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Abstract: Lidar data provide both geometric and radiometric information. Radiometric 

information is influenced by sensor and target factors and should be calibrated to obtain 

consistent energy responses. The radiometric correction of airborne lidar system (ALS) 

converts the amplitude into a backscatter cross-section with physical meaning value by 

applying a model-driven approach. The radiometric correction of terrestrial mobile lidar 

system (MLS) is a challenging task because it does not completely follow the inverse square 

range function at near-range. This study proposed a radiometric normalization workflow for 

MLS using a data-driven approach. The scope of this study is to normalize amplitude of road 

points for road surface classification, assuming that road points from different scanners or 

strips should have similar responses in overlapped areas. The normalization parameters for 

range effect were obtained from crossroads. The experiment showed that the amplitude 

difference between scanners and strips decreased after radiometric normalization and 

improved the accuracy of road surface classification. 
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1. Introduction 

Light detection and ranging (lidar) is an active remote sensing system that can effectively acquire the 

3D spatial coordinates of the target. The lidar system provides both geometric and radiometric 

OPEN ACCESS



Remote Sens. 2015, 7 6337 

 

information to identify different objects. The lidar radiometric information can be applied in 

visualization, segmentation, and classification of point clouds but is influenced by the material of target, 

system factors, geometric factors between the target and sensor (i.e., distance and incident angle), and 

atmospheric conditions [1,2]. Hence, lidar should be calibrated to obtain uniform radiometric 

information for further applications. 

The lidar intensity measurement can be converted into radiometric quantities with physical properties 

like backscattering coefficients. The radiometric correction of lidar system can be classified into two 

categories: model-driven and data-driven approaches [3]. The model-driven approach uses a physical 

mathematic model from the lidar equation [4–8] to convert lidar amplitude to a backscattering  

cross-section or backscattering coefficient [9,10] with physical meaning. The model-driven approach 

has been widely applied to airborne lidar system (ALS) radiometric correction in different models. This 

approach calculates the calibrated constant (Ccal), a constant with physical meaning derived from the 

lidar equation, based on the reflectance of reference targets. The calibrated constant is then applied to 

all lidar points to obtain the backscattering cross-sections. In contrast, the data-driven approach uses an 

empirical mathematic model derived from the dataset itself. The empirical function can be a function of 

range, incident angle or automatic gain control (AGC) [3,11–15]. This approach selects several 

homogeneous regions as control patches in overlapping areas. The control patches are used to calculate 

the correction parameters of the empirical model by least squares adjustment. The correction parameters 

are then applied to normalize the radiometrical difference between points. 

Lidar systems are available on several different platforms, such as ALS and terrestrial lidar 

systems (TLS). Several studies have developed radiometric correction methods for ALS. With the 

development of full-waveform lidar, Wagner et al. (2006) [16] used the range, pulse width, amplitude, 

and incident angle to calibrate small-footprint, full-waveform ALS. Höfle and Pfeifer (2007) [3] 

compared calibration results with model-driven and data-driven approaches at different heights and 

different trajectories using “range” only to form different empirical calibration functions, while Jutzi and 

Gross (2009) [11] considered both “range” and “surface incidence angle” to form an empirical 

calibration function. In addition, Ding et al. (2013) [12] considered both diffuse and specular reflectance 

with the Phong model for wet- or water-dominated areas. 

The fundamental equation in ALS radiometric correction inverses the received power to square range; 

however, the 1/r2 correction cannot be directly applied to TLS. Due to internal system factors such as 

brightness reducer, AGC [17], or receiver optics [18,19], the radiometric correction of TLS is more 

complex than ALS and does not completely follow the inverse square range function (1/r2) [20–23]. 

Because the TLS data, particularly TLS intensity at near range, cannot simply use the lidar equation in 

model-driven approach, most TLS radiometric processing uses the data-driven approach [17,20–25]. 

To understand the range effect on TLS intensity, Pfeifer et al. (2008) [20] used Riegl LMS-Z420i and 

Optech ILRIS-3D to measure different Spectralon targets at different distances. The observations were 

applied to from mathematic functions between observed intensity from the range and reflectivity of the 

targets. Because of the effect of near-distance brightness reducer, the behavior of near range was different 

from reflectivity. Therefore, a separation approach was applied to split the functions into two correction 

functions based on range. Kaasalainen et al. (2009) [17] also indicated the effect of near-distance 

brightness reducer for FARO LS HE80 from laboratory measurement and applied a logarithmic correction 

function for radiometric correction. Kaasalainen et al. (2011) [22] further investigated the incident angle 
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and range effects on TLS using reference targets. The experimental results indicated that the range effect 

is mainly dominated by instrumental factors, and that the lidar equation correction can only be used after 

10–15 m distance. The angle effect, however, is mainly related to target surface properties, and the 

behavior was similar to Lambertian (cosine) scattering law. The reflectance is related to material, physical 

properties (e.g., albedo, grain size), conditions (e.g., dry, wet) and others. In the radiometric correction for 

lidar system, the previous studies selected the asphalt road surface as a reference target to calculate the 

calibration coefficient of a lidar equation. As the road surface is a homogeneous reflecting surface and it 

behaves like Lambertian scatterer [5,16] than other material, so asphalt roads have been used for deriving 

the calibration constant based on an assumed value or field-measured reflectance value. 

