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Abstract: Validation and performance evaluations are beneficial for developing methods 

that estimate the remotely sensed land surface temperature (LST). However, such evaluations 

for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data are 

rare. By selecting the middle reach of the Heihe River basin (HRB), China, as the study area, 

the atmospheric correction (AC), mono-window (MW), single-channel (SC), and  

split-window (SW) methods were evaluated based on in situ measured LSTs. Results 

demonstrate that the influences of surface heterogeneity on the validation are significant in 

the study area. For the AC, MW, and SC methods, the LSTs estimated from channel 13 are 

more accurate than those from channel 14 in general cases. When the in situ measured 

atmospheric profiles are available, the AC method has the highest accuracy, with a  

root-mean squared error (RMSE) of about 1.4–1.5 K at the homogenous oasis sites. In actual 

application without sufficient in situ measured inputs, the MW method is highly accurate; 

the RMSE is around 1.5–1.6 K. The SC method systematically overestimates LSTs and it is 

sensitive to error in the water vapor content. The two SW methods are simple to use but their 

performances are limited by accuracies, revealed by the simulation dataset. Therefore, when 

the in situ atmospheric profiles are available, the AC method is recommended to generate 

reliable ASTER LSTs for modeling the eco-hydrological processes in the middle reach of 
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the HRB. When sufficient in situ measured inputs are not available, the MW method can be 

used instead. 

Keywords: land surface temperature (LST); validation; performance evaluation; Heihe 

River basin (HRB); atmospheric profile; land surface emissivity (LSE); ASTER 

 

1. Introduction 

Land surface temperature (LST) is one of the most important parameters at the interface between the 

earth’s surface and the atmosphere. LST acts as a sensitive indicator of climate change, and it is an 

essential input parameter for land surface models, e.g., Ma et al. (2015) [1]. Because of the intense 

variability at different spatial and temporal scales, thermal infrared (TIR) remote sensors on board 

satellite platforms provide the only opportunity to observe LSTs over large regions. Thus, how to 

estimate LSTs with the required accuracy and spatio-temporal resolutions using satellite TIR data has 

become an objective in the field of quantitative remote sensing over the past four decades. 

The thermal radiation observed by a TIR remote sensor is attributable to the following sources: the 

radiation emitted by the land surface after being absorbed by the atmosphere; the radiation emitted from 

the atmosphere; and the atmospheric radiation reflected by the land surface after being absorbed by the 

atmosphere. The radiation emitted by the land surface is closely related to LST and land surface 

emissivity (LSE). Therefore, the LSE and atmospheric conditions are two factors that must be 

determined prior to estimating the LST from TIR remote sensing data. In fact, if the concurrent 

atmospheric profile (representing the vertical distributions of air temperature, water vapor, etc.) and the 

LSE were obtained when a TIR image was being acquired, it is possible to quantify the atmospheric 

influences with an atmospheric radiative transfer model, e.g., MODTRAN [2]. In this case, the LST can 

be calculated using an inversion method. However, in situ atmospheric profiles and LSEs are usually 

unavailable. Thus, practical methods are needed. Until now, many methods have been reported in the 

literature for estimating LSTs assisted by some input parameters (such as atmospheric profile, water 

vapor, and LSE), e.g., the single-channel method, the multi-channel method, and the multi-angle method. 

A comprehensive and insightful review can be found in [3]. 

Validation and performance evaluations of the LST methods are essential for developing valid and 

practical methods. In recent years, the quality of TIR data with low spatial resolutions has improved due 

to the demands for climate change investigations. For example, evaluations of split-window (SW) 

methods for estimating sea surface temperatures and LSTs from Moderate Resolution Imaging 

Spectroradiometer (MODIS) data are reported by [4]. Evaluations of SW methods for estimating LSTs 

are reported by [5] using Advanced Very High Resolution Radiometer (AVHRR), MODIS, and 

Visible/Infrared Imager Radiometer Suite (VIIRS) data and by [6] using Geostationary Operational 

Environmental Satellite (GOES) data. Evaluations of SW and temperature-emissivity separation 

methods are reported by [7] using MODIS data and VIIRS data. A few evaluations of the methods for 

TIR remote sensing data with moderate spatial resolutions have also been reported. For example, 

Sobrino et al. (2004) compared the atmospheric correction (AC) method, the mono-window (MW) 

method, and the generalized single-channel (SC) method for Landsat-5 TM data in a homogeneous plain 
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in Spain [8]. This research found that the SC method yielded higher accuracy than the MW method. 

Zhou et al. (2012) evaluated four LST methods for estimating LSTs from Landsat-5 TM data in an arid 

region in Northwest China; they reported that these methods’ performances varied with the atmospheric 

conditions [9]. 

The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), which is on board 

the Terra satellite that was launched in December 1999, provides TIR images with a 90-m spatial resolution 

in five channels over 8–12 μm [10]. Additionally, ASTER has two other subsystems that operate in the 

visible and near infrared (VNIR) bands with a 15-m spatial resolution and in the shortwave infrared 

(SWIR) band with a 30-m spatial resolution. Although images from the SWIR subsystem are not available 

now, ASTER still has great potential for estimating LSTs because of its multiple TIR channels. The 

temperature-emissivity separation method can be applied and the LST and LSE can be estimated after a 

preliminary atmospheric correction is conducted and after the ground-level TIR radiation is obtained [11]. 

