 K for permanent 

wetlands, 1.75 K for savannas, 2.79 K for urban and built-up land, 1.75 K for woody savannas and 

3.59 K for barren or sparsely vegetated surfaces. Therefore, the difference between two estimated 

LSTs is relative small for homogeneous land surfaces, such as grasslands, while the difference is large 

for heterogeneous land surfaces, particularly barren or sparsely vegetated land cover. Note that spatial 

and angular differences exist between MODIS and VIRR and somewhat affect the resultant LSTs for 

comparison. In addition, as shown in Figure 2, the differences between the two TIR spectral response 

functions are relative large, and the calibration difference between the two sensors also affects the  

LST comparison. 

(a) (b) 

Figure 11. Comparison of two LSTs: (a) the difference between MOD11_L2 and VIRR 

LSTs as a function of MOD11_L2 LST; and (b) the corresponding histogram of the LST 

differences (1, cropland/natural vegetation mosaic; 2, croplands; 3, grassland; 4, open 

shrub land; 5, permanent wetlands; 6, savannas; 7, urban and built-up land; 8, woody 

savannas; 9, barren or sparsely vegetated). 

5.3. Validation Using In Situ Measurements 

To validate the proposed LST retrieval algorithm, the Hailar field measurements are used. Note that 

the data measured by the infrared radiometer are ground-based radiances that couple LST, LSE and 

downwelling atmospheric radiance. The ground-based LST can be retrieved by: 

ܵܮ ܶ௨ௗ ൌ ఒܤ
ିଵሾ

1
ఒߝ
൫ܮ௨ௗ,ఒ െ ሺ1 െ ఒሻܴ௧,ఒߝ

↓ ൯ሿ
 (17)

where ିܤଵ is the inversion of the Planck function, ܮ௨ௗ,ఒ is the radiance emitted from the surface, 

ܴ௧,ఒ
↓  is the downwelling radiance from the sky and ߝఒ is the land surface emissivity. 

Because the experimental campaign was conducted over one year from October, 2013, to 

September, 2014, the land cover of the field site was dry grass from 22 October to 5 November 2013. 

From 6 November 2013, to 25 March 2014, the site was covered by snow. From April to May, the 

snow was melting, and the site was again covered by dry grass. From June to September, the land 

cover at the site was green grass. Consequently, the value of ߝఒ is assigned a constant 0.940 for dry 
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grass, 0.983 for green grass and 0.988 for snow cover, as calculated by combining the spectral 

response function of SI-111 with the dry grass spectra, green grass spectra and snow spectra, 

respectively, provided by the UCSB spectral library database. Figure 12 illustrates the number of days 

with cloud-free conditions at the time of the FY-3A VIRR overpasses during the experiment period at 

the Hailar field site. 

 

Figure 12. Number of days with cloud-free conditions at the time of the FY-3A VIRR 

overpasses during the experimental period at the study site. 

Figure 13 provides a comparison between the LSTs retrieved from FY-3A VIRR data using the 

proposed method and those calculated using Equation (17) from the in situ measurements for all days 

with cloud-free conditions at the time of the VIRR overpasses. The cloud-free conditions are defined 

according to the measured ground-based radiance variation, i.e., smooth sinusoidal pattern a half hour 

before and after the VIRR overpass. The three-minute means of the ground observations were used. 

This figure shows that the bias and RMSE of the LSTs between two measurements (ground-based and 

satellite-based methods) are 0.17 K and 1.82 K, respectively. The LSTs estimated using our proposed 

method are highly correlated with those calculated from in situ measurements, with a squared 

correlation coefficient (R2) of 0.98. The figure illustrates that the proposed method slightly 

underestimates the LST for the temperatures between 260 K and 280 K. These cases correspond to the 

days in October, 2013, and April to May, 2014, when we assume a constant emissivity 0.940 for dry 

grass; this value may result in a slight overestimation of the LST calculated from the ground-based 

measurements. In addition, the ground data measured at the site are point-based, while the retrievals 

with FY-3A VIRR data using our proposed method have a spatial resolution of 1.1 km. The viewing 

direction of the ground-based radiometers is vertically downward, while the VZAs of the VIRR are 

variable for each pixel. Consequently, both the spatial scale difference and the viewing angle 

difference may somewhat affect the comparison of the two resultant LSTs. 
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Figure 13. Comparison between the LSTs estimated using the proposed method and those 

calculated using in situ measurements for cloud-free conditions at the time of the FY-3A 

VIRR overpass during the experiment period at the Hailar site (R2 is the square of the 

correlation coefficient). 

6. Conclusions 

In this paper, a split-window algorithm was proposed to retrieve the land surface temperature (LST) 

from thermal-infrared Channels 4 (centered at 10.8 µm) and 5 (centered at 12.0 µm) of the Visible and 

Infrared Radiometer (VIRR) onboard the Chinese second-generation polar-orbiting FengYun-3A  

(FY-3A) meteorological satellite. 

On the basis of radiative transfer theory, the proposed split-window algorithm was developed using 

an accurate atmospheric radiative transfer model, MODTRAN 4, with the latest version of the 

Thermodynamic Initial Guess Retrieval (TIGR) atmospheric profile database. To improve the accuracy 

of the split-window algorithm, the LST, the mean emissivity and atmospheric water vapor content 

(WVC) were divided into several tractable sub-ranges. The simulation analysis showed that the fitting 

root mean square errors (RMSEs) were proportional to viewing zenith angle (VZA), WVC and LST; 

the LST could be estimated with RMSEs below 1 K for the VZA sub-ranges less than 30° or for the 

VZA sub-range less than 60° and the atmospheric WVC sub-range less than 3.5 g/cm2, provided that 

the LSEs are known. 

Sensitivity analyses in terms of the instrument noise and the uncertainty in the LSE and atmospheric 

WVC were performed. The results showed that, given an instrument noise NEΔT = 0.2 K and 1% 

uncertainties in ሺ1 െ   ሻ and Δε, the total error associated with the LST retrieval was approximatelyߝ

1.1 K. 

Some data that were simulated independently with the same viewing geometry and land surface 

type conditions, but with different atmospheric conditions, were used to test the performance of the 

proposed algorithm. Compared with the actual input LSTs, the retrieved results are quite consistent for 

VZAs with a maximum RMSE of less than 1 K. 

The MODIS land surface temperature/emissivity (LST/E) products MOD11_L2 with a 1-km  

spatial resolution LST were used to inter-validate the proposed algorithm. A comparison of the  

two satellite-derived LSTs in terms of the geographic coordinate matching, temporal matching and 

VZA matching showed that the two datasets agree well for homogeneous land surfaces, such as 
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grasses, with an RMSE of 1.68 K. The agreement is poor for heterogeneous land surfaces, particularly 

barren or sparsely vegetated surfaces, with a RMSE of 3.59 K. 

In situ measurements at the Hailar field site in northeastern China from October, 2013, to 

September, 2014, were used to validate the proposed algorithm. The results showed that the bias and 

RMSE of the LSTs between the two types of measurements (ground-based and satellite-based 

methods) were 0.17 K and 1.82 K, respectively. 
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