There are a number of applications for radiometric corrected lidar data. Radiometric correction not only 

improves the radiometric consistence between lidar systems, it also provides physical radiometric 

quantities (e.g., backscattering) to separate different objects [2]. Moreover, it is also beneficial for point 

cloud segmentation [15]. Radiometric correction is an important process in the integration of multi-station 

(or multi-strip) lidar systems. For example, Höfle (2014) [26] performed radiometric correction for  

multi-station TLSs in maize plant detection. Radiometric correction is especially important in the 

development of multispectral lidar to integrate received power from different wavelengths [27]. For 

example, Hartzell et al. (2014) [28] developed multispectral TLS by integrating three different wavelength 

lidar systems and implemented the radiometric calibration of the different lidar systems to classify different 

rock types. Fang et al. (2015) [19] developed a near-distance intensity correction for TLS data that 

significantly improved the digital preservation of wall-painting in World Heritage Sites. 

Terrestrial mobile lidar system (MLS) usually contains multiple laser scanners to obtain a complete 

scene of road environments from different scanning directions. For example, Riegl VMX250 and Optech 

Lynx M1 have two laser units that scan in perpendicular directions. Another method to obtain a more 

complete scene of road environments is obtaining data from multiple strips, such as forward and reversed 

trajectories. As the road points from MLS are scanned from different laser units or different trajectories, 

the intensity of road points should be corrected or normalized to have uniform value. Most previous studies 

focused on radiometric correction for ALS and TLS; the radiometric processing for MLS is still sparsely 

available. The challenge of MLS radiometric correction is that the lidar equation for ALS cannot be directly 

applied to MLS. It does not completely follow the inverse square range function (1/r2) (Figure 1). In 

addition, the MLS obtains 3-D points in a dynamic platform and is more complicated than static TLS.  

 

Figure 1. An example of range-amplitude for MLS: the behavior of near-range is different 

from theoretical lidar equation. 
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The aim of this research was to establish an empirical radiometric normalization for MLS road points. 

We assumed that conjugate asphalt roads from different laser scanners or strips would respond similarly, 

and range effect was considered in radiometric normalizations. The proposed scheme was a data-driven 

approach, and this empirical model was obtained from crossroads. The scope of this study was to 

normalize road points for road surface classification, and therefore, non-road points such as vehicles and 

buildings were removed in this study. The contributions of this study were (1) to establish an empirical 

radiometric normalization processing for MLS; and (2) to compare the original and normalized points 

in road surface classification. The major work established and applied normalization models for road 

surface classification. In addition, the validation of proposed method included (1) the consistency of 

lidar amplitude before and after normalization; and (2) the accuracy of road surface classification. 

2. Study Area and Dataset 

This study used mobile lidar data acquired by Riegl VMX-250 [29], which consists of two Riegl  

VQ-250 laser scanners, four 5MP digital cameras, and a positioning and orientation system (POS). The 

minimum and maximum laser range measurements were 1.5 m and 500 m. Because the scanning 

mechanism of VQ-250 laser scanner belongs to a rotating polygon, the laser scanner has a 360°, full 

circle field-of-view in a near vertical direction. Its ground patterns are parallel scan lines. The laser beam 

shoots on the continuous rotation polygon mirror surface and is then reflected to the ground to form a 

continuous strip and parallel scan lines. The intersection angle of these two scanners is about 135° to 

avoid the object’s occlusion. 

The test area was located at Taipei City, and four datasets (Figure 2) with different characteristic were 

selected to evaluate the proposed method. The road surface is ordinary, new asphalt pavement with 

colored road markings (e.g., white, yellow, and red). Case 1 is a crossroad consisting of four strips. 

Because this area contains the least non-road object interference, it was selected as a reference to 

establish an empirical normalization model and calculate radiometric normalization coefficients. Once 

the radiometric normalization coefficients were determined, these coefficients were applied to all other 

cases from same system. Case 2 is another crossroads with four strips. Case 3 is a U-turn lane with one 

continued strip. It was included to illustrate that radiometric normalization is necessary even with a 

single strip. Case 4 is a linear road with two opposite strips. This road type is the most common in MLS 

and was used here to demonstrate the radiometric normalization with a wider area. Table 1 summarizes 

the information of four datasets. 

Table 1. Summary of test area. 

 Case 1 (Reference Area) Case 2 Case 3 Case 4 

Road type Crossroads Crossroads U-turn lane Linear road 

Number of Strips 4 4 1 2 

Size 100 m × 100 m 100 m × 100 m 100 m × 100 m 1400 m × 50 m 
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(a) (b) (c) 

(d) 

Figure 2. Test data colored by normalized amplitude: (a) case 1, (b) case 2, (c) case 3, and 

(d) case 4. 

3. Proposed Scheme 

The framework (Figure 3) consisted of three major parts: (1) data preprocessing; (2) empirical 

radiometric normalization; and (3) evaluation using consistency check and road surface classification. 

In Section 3.1, we calculated the normal vector of the lidar point and extracted the road point. Because 

our focus is road points, we removed the non-road points using normal vector and estimated road surface 

height and additional road region polygons from the vector map. In Section 3.2, range was the major 

factor in radiometric normalization, so we used different empirical models to find the relationship 

between range and amplitude. Finally, the proposed models were evaluated by consistency checks and 

road surface classification in Section 3.3. 