The temperature-emissivity separation method is the original method for the ASTER standard LST 

product. In recent years, validations of this product have been reported in the literature, e.g., Wang and 

Liang (2009) [12]. In addition to the temperature-emissivity separation method, other methods for a single 

or dual TIR channel can also be applied to ASTER data. For example, Pu et al. (2006) revised the SW and 

MW methods for ASTER to estimate urban LSTs; these methods’ performances were evaluated 

qualitatively by examining the relationships between LST and the normalized difference vegetation index 

(NDVI) [13]. Two SW methods for AVHRR and Along-Track Scanning Radiometer (ATSR) data were 

adapted for ASTER by Jiménez-Muñoz and Sobrino (2007) [14]. The application of this research in 

agricultural areas indicated that the SW methods had an accuracy of approximately 1.5 K, which was 

similar to the accuracy of the ASTER standard LST product. Jiménez-Muñoz and Sobrino (2010) applied 

the SC method to ASTER data and compared the performances of different combinations of ASTER 

channels and coefficients of different training sets [15]. Their results demonstrated that the SC method had 

a near-zero bias and a standard deviation of approximately 2 K. Unfortunately, similar studies are rare. 

Additional evaluations of the performances of different methods for ASTER data are needed. 

In this research, the middle reach of the Heihe River basin (HRB) in Northwest China is selected as 

the study area. The objective is to evaluate the performances of multiple methods for estimating LSTs 

from ASTER data. The results of this research will benefit the development of practical LST methods 

that provide input for evapotranspiration models at the field scale in agricultural areas. 

2. Study Area and Datasets 

2.1. Study Area and in situ LST Measurements 

The study area has an agricultural oasis-desert landscape (Figure 1). The study area’s elevation is 

approximately 1480 m. The climate is temperate continental, with a cold winter and a hot summer. The 

annual average air temperature is 7.3 °C, and the relative humidity is 52%. The annual average total 

precipitation is 130 mm, while the annual average evaporation is 2002 mm. The agricultural oasis 

benefits from the water of the Heihe River. As shown in Figure 1, the main land cover in summer is 

oasis cropland, residential areas, and wetland, while sandy desert, desert steppe, and the Gobi desert are 

common in the surrounding areas. The vegetation is dominated by corn for seed. Because of the study 



Remote Sens. 2015, 7 7129 

 

area’s water shortage, TIR remote sensing plays an important role in monitoring the evapotranspiration 

of agricultural fields in summer. 

 

Figure 1. Map of the study area and locations of the AMSs. (a) Map of mainland China and 

location of the HRB; (b) map of the HRB and location of the study area; (c) locations of the 

AMSs within the oasis of the study area; and (d) the ASTER image (R/G/B = 3/2/1) of the 

study area acquired on 11 August 2012. 

The intensive observation period for the Heihe Watershed Allied Telemetry Experimental Research 

(HiWATER) program was conducted in the HRB from May to September 2012. HiWATER was 

designed as a comprehensive eco-hydrological experiment. Readers are encouraged to refer to  

Li et al. (2013) for details [16]. The in situ LST measurements, as well as other meteorological 

parameters, were collected by the Multi-Scale Observation Experiment on Evapotranspiration 

(MUSOEXE), which was the first thematic experiment of HiWATER conducted in the middle reach of 

the HRB [17]. There were 21 automatic meteorological stations (AMSs) in the study area, including 17 

within the oasis and four outside (i.e., SSW—sandy desert, HZZ—desert steppe, GB—Gobi, and  

SD—wetland). All the AMSs, except for one oasis station (EC16), measured the surface incoming and 

outgoing shortwave radiation, the surface incoming and outgoing longwave radiation, and the net 

radiation with four-component radiometer sets [17,18]. The average values were provided every 

10 minutes, except for the HZZ, which provided the average values every 30 minutes. Therefore, 

measurements from 19 AMSs were used in this research. Details on these AMSs are shown in Table 1. 
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Table 1. AMS stations providing the surface shortwave and longwave radiation 

measurements in this research. 

Name 
Four-Component Radiometer Set 

Land Cover Type 
Instrument Height (m) Diameter of FOV (m) 

EC01 CNR1 6.0 44.78 Vegetable 

EC02 CNR4 4.0 29.86 Maize 

EC03 NR01 6.0 44.78 Maize 

EC04 CNR1 6.0 44.78 Residential areas 

EC05 CNR1 4.0 29.86 Maize 

EC06 CNR4 6.0 44.78 Maize 

EC07 CNR4 4.0 29.86 Maize 

EC08 CNR4 6.0 44.78 Maize 

EC09 CNR1 6.0 44.78 Maize 

EC10 CNR1 6.0 44.78 Maize 

EC11 CNR1 4.0 29.86 Maize 

EC12 CNR4 4.0 29.86 Maize 

EC13 CNR4 5.5 41.05 Maize 

EC14 CNR4 6.0 44.78 Maize 

EC15 PSP and PIR 12.0 89.57 Maize 

EC17 CNR1 6.0 44.78 Apple orchard 

SD NR01 6.0 44.78 Wetland 

GB CNR1 6.0 44.78 Gobi 

SSW NR01 6.0 44.78 Sandy desert 

Note: The CNR1 and CNR4 sets were produced by Kipp & Zonen; the PSP and PIR set was produced by the 

Eppley; the NR01 sets were produced by the Hukseflux. 