3.1. Data Pre-Processing 

The input data included (1) original MLS data, (2) adjusted trajectory data from the POS, and  

(3) the 2-D road region from the vector map. Each lidar point in the original MLS data contain GPS 

time, X, Y, Z, range between laser center and object, and amplitude of echo. Because our focus was road 

points, the role of the 2-D road region from vector map was to exclude the non-road region. 
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Figure 3. The framework of MLS radiometric normalization. 

 

Figure 4. Extraction of scan line (colored by scan line ID). 

The data pre-processing included three major works: (1) indexing the scan line, (2) calculating the 

surface normal vector from lidar points, and (3) road point selection. Separating different scan lines is a 

core process in radiometric normalization and is used to determine the relationship of amplitude and 

range in one scan line. In this study, the scanning mechanism of test data was a 360°, full circle rotating 

mirror. The duration time of a scan line is fixed by predefined scanning rates (i.e., 0.01 sec/scan in our 

study). Assuming that the GPS time for the first point of a project is t0 and the duration time of a scan 
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line is dt, the points within t0 to t0 + dt are classified onto a scan line. As the test area in this study is 

relatively simple than other cases, the results of the previous method and this refined method are the 

same. The scan line identification can be used to calculate the length of range for a scan line. So, we 

select the longest scan line to observe the relationship between amplitude and range. Besides, the 

sequential points on a scan line can be used to determine the height jump between points. It can be used 

to remove the non-road points. In scan line extraction, different colors indicate different scan lines 

(Figure 4), illustrating that the scan lines are distributed along the MLS trajectory. 

The normal vector of a lidar point can be used in road point selection. The normal vector is obtained 

by plane fitting of the nearest lidar points within a certain distance. In this study, the search radius was 

0.5 m, and the lidar points within this radius were selected for plane fitting. The plane equation shown 

in equation 1 is representative of a plane in any direction. After the plane fitting, the normal vector is 

calculated from plane coefficients, as shown in Equation (2). For complex targets like façades from 

MMS, the sequential points should be considered and the original points can be converted to  

sensor-oriented coordinate system to maximize the consistency within points [30]. For complex targets 

from ALS, the point selection plays an important role in normal vector calculation. Abed et al. (2012) [31] 

proposed a Robust Surface Normal (RSN) estimation method based on the K-nearest neighbors selection 

algorithm. On the other hand, Lin et al. (2014) [32] used the weighted covariance matrices to refine the 

normal vector in ALS. In this study, the simple plane fitting is applied to road surface as it is homogenous 

and relatively simple than other complex objects. ݔܣ + ݕܤ + ݖܥ = ௫݊(1) ܦ = ;ܣ ݊௬ = ;ܤ ݊௭ = ܥ (2)

where 

x, y, z = coordinates of lidar point; 

A, B, C, D =coefficients of a plane; and 

nx, ny, nz = normal vector of a plane. 

The last step of data pre-processing is non-road point removal. Our normalization target was based on 

asphalt road, but objects such as pedestrians, vehicles, traffic signals, and trees will influence the result. 

There are three major steps to non-road point removal. (1) Road region from vector map: the road polygons 

from the vector map define the boundaries of road, and we exclude the lidar points outside of the defined 

road region. (2) Normal vector criteria: if the normal vector of a lidar point is not in a near-vertical 

direction, this lidar point might not locate on road surface; therefore, if the angle between the normal vector 

and the Z-axis is greater than 5°, this lidar point was treated as a non-road point. This step can determine 

if the point is located on the plane, but some points above the road surface (e.g., top of the car) cannot be 

removed and elevation threshold is required. (3) Elevation threshold: to remove a flat point above the road 

surface, we used the heights of the trajectory and the vehicle to estimate the elevation of road surface. The 

non-road points can be removed if the elevation of the lidar points exceeds the estimated elevation. 

After data preprocessing, the selected lidar points contain asphalt road and road markings. Because 

case 1 was selected as a reference area to establish empirical normalization model, the white-colored 

road marks and black-colored new pavement may affect the model fitting; therefore, additional 

processing is needed to remove the road mark. We digitized the road marks and new pavements and 

produced a mask to remove these non-asphalt road regions (Figure 5a–c). 
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(a) (b) (c) 

Figure 5. Extraction of road points for case 1: (a) additional manual digitization of road 

marks, (b) scanner 1 (colored by amplitude), and (c) scanner 2 (colored by amplitude). 

3.2. Empirical Radiometric Normalization 

We used the amplitude-range function to remove the distance effect for the recorded amplitude. Due 

to the near distance effect on TLS, the recorded amplitude behavior deviates from an ideal physical lidar 

equation at near distance [19,20,22]. In other words, the recorded amplitude of TLS is not entirely 

proportional to 1/r2 in the lidar equation. The data-driven approach is usually applied to the radiometric 

correction of TLS. There are two possibilities to collect the reference dataset for data-driven approach. 

One is to collect the amplitudes from signalized Spectralon targets at different ranges [26] and then apply 

the collected amplitudes and ranges to estimate the amplitude-range function. An alternate method is to 

measure the amplitude from available natural field targets. For example, asphalt roads exhibit stability 

for the radiometric correction of ALS [2]. Most of the TLS used the signalized Spectralon targets at 

different ranges for radiometric correction. The position of TLS and target are fixed in data collection. 

For MLS, the laser scanning mechanism is a line scanner mounted on a moving platform. As for the 

dynamic lidar sampling and moving platform, the natural field target like asphalt road is more favorable 

for radiometric correction of MLS. We assume that the asphalt road at different ranges should have 

similar amplitude after radiometric normalization; therefore, this study used asphalt road as a reference 

target to determine the amplitude-range function. 

Because most manufacturers do not provide detailed system parameters to implement the  

model-driven approach, empirical functions were adopted in this study. Several studies indicated that 

the intensity of TLS was proportional to 1/r2 after 10 m to 15 m distance [21,22], which means that the 

near range and non-near range are two different functions. In this study, a separation approach [20] was 

applied to estimate the amplitude-range functions, using two low-order polynomial functions rather than 

a high-order polynomial function. The advantage of separation approach is to avoid over-fitting in  

high-order polynomial functions. 

The scan lines from case 1 were selected as a reference dataset to determine the amplitude-range function. 

The non-asphalt road points in case 1 were removed in a previous step, and therefore only the asphalt road 

points were utilized to estimate the amplitude-range function. The proposed separation approach included 

two major steps: (1) separation point determination; and (2) polynomial functions fitting. 
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To separate the amplitude-range function into two functions, we determined a separation point for 

near-range and far-range. Previous studies found that the turning point is around 10 m; hence, we 

selected the lidar points within 5 m to 15 m distances to determine the separation point. All the selected 

lidar points were applied in a second-order amplitude-range polynomial fitting. The peak of this function 

was then treated as a turning point to distinguish near-range and far-range points. In this study, the 

separation point refers to the turning point of the second-order polynomial function. In the separation 

point estimation for scanners 1 and 2 in case 1 (Figure 6), the red line is a second-order polynomial 

function while the circle is the estimated separation (turning) point. The calculated separation points for 

scanners 1 and 2 were 9.98 m and 12.54 m, respectively. The difference between scanner 1 and scanner 2 

is about 2.5 m. The sources of discrepancy in separation range between these two laser scanners might 

be: the system parameters for two logarithmic amplifiers are not the same; or, the near distance reducers 

might use different system parameters in these two laser units. 
 

(a) (b) 

Figure 6. Extraction of separation points: (a) scanner 1 (colored by number-of-point in a 

cell) and (b) scanner 2 (colored by number-of-point in a cell). 

Once the separation point was determined, two polynomial functions were chosen to model the 

relationship between amplitude and range. We used a function of range, as shown in Equation (3), for 

near-range data. A polynomial function based on range was adopted in the modeling of  

amplitude-range behavior. The trend of amplitudes in far range was decreasing while the range was 

increasing. As the amplitude of MLS was proportional to 1/r after the separation point, we used a 

function of inverse-range (i.e., 1/r, Equation (3)) to model the amplitude-range relation. A least squares 

fitting technique was applied to optimize the polynomial coefficients. We have removed most of the 

outliers in the stage of data preprocessing (Section 3.1) as the least square method is not robust against 

the outliers. A huge amount of lidar points need excessive computational resources. In order to reduce 

the points and also improve the computational efficiency, we use range-amplitude distribution  

(i.e., x-axis is range and y-axis is amplitude) to remove the inconsistent points. We calculate the moving 

mean and the standard deviation along the range direction. Then, we select the points within  

± 1 sigma for least squares fitting. Therefore, the majority points for least squares fitting are asphalt road 

points. After point reduction, the number of road points for scanners 1 and 2 are 1,162,391 and 1,134,137 

points. To avoid discontinuities at separation point (rsp), the positional continuous functions  

(C° continuous) and first-order differential equations (C1 continuous) were added to constrain the 

continuity (see Equations (4) and (5)). Finally, f(r) was used as a normalized factor to convert the original 
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recorded amplitude into normalized amplitude (Equation (6)). Because the fitting result will influence 

the normalization process, the optimal polynomial order is needed. The lowest root mean square error 

(RMSE) was chosen to be a standard function and was applied to the normalization process. 
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ଵ݂൫ݎ௦൯ = ଶ݂൫ݎ௦൯ (4)

ଵ݂ᇱ(ݎ௦)= ଶ݂ᇱ(ݎ௦) (5)ܣ = ሻݎ݂ሺܣ (6)

where 

f1(r) = polynomial function for near-range; 

f2(r) = polynomial function after separation point; 

r = range; 

rsp = range at separation point; 

a0~an, b0~bn = polynomial coefficients to describe the range effect; 

Ao = original amplitude; and 

An = normalized amplitude. 

3.3. Verification 

3.3.1. Consistency Check 

Because our aim was to reduce the radiometric difference between different strips or scanners in 

overlapped regions in which the amplitudes from different strips or scanners should have similar 

responses, we used amplitude difference to evaluate the performance of proposed method. The 

consistency check was based on a 10 cm by 10 cm 2D grid, determined by the ~5 cm spacing between 

points in a scan line. The grid, which is considered an overlapped region, should contain at least two 

points from different strips or different scanners.  