The LST within the field of view (FOV) of the longwave pyrgeometer was calculated as follows: 

Ts ൌ	ඨ
Lout െ (1 െ εb)Lin

εbσ

4

 (1)

where Ts is LST in K; Lout is surface outgoing longwave radiation in W·m−2; Lin is incoming longwave 

radiation from the atmosphere in W·m−2; εb is broadband emissivity; and σ is the Stefan–Boltzmann’s 

constant, which is valued at 5.67×10−8 W·m−2·K−4. 

εb was calculated by weighting the component emissivities with their fractions. The component 

emissivities were measured with a portable 102F infrared spectrometer, with a spectral response range 

of 8–14 μm and a spectral resolution of 4 cm−1 [19–21]. The FOV of the 102F infrared spectrometer was 

4.8º, and the instrument was mounted at a height of 1.1–1.2 m [20]. For each object, approximately three 

measurements were performed. There were in situ measured LSEs on 17 dates, and the measurements 

were quality checked by the provider [20]. For each ASTER image, the in situ measured LSEs on the 

nearest dates were used. The fractions were determined through the following two steps. First, the FOV 

of the longwave pyrgeometer at each site was calculated and the distributions of the internal land cover 

types were recorded. Second, nine photographs were taken by a digital camera every five to 10 days at 

each site, depending on the vegetation growth [22,23]; the component fractions of the land cover types 

(for example, vegetation and soil for cropland) were calculated by classifying the photographs. Because 

of instrument failure, in situ emissivity measurements were unavailable after 14 September 2012. 

Therefore, the longwave radiation values were not converted to the ground LSTs. 
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2.2. Remote Sensing Datasets 

ASTER’s thermal channels have favorable specifications. The radiometric resolution is better than 0.3 K, 

and the absolute accuracy is better than 2 K (240–270 K) or 1 K (270–340 K) [10]. The spectral ranges of these 

five TIR channels are 8.125–8.475 μm, 8.475–8.825 μm, 8.925–9.275 μm, 10.25–10.95 μm, and  

10.95–11.65 μm. Their spectral response functions are shown in Figure 2. Note that ASTER channels 13 and 

14 have spectral ranges that are similar to the split-window channels of other satellite TIR sensors, e.g., MODIS 

channels 31 and 32, AVHRR channels 4 and 5, and Landsat-8 TIRS (Thermal Infrared Sensor) channels 1 and 

2. Therefore, classical SW methods can also be adapted to ASTER data [24]. In addition, these two channels 

are also similar to the single TIR channel of Landsat TM (Thematic Mapper) and ETM+ (Enhanced Thematic 

Mapper Plus). Thus, the MW method and SC method may be appropriate for ASTER data. 

 

Figure 2. Spectral response functions of the five TIR channels of ASTER. 

Twelve daytime ASTER images were collected under clear skies. The dates covered nearly the entire 

maize growing process, including the early stage in May and June (30 May, 15 June, and 24 June), the 

middle stage in July and August (10 July, 2 August, 11 August, 18 August, and 27 August), and the late 

stage in September (3, 12, 19, and 28 September). Note that the first 10 images were collected during 

MUSOEXE, while the last two images were collected after MUSOEXE. The overpass times for these 

images were approximately 04:12 to 04:19 UTC. ASTER Level-1B products (after radiometric 

calibration and geometric sampling), 3A01 products (orthogonal projection images), and 2B03 products 

(surface temperatures) were purchased from the ASTER Ground Data System of the Earth Remote 

Sensing Data Analysis Center of Japan. 

To quantify the surface thermal heterogeneity of the study area, two airborne Thermal Airborne 

Spectrographic Imager (TASI) images were collected during MUSOEXE. The TASI images were 

acquired by the TASI-600 push-broom hyperspectral thermal sensor system between 05:37 and 10:11 UTC 

on 30 June 2012, and between 02:45 and 07:10 UTC on 10 July 2012 [16,25–27]. TASI has favorable 

specifications, with 32 channels in the spectral range of 8–11.5 μm [28]. The TASI images had a 3-m 

spatial resolution. LSTs and LSEs were estimated using a temperature-emissivity separation method, 

and the validations showed that the estimated LST is accurate within 1.5 K [27]. 
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2.3. Atmospheric Profiles 

An atmospheric profile is conducive for determining the atmospheric influences in the TIR channel. 

Three types of atmospheric profiles were collected in this research. The first type was acquired by the 

Zhangye National Climate Observatory (39º05ꞌN and 100º17ꞌE) through radiosondes on the dates of the 

ASTER data collection [29]. This observatory is located in northern part of the study area. In June and 

August, the acquisition time was 05:15 UTC, which was near the overpass time of ASTER. In May and 

September, the acquisition time was 11:15 UTC. 

The second type was extracted from the MODIS atmospheric profile products, i.e., MOD07_L2 in 

version 5. The MOD07_L2 profiles were selected because the product is available to the public. The spatial 

resolution of the MOD07_L2 product is 5 km. Compared with the in situ profiles, the MOD07_L2 products 

have coarser vertical resolutions, with 20 levels from 1000 hPa to 5 hPa. The overpass times of the MODIS 

profiles were identical to those of the ASTER images because both ASTER and MODIS are on board the 

Terra satellite. The third type was downloaded from the Department of Atmospheric Science at the 

University of Wyoming. The atmospheric profiles at 12:00 UTC at the Jiuquan station (39°46'N, 98°29'E, 

elevation = 1478 m) were used, and the dates of atmospheric profiles were the same as those of the ASTER 

images. The Jiuquan station is approximately 190 km away from our study area and has a very 

similar climate. 