The maximum amplitude difference can be classified into two types: maximum amplitude difference 

between scanners ∆Ascanner and maximum amplitude difference between strips ∆Astrip. The idea of DeltaA 

(delta amplitude) is to evaluate the consistency of amplitudes between strips or scanners in a cell. We 

have to define the size of a cell before the evaluation. If the cell size is too large, different types of points 

(e.g., white-colored road mark, black-colored asphalt pavement, etc.) will be mixed in a cell. The 

standard deviation of amplitude will be overestimated because the amplitudes of white-colored road 

mark and black-colored asphalt pavement have large differences. If the cell size is too small, the problem 

of mixing points can be solved, but the number of points is insufficient to calculate the reliable standard 

deviation. Therefore, we consider a small cell size and calculate the differences between the maximum 

and minimum amplitudes (DeltaA) in the evaluation. 

For maximum amplitude difference between scanners ∆Ascanner, assuming that a set of amplitudes from 

scanner 1 in a cell is Ascanner1 = {Ascanner1(1),Ascanner1(2),…Ascanner1(n)}, a set of amplitudes from scanner 

2 in the same cell is Ascanner2 = {Ascanner2(1),Ascanner2(2),…Ascanner2(m)}. The maximum amplitude 
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difference, ∆Ascanner, can be determined from Equation (6), and the improvement after radiometric 

normalization is defined as Equation (8). 

For maximum amplitude difference between strips ∆Astrip, assuming that a set of amplitudes from strip 
id 1 to n in a cell is ܤ = ൛ܣ௦௧_ଵ, ⋯,௦௧_ଶܣ ,  ௦௧_ൟ. The maximum amplitude in B is max(B)j and jܣ

is the strip id for this maximum amplitude. The minimum amplitude in B is min(B)k and k is the strip id 

for this minimum amplitude. The maximum amplitude difference, ∆Astrip, can be determined from 

Equation (7), and the improvement after radiometric normalization is defined as Equation (8). ∆ܣ௦ = max	ሺmaxሺܣ௦ଵሻ െ minሺܣ௦ଶሻ ,maxሺܣ௦ଶሻ െ min	ሺܣ௦ଵሻሻ (7)∆ܣ௦௧ = maxሺmaxሺܤሻ െ minሺܤሻ), j്k (8)ݐ݊݁݉݁ݒݎ݉ܫ = ∆Aoതതതതതത െ ∆Anതതതതതത∆Aoതതതതതത ൈ 100%
 

(9)

where ∆A = the maximum difference of amplitudes in a cell; ∆A୭തതതതത = the mean of amplitude differences in overlapped areas before normalization; and ∆A୬തതതതത = the mean of amplitude differences in overlapped areas after normalization. 

3.3.2. Classification 

The proposed method not only normalizes the distance effect of MLS at different ranges, but also 

improves the consistency of amplitudes from different strips and scanners. All the datasets from different 

strips and scanners can be combined in road surface classification. In this study, ISODATA [33] 

unsupervised classification and object-based classification were applied to separate the three classes 

from lidar amplitude: ordinary asphalt road, new asphalt pavement, and colored road markings 

(Figure 7). ISODATA was used to compare the results before and after radiometric normalization, while 

the object-based classification [34], using eCognition Developer 9.0 [35], was applied to compare the 

results between pixel-based and object-based approaches. The major steps in object-based classification 

include homogeneous segmentation, training data selection, and nearest neighborhood classification 

based on regions. Note that only amplitude information was applied for classification. In addition, we 

manually produced reference data from lidar and orthoimage. A confusion matrix (also called error 

matrix) was used to evaluate the results of classification before and after normalization. 

 

Figure 7. Illustration of three classes. 
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4. Results 

Validation experiments were carried out in four stages. First, selection of polynomial functions was 

examined; second, the amplitude consistence between different strips and scanners were checked; third, 

the results of road object classification before and after normalization was compared; and fourth, 

visualization of amplitude data before and after normalization was presented. 

4.1. Selection of Polynomial Functions 

We used least squares fitting to determine polynomial coefficients for the radiometric normalization 

process. Different polynomial functions were tested to find the most suitable combination. For  

near-range function, range polynomial functions (f1(r)) from degrees 2 to 4 were tested; far-range, the 

inverse-range polynomial functions (f2(r)) from degrees 1 to 3 were tested. RMSE was selected as the 

accuracy index. The fitting results from combinations of polynomial functions and corresponding 

RMSEs (Table 2) showed no significant improvement after combination 3. To avoid over fitting, we 

choose combination 3 as the best model. The fitting errors for scanners 1 and 2 were 0.0291  

(0.0291/0.8 = 3.6%) and 0.0269 (0.0291/0.8 = 3.3%), respectively. The maximum value of amplitude 

was about 0.8, and therefore the fitting errors were less than 4%. 

Table 2. Fitting errors of different range-corrected equations. 