3. Methodology 

3.1. Methods for Estimating LSTs 

Estimating the LST from the TIR remote sensing data is based on the thermal radiance acquired by 

the sensor along the line of sight. Assuming that the land is a Lambertian surface in the TIR spectral 

range under local thermodynamic equilibrium and the sky is cloud-free, the thermal radiance acquired 

by the sensor can be described as follows [30]: 

Li	ൌ	εiτiBi(Ts) 	(1 െ εi)τiLi
↓ 	Li

↑ (2)

where the subscript i denotes the channel; L is the radiance in W·m−2·μm−1·sr−1; ε is the LSE; τ is the 

atmospheric transmittance; B is the radiance emitted by a blackbody at temperature Ts in W·m−2·μm−1·sr−1; 

and L↓ and L↑ are the atmospheric downwelling and upwelling radiances in W·m−2·μm−1·sr−1, respectively. 

Anisotropy is important factor influencing the LST estimation, but it cannot be accurately modeled 

in large regions at this stage. Despite the assumptions in Equation (2), studies have proven that it provides 

a good approximation for the radiative transfer process and that it acts as the basis for many LST 

methods [3]. As reviewed by [3], there are numerous LST methods. For many scientific users who are 

interested in applying remotely sensed LSTs in other fields (e.g., eco-hydrology and environmental 

science), the primary choice is a simple and practical method that has acceptable accuracy. Therefore, 

the following methods are examined in this research. 

3.1.1. The Atmospheric Correction (AC) Method 

According to Equation (2), the blackbody radiance at temperature Ts is as follows: 
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BiሺTsሻ	ൌ	
Li െ Li

↑ െ ሺ1 െ εiሻLi
↓τi

εiτi
(3)

Then, the LST can be obtained as follows: 

Ts	ൌ	
hc

λeffk ln ሺ1		2hc2/λeff
5 BiሺTsሻሻ

(4)

where h is Planck’s constant (6.6261 × 10−34 J·s); c is 299,792,458 m/s; λeff is the effective wavelength 

of channel i in μm; and k is Boltzmann’s constant (1.3806 × 10−23 J/K). 

Apparently, the AC method requires three concurrent atmospheric parameters when the TIR image is 

acquired: the atmospheric transmittance, upwelling radiance, and downwelling radiance. Using the three 

types of atmospheric profiles in Section 2.3, these parameters were calculated for each ASTER image 

using the MODTRAN code in version 5.2.2. 

3.1.2. The Mono-Window (MW) Method 

The MW method was first proposed by Qin et al. (2001) for Landsat TM data [31]. This method 

relates atmospheric effects with two atmospheric parameters, i.e., the atmospheric transmittance and the 

effective mean atmospheric temperature. The former parameter can be estimated with the atmospheric 

water vapor content (WVC) based on their significant correlation. The latter parameter can be inferred 

from the air temperature near the surface. In the MW method, the LST is calculated as follows: 

൝
Ts	ൌ	ሼaiሺ1	െ	Ci െ Diሻ		ሾbiሺ1	െ Ci െ Diሻ		Ci 	DiሿTbi െ DiTa‐effሽ/Ci

Ci	ൌ	τiεi																																																																														
Di	ൌ	ሺ1 െ τiሻሾ1		τiሺ1 െ εiሻሿ																																																							

	 (5)

where a and b are two coefficients that depend on the spectral response function of channel i; Tb is the 

at-sensor brightness temperature; and Ta-eff is the effective mean atmospheric temperature. 

The MW method is appropriate for a single TIR channel. For ASTER, the atmospheric effects in 

channels 13 and 14 are weaker and the LSE variations are lower than those in channels 10, 11, and 12 [15]. 

Therefore, we applied the MW method to ASTER channels 13 and 14. Then, we fitted the coefficients a 

and b in Equation (5) according to the spectral response features of these two channels (Table 2). 

Table 2. Coefficients a and b in the MW method for ASTER channels 13 and 14. 

Channel a b R2 F Test Standard Error of Estimation 

13 0.4404 −66.0506 0.9995 128467.9511 0.1690 

14 0.4620 −68.8317 0.9996 136422.0490 0.1720 

3.1.3. The Single-Channel (SC) Method 

Jiménez-Muñoz and Sobrino (2003) proposed a generalized single-channel method for estimating 

LSTs from a single TIR channel [32]. The most important feature of this method is that it relates 

atmospheric effects with three atmospheric functions of the WVC. In this method, the LST is calculated 

as follows: 

Ts	ൌ	γሾሺΨ1Li  Ψ2ሻ/εi 	Ψ3ሿ		δ (6)

where γ and δ are two parameters related to the at-sensor brightness temperature of channel i; and ψ1, 

ψ2, and ψ3 are three atmospheric functions: 
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Ψ1

Ψ1

Ψ1

൩ൌ 
c11 c12 c13
c21 c22 c23
c31 c32 c33

൩ 
w2

w
1
൩ (7)

where cij (I = 1, 2, 3; j = 1, 2, 3) can be determined based on atmospheric profiles. Jiménez-Muñoz and 

Sobrino (2010) used two global atmospheric profile databases to determine the coefficients in 

Equation (7), including TIGR61 with 61 atmospheric profiles and STD66 with 66 atmospheric 

profiles [15]. The TIGR61 database includes 28 tropical profiles, 12 mid-latitude summer profiles, 12 

sub-arctic winter profiles, and nine U.S. Standard profiles, which were extracted from the 

Thermodynamic Initial Guess Retrieval (TIGR) atmospheric profile database [33–35]. The STD66 

database was generated based on the six standard atmospheres (tropical, mid-latitude summer,  

mid-latitude winter, sub-arctic summer, sub-arctic winter, and U.S. Standard) included in MODTRAN 

code by changing the water vapor with from a scaling factor of 0.5 to 1.5 in increments of 0.1 [35]. The 

coefficients in Equation (7) can be found in Table 2 of [15]. 