Combination ࢌሺ࢘ሻ  ࢌሺ࢘ሻ  RMSE  

(Scanner 1) 

RMSE  

(Scanner 2) 

1 ܽ + ܽଵݎ + ܽଶݎଶ ܾ + ܾଵିݎଵ 0.0311 0.0292 

2 ܽ + ܽଵݎ + ܽଶݎଶ ܾ + ܾଵିݎଵ+ܾଶିݎଶ 0.0313 0.0291 

3 ܽ + ܽଵݎ + ܽଶݎଶ + ܽଷݎଷ ܾ + ܾଵିݎଵ+ܾଶିݎଶ 0.0291 0.0269 

4 ܽ + ܽଵݎ + ܽଶݎଶ + ܽଷݎଷ ܾ + ܾଵିݎଵ+ܾଶିݎଶ+ܾଷିݎଷ 0.0291 0.0269 

5 ܽ + ܽଵݎ + ܽଶݎଶ + ܽଷݎଷ + ܽସݎସ ܾ + ܾଵିݎଵ+ܾଶିݎଶ 0.0290 0.0269 

6 ܽ + ܽଵݎ + ܽଶݎଶ + ܽଷݎଷ + ܽସݎସ ܾ + ܾଵିݎଵ+ܾଶିݎଶ+ܾଷିݎଷ 0.0290 0.0269 

In the polynomial fitting for combination 3 (Figure 8), the red and blue lines were the polynomial 

functions for near-range and far-range. The behavior at near-range was not proportional to 1/r; therefore, 

a third-order range polynomial function was applied. After the near-range, a second-order 1/r polynomial 

function was used to ensure that the amplitude was decreasing while the range was increasing. Once the 

polynomial coefficients were calculated, we used polynomial function as a normalization factor and 

applied it to the original data (Figure 8a). After the range normalization, the relationship between range 

and corrected amplitude was evaluated (Figure 8b). The slope of normalized amplitude-range was near 

zero, demonstrating that the distance effect for asphalt road was removed via radiometric normalization. 
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(a) 

 
(b) 

Figure 8. Range-amplitude polynomial function (combination 3): (a) polynomial fitting and 

(b) amplitude normalization. 

4.2. Statistical Analysis 

The evaluation process was introduced in Section 3.3.1, and here we show the quantitative results of 

radiometric normalization. The statistical analyses of amplitude difference were divided into delta 

amplitude between scanners and delta amplitude between strips to compare the differences between 

scanners and strips in overlapped areas (Table 3). The quantitative results included mean, standard 

deviation, and improvement (Equation (7)). The number of overlapped cells referred to the number of 

observations, and the cell size was 0.01 m2. A large number of overlapped areas were selected in the 

evaluation process, which included a minimum number of observations of 140,000 cells. 

We used case 1 to calculate the normalization functions and apply to other cases. The developed 

radiometric normalization method was applied to all road points. In all cases, the mean and standard 

deviation of delta amplitude were reduced after the normalization. To compare the improvement for all 

cases (Figure 9a), the improvements ranged from 47% to 56%. The proposed method was suitable to 
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improve the radiometric consistence from different strips and scanners, but most of the improvements 

between strips were higher than improvements between scanners. This study demonstrated that a standard 

area can be selected to obtain the normalization function and apply it to all dataset. Because crossroads 

usually contain multiple strips for more overlapped areas, we suggest using a crossroad as a standard area. 

Table 3. Quantitative results for radiometric normalization. 

  
 

Number of Overlapped Cell Original Normalized Improvement 

(%)   Mean Std. Mean Std. 

Case 1 

Between  

scanners 

Strip 1 159,869 0.1145 0.0616 0.0586 0.0340 48.82% 

Strip 2 196,738 0.1063 0.0560 0.0520 0.0315 51.04% 

Strip 3 198,458 0.1058 0.0590 0.0538 0.0332 49.15% 

Strip 4 194,938 0.1106 0.0665 0.0577 0.0370 47.83% 

Between strips 322,272 0.1517 0.0576 0.0745 0.0328 50.89% 

Case 2 

Between  

scanners 

Strip 1 145,301 0.1010 0.0602 0.0514 0.0326 49.11% 

Strip 2 150,302 0.1165 0.0611 0.0598 0.0339 48.67% 

Strip 3 145,162 0.1091 0.0588 0.0554 0.0331 49.22% 

Strip 4 150,035 0.1055 0.0581 0.0534 0.0322 49.38% 

Between strips 284,262 0.1585 0.0533 0.0778 0.0304 50.91% 

Case 3 
Between  

scanners 
Strip 1 161,140 0.1221 0.0616 0.0611 0.0347 49.96% 

Case 4 

Between  

scanners 

Strip 1 1,487,061 0.1208 0.0648 0.0628 0.0356 48.01% 

Strip 2 1,666,863 0.1087 0.0603 0.0568 0.0325 47.75% 

Between strips 586,934 0.1529 0.0748 0.0663 0.0354 56.64% 

To compare the mean difference between scanners and strips (Figure 9b), the mean difference 

between strips was reduced from 0.15 to 0.07 while the mean difference between scanners was reduced 

from 0.10 to 0.06. Before normalization, the mean difference between strips was larger than the mean 

difference between scanners. For an overlapped area, the laser pulse from different strips had a larger 

difference than that from different scanners; therefore, radiometric normalization from different strips 

or different stations must be considered before application. The standard deviation of amplitude 

difference (Figure 9c) was reduced from 0.06 to 0.03, which was much lower than the mean difference. 

Because the results after normalization were similar to the fitting errors (RMSEs; Table 2), the remaining 

variations can be explained as the variation of road surface properties. 

(a) (b) 
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(c) 

Figure 9. Comparison of statical results for all cases: (a) improvement, (b) comparison of 

mean differences, and (c) comparison of std. errors. 

4.3. Road Surface Classification 

The performance of road surface classification before and after radiometric normalization was 

analyzed. Theoretically, the painted colored road markings should have the highest amplitude, and the 

new asphalt pavement should have the lowest amplitude [36]. We used MLS amplitudes to separate 

ordinary asphalt road points, new pavement asphalt road points, and colored road marks via ISODATA 

unsupervised classification. Note that only amplitude was applied in road surface classification. 

The confusion matrix was generated from a manually digitized road map for all four cases 

(Figures 10d, 11d, 12d and 13g). Different colors indicated different types of road surfaces. Both original 

(Figures 10e, 11e, 12e and 13h) and normalized (Figures 10f, 11f, 12f and 13i) amplitudes were used in 

road surface classification (Table 4). The accuracy of classification after the normalization was higher 

than the original, indicating that the normalization increased the correctness in classification accuracy 

from 6% to 14%. In particular, the accuracy of new pavement was most significant. 

Table 4. Summary of road surface classification. 

Case 

Correctness (%) Completeness (%) 
Overall  

Accuracy (%) 
Kappa New  

Pavement 

Ordinary 

Pavement 

Road 

Mark 

New  

Pavement 

Ordinary 

Pavement 

Road  

Mark 

1 

Original (ISODATA) 75.09 77.84 66.01 59.27 84.25 86.53 76.01 0.5422 

Normalized (ISODATA) 85.36 82.38 71.95 67.80 90.03 86.40 82.29 0.6597 

Normalized (OBC) 81.69 88.16 76.20 81.68 87.50 81.00 85.08 0.7200 

2 

Original (ISODATA) 59.26 80.25 80.72 64.28 76.45 83.90 73.31 0.4985 

Normalized (ISODATA) 85.18 90.23 77.09 80.3 90.9 89.77 87.56 0.7626 

Normalized (OBC) 93.43 91.71 65.46 80.86 93.08 91.91 89.24 0.7960 

3 

Original (ISODATA) 58.58 68.96 25.13 44.38 65.74 84.31 59.47 0.2531 

Normalized (ISODATA) 69.56 76.99 37.92 57.18 77.32 84.12 70.90 0.4388 

Normalized (OBC) 68.79 81.10 59.98 70.51 78.97 69.45 75.61 0.5260 

4 

Original (ISODATA) 3.68 98.89 37.61 69.44 84.18 85.1 84.17 0.3358 

Normalized (ISODATA) 8.66 98.85 40.06 48.82 90.48 85.13 90.02 0.4521 

Normalized (OBC) 61.31 98.70 52.26 66.69 95.57 80.64 94.64 0.6090 

0.0000

0.0100

0.0200

0.0300

0.0400

0.0500

0.0600
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0.0800

St
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Std.  for all cases
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For the regions near to the trajectory, the data set without normalization shows higher amplitude than 

the normalized data. Without the radiometric normalization, the amplitude of new pavement near to the 

trajectories is higher than the new pavement distributed on other regions. Consequently, the new 

pavement near to the trajectory is easily misclassified into ordinary pavement. After the normalization, 

the new pavement at different locations has similar amplitude and can be classified correctly. For the 

ordinary pavement distributed on far-range regions, the data set without normalization shows lower 

amplitude when compared to ordinary pavement distributed on near-range regions. In other words, the 

same pavement distributed at different locations has large amplitude differences. Some of the far-range 

ordinary pavement has amplitude similar to near-range new pavement. Therefore, the far-range ordinary 

pavement might be misclassified into new pavement. After the normalization, the ordinary pavement at 

different locations has similar amplitude and can be classified correctly. The experimental results 

indicated that the normalized amplitudes can be used to separate new and old pavements. 

To compare the results of ISODATA from original and normalized amplitudes, the overall accuracies 

of cases 1 and 2 were higher than the other cases as the number of strips for the first two cases is larger 

than cases 3 and 4. Although the overall accuracies for cases 3 and 4 were greater than 70%, the Kappas 

were less than 0.5 because the majority of road surface was ordinary asphalt road. Because the ordinary 

pavement of case 4 was covered by a serious tire footprint, the correctness of new pavement in case 4 

was less than 10%. The area of new pavement (i.e., 12.76 m2) in case 4 was relatively smaller than other 

cases. The commission areas for original and normalized amplitude were 231.71 m2 and 65.68 m2, 

respectively, and the result of normalized amplitude was better than original amplitude. 

To compare the results of point-based (ISODATA) and object-based classification (OBC) for 

normalized amplitudes, the object-based classification provides higher accuracy than ISODATA in all 

cases (see Table 4). The results of object-based classification are shown as Figures 10g, 11g, 12g and 13j. 

The object-based classification aggregates the points with similar amplitude into regions, then, it 

separates different road surfaces based on amplitudes of regions. The improvement of overall accuracy 

ranged from 1.68% to 4.62% while the improvement of Kappa ranged from 0.033 to 0.156. This  

object-based classification improves the salt-and-pepper effect when utilizing the lidar amplitude in 

classification. The object-based classification significantly improved the accuracy of ISODATA in 

Case 4. The overall accuracy and Kappa reached 94.64% and 0.6090, respectively, in Case 4. 