3.1.4. The Split-Window (SW) Method 

Split-window (SW) methods are commonly applied to the remote sensing images acquired by two 

adjacent TIR channels located in the atmospheric window between 10 μm and 12 μm. The basis of these 

methods lies in the different atmospheric absorptions of the two channels. The SW methods have 

different forms. A list of classical SW methods can be found in [5,24]. 

Jiménez-Muñoz and Sobrino (2007) adapted two SW methods intended for other TIR sensors to 

ASTER [14]. The first method requires WVC and LSE as inputs: 

Ts	ൌ	a0		a1ሺTbi െTbjሻ		a2ሺTbi െTbjሻ2ሺa3  a4wሻሺ1 െ εሻ		ሺa5		a6wሻΔε		Ti (8)

where ak (k = 0, 1, …, 6) are coefficients that can be determined based on a training dataset, which is 

generated through comprehensive atmospheric radiative transfer simulations; ε = (εi + εj)/2; Δε = εi − εj. 

The second method is a simplification of Equation (8): 

Ts	ൌ	a0		a1ሺTbi െ Tbjሻ		a2ሺTbi െ Tbjሻ2	Ti (9)

Equation (9) seems very simple because it relies on all parameters except for the brightness 

temperatures. Therefore, the method’s performance is significantly influenced by the training schemes 

in different atmosphere and land cover conditions. Jiménez-Muñoz and Sobrino (2007) found the two 

SW methods above yielded high accuracies, with root-mean squared errors (RMSEs) of 1.0 K and 

1.5 K [14]. Therefore, these coefficients were utilized in our research. In this paper, the two SW methods 

above are abbreviated “SW-WE” and “SW-QUAD”. 

3.2. Determining the Input Parameters for Each Method 

The LSE is a necessary parameter in most LST methods. In recent decades, many LSE estimation 

methods have been proposed for different applications [36]. One of the most frequently used practical 

LSE methods is the NDVI threshold (NDVITHM) method proposed by [37]. For the land surface, a pixel 

is treated as a mixture of soil and vegetation. This method was used here, and the required vegetation 

fraction was determined with the NDVI on each date. The NDVI was calculated from the land surface 



Remote Sens. 2015, 7 7135 

 

reflectance values of ASTER channel 3 and channel 2, which were obtained through atmospheric 

corrections using the in situ atmospheric profiles. 

The MW method requires the input of the mean effective atmospheric temperature. We calculated 

this parameter based on the near-ground air temperature according to [31]. The spatially distributed  

near-ground air temperature was interpolated based on the air temperature measured at the AMSs. Both 

the MW method and SC method need WVC, which can be calculated directly from atmospheric profiles 

or estimated with the water vapor pressure at the ground level [9]. Using the in situ measured atmospheric 

profiles in this study area, a significant relationship between the water vapor pressure and WVC can 

therefore be calculated as follows: 

w	ൌ	0.237e െ 0.0763 (10)

where e is the water vapor pressure at the ground level in hPa. There were 12 samples for training 

Equation (10). The coefficient of determination, R2, was 0.733. 

Using the same training samples, the atmospheric transmittance in ASTER channels 13 and 14 was 

predicted with the WVC: 

ቂ
τ13
τ14
ቃ= ቂെ0.0760 0.9885

െ0.0921 1.0013
ቃ ቂ

w
1ቃ (11)

where τ13 and τ14 are the atmospheric transmittance values in ASTER channels 13 and 14, respectively. 

The R2 values were 0.966 and 0.967, respectively. 

3.3. Validation and Performance Evaluations of the LST Methods 

Validation and performance evaluations of the LST methods were divided into two stages. First, the 

methods were applied to the actual ASTER dataset, and the in situ measured LSTs were used to validate 

the LSTs estimated with different combinations of channels and input parameters. Second, the methods 

were applied to the simulation dataset, and a sensitivity analysis was conducted for each method. Details 

can be found below. 

3.3.1. The Actual ASTER Dataset 

The first three methods presented in Section 3.1 can be applied to a single TIR channel, while the SW 

methods are applied to two TIR channels. Therefore, the AC method, the MW method, and the SC 

method were applied to ASTER channels 13 and 14, respectively. Note that the coefficients of the SC 

method for ASTER were trained using two atmospheric profile databases, i.e., STD and TIGR, as 

abbreviated in [14]. Thus, the SC methods with corresponding coefficients are abbreviated “SC-STD” 

and “SC-TIGR” in this paper. The two forms of the SW method, which used both channels 13 and 14, 

were considered here, i.e., SW-WE and SW-QUAD. 

To evaluate the methods’ performances with LSEs from different sources, the emissivities from in 

situ measurements and the MODIS UCSB (University Of California Santa Barbara) Emissivity Library 

were selected; these two sources are denoted as ISE and LIB, respectively. The soil and vegetation 

emissivities required in the NDVITHM method were determined based on ISE and LIB. The water 

emissivity was also provided by the MODIS UCSB Emissivity Library due to the lack of in situ 

measurements for water. 
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Three sources of atmospheric profiles were also considered: the in situ measurements, MOD07_L2 profiles, 

and profiles from the University of Wyoming. They are abbreviated as ISA, MOD, and UW, respectively. Note 

that for the AC method, the atmospheric profiles were imported directly to the MODTRAN5.2.2 code; for MW, 

SC-STD, SC-TIGR, and SW-WE, the WVCs and atmospheric transmittance (τ) calculated based on the 

atmospheric profiles and estimated from the ground-level water vapor pressure were used separately. A 

schematic description of the various combinations is shown in Figure 3. 

 

Figure 3. Different combinations of the LST method (AC, MW, SC-TIGR, and SC-STD), 

channel, LSE source, and atmospheric profile source. 

Eventually, there were 12, 24, 24, 24, 6, and 1 combinations for the AC, MW, SC-STD, SC-TIGR,  

SW-WE, and SW-QUAD methods, respectively. The LST results are recorded by the name of the method, 

channel, LSE source, and atmospheric profile source. For example, AC-13-ISE-ISA refers to the LST 

calculated with the AC method for ASTER channel 13 based on in situ measured LSE and atmospheric 

profiles; SW-WE-ISE-ISA refers to the LST calculated with the SW-WE method based on in situ measured 

LSE and WVC. In addition, the ASTER standard LST products were also processed for comparison. 

A comparison between the in situ LST measurements and the remotely sensed LSTs is inevitably 

influenced by surface heterogeneity and scale mismatches [7,9]. However, the scale mismatches were 

reduced because the FOVs of the longwave pyrgeometer were comparable to the ASTER pixels. In 

addition, the homogeneity of the ASTER thermal pixels containing the FOVs were quantified with the 

TASI LSTs and ASTER NDVIs. The standard deviation of the TASI LSTs and the coefficient of 

variation (CV) of the ASTER NDVI at each site were calculated. The CV of the NDVI was selected as 

an indicator because the NDVI values were much lower for the desert and Gobi stations than for other 

stations. If the LST standard deviation or NDVI CV at a site exceeded the threshold, then the surface 

was treated as heterogeneous and removed. 

3.3.2. The Simulation Dataset 

Another way to evaluate LST methods is to use the simulation dataset generated by atmospheric 

radiative transfer models [9]. These models can simulate the at-sensor radiance acquired by a TIR 



Remote Sens. 2015, 7 7137 

 

channel with defined LST, LSE, and atmospheric conditions. In the simulation, atmospheric parameters 

such as transmittance, upwelling radiance, and downwelling radiance can be determined by the 

atmospheric radiative transfer model; then, LSTs can be retrieved. Thus, the accuracies of the methods 

can be quantified by comparing the retrieved and pre-defined LSTs. 

The simulation dataset was used to evaluate each method’s performance in correcting the atmospheric 

effects. The simulation dataset was constructed according to the following conditions: (1) the 12 in situ 

measured atmospheric profiles were used as the basis data to represent the study area’s atmospheric 

conditions in the summer; (2) the MODTRAN code in version 5.2.2 was selected and executed in the 

thermal radiance mode; (3) the view zenith angle of ASTER was set to 0º; (4) the sky was clear; the rural 

aerosol model was used; and the visibility was defined according to the atmospheric radiosondes; (5) the 

LST varied between 291 K and 325 K at increments of 2 K, and the LSE varied between 0.95 and 1.0 at 

increments of 0.005; note that the LST and LSE ranges were determined according to the in situ 

measurements and the land cover types in the study area. 

The simulated at-sensor spectral radiance and atmospheric parameters at every wavelength were 

converted to the channel-integrated values. Then, the brightness temperatures were calculated. To simulate 

the actual ASTER observations, random noise was added to the modeled brightness temperatures and to 

the at-sensor radiance. The noise for each channel was assumed to have a Gaussian distribution in the range 

of −0.3 K to 0.3 K, according to the ASTER noise equivalent differential temperature [38]. 

A sensitivity analysis was also conducted to evaluate the performance of the LST methods in overcoming 

the uncertainties in the input parameters. Here, the atmospheric profiles for 11 August and 12 September 

were selected because they were the wettest and driest dates with WVCs as of 3.11g·cm−2 and 0.61 g·cm−2, 

respectively. The LSE was defined as 0.980. The LSE uncertainty varied from 0 to 0.02 at increments of 

0.001. The WVC uncertainty varied from 0 g·cm−2 to 1.0 g·cm−2 at increments of 0.1 g·cm−2. The LST 

uncertainty due to the WVC uncertainty in the AC, MW, SC, and SW-WE methods, and the LST uncertainty 

due to the LSE uncertainty in the AC, MW, and SC methods can be described as follows: 

ΔTs ൌ ฬ
∂Ts(x)

∂x
δxฬ (12)

where ΔTs is the LST uncertainty; x and δx are the input parameter (e.g., WVC, LSEs in channel 13 or 

channel 14) and its uncertainty, respectively. 

The LST uncertainty due to the LSE uncertainty in the SW-WE method can be described as follows: 

ΔTs ൌ	ඨ
∂Ts(Δε)

∂(Δε)
δ(Δε)൨

2


∂Ts(ε)

∂ε
δε൨

22

 (13)

where δ(Δε) and δε are the uncertainties of Δε and ε, respectively. According to [5], we assume that the 

LSE uncertainties in channels 13 and 14 are equal, i.e., δε13 = δε14. Therefore, δε is the same as δε13 and 

δε14, while δ(Δε) is 2δε. 