4.4. Visualization Check 

After the numerical analysis, we visually compared MLS before and after radiometric normalization for 

case 1 using aerial orthophoto (Figure 10a). From the amplitude of road points before and after 

normalization (Figure 10b,c), it can be seen that the original amplitude image has high amplitude along the 

trajectory, but this phenomenon did not occur in the reference orthophoto; the radiometrical discrepancy 

was removed after normalization (Figure 10c). From the manual digitization (Figure 10d) and the results of 

unsupervised classification before and after normalization (Figure 10e,f), it can be seen that original 

classification result and manual digitization were different. Although the new pavements were misclassified 

into ordinary pavement at near range, the classification was improved after the range normalization. 

At the case 2 crossroad, an aerial orthoimage (Figure 11a) was included for comparison. This area 

covered a large area of new asphalt pavement and showed the original and normalized amplitudes 
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(Figure 11b,c, respectively). The near-range effect of MLS was removed after the radiometric 

normalization, and the coverage of new asphalt pavement was clearer in the normalized amplitude image 

(Figure 11c) than the original (Figure 11b). The classification results also showed that the road surface 

can be classified correctly after the range normalization (Figure 11d–f). 

 

(a) (b) (c) 

 

(d) (e) (f) (g) 

Figure 10. Case 1: (a) orthophoto, (b) original amplitude, (c) corrected amplitude,  

(d) manual digitization, (e) classified results using original amplitude, (f) classified results using 

corrected amplitude, and (g) results of object-based classification using corrected amplitude. 

The case 3 U-turn road covered an underpass road section, and the corresponding aerial orthophoto 

(Figure 12a) covered the high-pass road. Because most of the road surfaces in case 3 were occluded by 

the high-pass road and trees in the aerial orthophoto, this case demonstrated the possibility of obtaining 

an underpass road surface from MLS, which is more suitable than aerial photography for monitoring the 

road surface in an underpass environment. Only one strip showed the amplitude before and after 

normalization (Figure 12b,c); however, the near-range effect of this dual-laser system produced higher 

amplitudes near to the trajectory (Figure 12b). This phenomenon could be normalized via the proposed 

method (Figure 12c), meaning that the MLS should be corrected even though it only has one strip. The 

reference road surface map (Figure 12d) and the unsupervised classification of original and  

range-corrected amplitude images (Figure 12e,f) show that the original amplitude image incorrectly 

classifies the new pavement as old pavement, but the range-corrected amplitude image corrects the 

classification. The experimental result also showed the improvement in road surface classification. 

 



Remote Sens. 2015, 7 6353 

 

 

(a) (b) (c) 

 

   

(d) (e) (f) (g) 

Figure 11. Case 2: (a) orthophoto (reference only), (b) original amplitude, (c) corrected 

amplitude, (d) manual digitization, (e) classified results using original amplitude, (f) 

classified results using corrected amplitude, and (g) results of object-based classification 

using corrected amplitude. 

 

(a) (b) (c) 

 

(d) (e) (f) (g) 

Figure 12. Case 3 (underway lidar acquisition): (a) aerial photo above the underpass,  

(b) original amplitude, (c) corrected amplitude, (d) manual digitization, (e) classified results 

using original amplitude, (f) classified results using corrected amplitude, and (g) results of 

object-based classification using corrected amplitude. 
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Case 4 included two opposite strips, 1.4 km in length. The amplitudes before and after normalization 

(Figure 13a,d) included two enlarged subareas for better observation of the original (Figure 13b,c) and 

normalized (Figure 13e,f) data. The near range effect was corrected after normalization. The results 

demonstrate that the proposed method works well for longer strips for road surface classification 

(Figure 13g–i). Before normalization, the ordinary roads were significantly misclassified into new 

pavements and road markings, a phenomenon that can be improved by using the normalized amplitude. 

 

(a) (b) (c) 

 

(d) (e) (f) 

 

 

(g) (h) (i) (j) 

Figure 13. Case 4: (a) original amplitude, (b) original amplitude (zoom-in A), (c) original 

amplitude (zoom-in B), (d) range-corrected amplitude, (e) range-corrected amplitude  

(zoom-in A), (f) range-corrected amplitude (zoom-in B), (g) manual digitization (zoom-in 

C), (h) classified results using original amplitude (zoom-in C), (i) classified results using 

range-corrected amplitude (zoom-in C), and (j) results of object-based classification using 

corrected amplitude (zoom-in C). 

5. Conclusions 

In this study, we proposed a range normalization method to reduce the abnormal amplitude 

phenomenon at near distance. We assumed that conjugate asphalt roads from different laser scanners or 

strips would have similar responses. The systematic error can be eliminated through the empirical 

function. The experimental results indicated that the proposed method may improve the radiometric 

consistency of road points between scanners and strips. Four different cases were evaluated. In the visual 

display, the amplitude became more consistent after normalization, and the abnormal amplitude 

phenomenon of the trajectory along the scanner was corrected. In the consistency check, the amplitude 
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discrepancy was reduced via the proposed method. The improvements for amplitude consistency were 

better than 47% between scanners and 50% between strips. In the road surface classification, the 

accuracy of classification after the normalization was higher than the original, and the overall accuracy 

reached 70% for road surface classification. In particular, the improvement of new pavement was most 

significant. For the road surface classification, we were only concerned with the radiometric 

normalization for road points by natural signalized target. In future studies, the road surface classification 

should explore more variables than amplitude, the only one adopted in this study. Further improvements 

of classification should include additional lidar features [28]. 
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