4. Results 

4.1. Characterizing the Surface Homogeneity of the Ground Sites 

The vegetation abundance at the 19 ground sites had obvious dynamical variations, in which the 

vegetation increased in May and decreased in September. However, the variations in the homogeneity 
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of these stations were different, as shown by the NDVI CV values in Figure 4. Among all the sites, EC04 

had the highest NDVI CV values due to its mixed landscape of bare soil, roofs, grass, and concrete roads. 

The varying CV of EC04 reveals that the qualities of the calculated NDVI CV values were influenced 

by the atmospheric correction for the ASTER VNIR images. However, the atmospheric correction does 

not significantly influence the characterization of the homogeneity of the oasis sites because of their very 

low CV values from 15 June to 12 September, 2012. The sites had relatively higher CV values on 30 May 

because the crops were sprouting. As the vegetation abundance increased, the sites became more 

homogeneous. The heterogeneity began to increase after 12 September as the maize matured and the 

leaves dried out. The variation trend of the NDVI CV at EC01 was similar to those of the maize sites. 

However, the CV value of EC01 was higher from 30 May to 10 July because of its lower vegetation 

abundance during this period. The GB and SSW sites exhibited inverse variations in the NDVI CV 

compared with the sites located within the oasis. The heterogeneity at these two sites increased after 10 

July due to their increasing vegetation abundance in the summer. 

 

Figure 4. NDVI CV values of the 19 ground sites from 30 May to 28 September 2012. 

The LSTs and standard deviation values extracted from the two TASI images are shown in Figure 5. 

The highest standard deviation values, which exceeded 4 K on the two dates, occurred at EC04 due to 

the underlying mixed landscape. EC09 had standard deviation values higher than 2 K due to a wide road 

(approximately 4-m wide) and bare land in the FOV. EC17 had standard deviation values higher than 

2 K due to the mixtures of apple trees, grasses, leguminous plants, and bare soil. The other 16 stations 

had low LST standard deviation values. 

Here, the NDVI CV and LST standard deviation were combined to characterize the homogeneity of 

the underlying surface at each ground site because it was difficult to determine the thermal homogeneity 

on dates other than 30 June and 10 July. In fact, the selection of in situ LST measurements is a trade-off 
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between the abundance of ground truth data and their validity. In this research, the threshold values of 

the NDVI CV and LST standard deviation were set to 0.08 and 2 K, respectively. After excluding the 

39 heterogeneous samples from the 160 samples, 121 samples were obtained, including 110 oasis 

samples and 11 outside samples. The in situ measured LSTs of these samples were used to evaluate the 

accuracies of the methods for the actual ASTER data. 

 

Figure 5. TASI LSTs of the 19 ground sites on 30 June and 10 July 2012. Error bars denote 

one time of standard deviation. 

4.2. Evaluation with the in Situ Measured LSTs 

LSTs of the entire study area were estimated with the methods and different combinations of LSE and 

atmospheric profile sources. Due to space limitations, only the LSTs resulting from AC-13-ISE-ISA are 

shown in Figure 6. The spatial patterns of LSTs generated through different methods and combinations 

were similar and they represented the actual situations in the study area. The oasis was colder than the 

surrounding Gobi and desert area. LSTs in both the oasis and the bare land had dynamic variations from 

30 May to 28 September. These variations were induced by climatic features, meteorological conditions, 

and vegetation growth. Two indicators, the mean bias and RMSE, were calculated based on the in situ 

measured LSTs. The methods with different combinations are compared in the following sub-sections. 

Note that validations here are for ASTER images from 30 May to 12 September. 

4.2.1. Implementing Methods with in situ Measured LSEs and Atmospheric Parameters 

The biases and RMSEs of the LSTs estimated through different methods with in situ measured LSEs 

and atmospheric parameters are shown in Table 3. Note that the second to fourth columns are the results 

based on the derived WVC and τ from the atmospheric profiles directly, while the last three columns are 

the results based on the WVC and τ estimated from the surface meteorological observations. To 

demonstrate the influences of the ground sites’ heterogeneity on the validation, the biases and RMSEs 

calculated after removing and without removing the heterogeneous samples are both shown in Table 3. 

Notably, the calculated RMSEs decrease after removing these samples. Therefore, careful examinations 
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of the in situ LST measurements are necessary before validation. An uncertainty of about 0.10–0.40 K 

on RMSE may result without excluding the heterogeneous samples. 

 

Figure 6. Estimated LSTs of the study area by AC-13-ISE-ISA on the 12 dates. 

Table 3. Biases and RMSEs of the LSTs estimated with different methods with in situ 

measured LSEs and atmospheric parameters. 

Method 

Bias and RMSE with Derived WVC and τ 

from the Atmospheric Profile (K) 

Bias and RMSE with Estimated WVC and 

τ (K) 

Homogenous Samples 
All Samples 

Homogenous Samples 
All Samples 

All Oasis All Oasis 

AC-13-ISE-ISA 0.65 / 2.14 0.73 / 1.49 0.58 / 2.54 -- -- -- 

AC-14-ISE-ISA 0.63 / 2.21 0.73 / 1.55 0.55 / 2.65 -- -- -- 

MW-13-ISE-ISA 0.05 / 2.31 0.11 / 1.56 0.0 / 2.67 0.09 / 2.39 0.13 / 1.63 0.02 / 2.73 

MW-14-ISE-ISA −0.06 / 2.49 0.03 / 1.77 −0.13 / 2.88 0.0 / 2.57 0.06 / 1.84 −0.10 / 2.96 

SC-STD-13-ISE-ISA 1.97 / 2.73 2.05 / 2.32 1.94 / 3.12 2.09 / 3.05 2.11 / 2.47 1.99 / 3.24 

SC-STD-14-ISE-ISA 2.14 / 2.89 2.25 / 2.51 2.10 / 3.29 2.32 / 3.35 2.33 / 2.76 2.17 / 3.52 

SC-TIGR-13-ISE-ISA 1.79 / 2.60 1.87 / 2.17 1.74 / 2.97 1.92 / 2.87 1.95 / 2.32 1.80 / 3.09 

SC-TIGR-14-ISE-ISA 2.06 / 2.82 2.17 / 2.44 1.99 / 3.20 2.24 / 3.22 2.27 / 2.69 2.08 / 3.41 

SW-WE-ISE-ISA 0.01 / 2.03 0.10 / 1.68 −0.06 / 2.46 0.02 / 2.02 0.12 / 1.67 −0.05 / 2.45 
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Using the in situ measured LSTs and atmospheric parameters as inputs, the AC method produces 

highly accurate results. When validated with all homogenous samples, the bias/RMSE values are 

0.65 K/2.14 K and 0.63 K/2.21 K for channels 13 and 14, respectively. Therefore, the AC method seems 

to yield a systematic overestimation of the LST when compared with the in situ LST measurements. To 

the best of our knowledge, the MODTRAN code produces highly accurate results when estimating 

atmospheric parameters. Note that there was a one-hour gap between the overpass times and the in situ 

atmospheric profiles. The atmospheric influences at the atmospheric profiles acquisition time were more 

significant than those at the ASTER acquisition time. Therefore, overestimations of AC may result from 

the possible underestimations of ASTER LSEs. Compared with the AC method, except for the SW-WE 

method, the other methods are less accurate when using the WVC and τ directly extracted from the 

atmospheric profiles. In addition, most of these methods overestimate the LST. The RMSEs of the MW 

method are 0.17 K and 0.28 K higher than those of the AC method in channels 13 and 14, respectively. 

The RMSEs of the SC method are higher than those of the AC and MW methods. The SW-WE method 

is more accurate than the AC, MW, and SC methods. The SW-QUAD method has the best accuracy, 

with a bias and RMSE of 0.25 K and 1.72 K, respectively. It is reasonable to speculate that there is no 

influence from the uncertainty of WVC and emissivity in this method and the training conditions of the 

SW-QUAD method may be similar to those of the ground sites. The ASTER standard LST product has 

an RMSE of 2.54 K and a bias of 1.19 K. The nominal accuracy of the ASTER LST is 1.5 K, and it was 

proven to have a high accuracy when compared with the Surface Radiation Budget Network sites in the 

USA [12]. Therefore, additional evaluations of this product in other regions are needed. 

With all the homogenous validating samples, the accuracies of the MW and SC methods deteriorate 

when using the WVC and τ estimated from the surface meteorological observations. However, the 

decrease in the accuracy is closely related to the method. For the MW method, the RMSE increases by 

0.08 K. For the SC method, the accuracies decrease over 0.27–0.32 K and 0.40–0.46 K in channels 13 

and 14, respectively. The accuracy of the SW-WE method has a negligible change. Based on Table 3, 

the LST estimated from channel 13 is more accurate than that from channel 14. As expected, channel 14 

is more prone to significant atmospheric influences than channel 13. Therefore, a TIR channel with low 

atmospheric influence is the optimal choice for methods that can only be applied to a single channel. 

The comparisons between estimated and measured LSTs for oasis sites are also listed in Table 3. It is 

interesting that all the considered methods have better accuracies when only the homogeneous oasis 

samples are used. For example, the RMSE values for the AC method in channels 13 and 14 decrease to 

1.49 K and 1.55 K, while those for the MW method decrease to 1.56 K and 1.77 K, respectively. The 

SW-QUAD method still has the best accuracy, with a bias and RMSE of 0.49 K and 1.38 K, respectively. 

The bias and RMSE of the ASTER standard LST product decrease to 1.39 K and 2.20 K, respectively. 

A detailed examination of all sites’ LST errors demonstrates that the difference between validations with 

the homogenous oasis samples and all the homogenous samples results from poor accuracies at the SD, 

GB, and SSW sites. For example, significant underestimations of 2.11–8.37 K and 1.94–7.57 K on LSTs 

are found for the AC method applied in channel 13 and the ASTER standard LST product at the SD site. 

We infer that these underestimations result from the NR01 radiometer’s overestimation of the longwave 

radiation [17]. In addition, the mismatches between the ground site and the pixel, which is a mixture of 

bulrush, wet soil, and water, may contribute to these underestimations due to the geometric accuracy 

error. The nominal geometric accuracy error for the ASTER data is below 50 m [39]. In contrast, 
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significant LST overestimations are found at the GB and SSW sites. The bias values at these two sites 

for the AC method are 1.96 K and 4.31 K, and the maximum errors are 5.32 K and 6.50 K, respectively. 

We believe that such overestimations result from the overestimations of atmospheric influences in the 

LST methods examined in this research. In implementing these methods, the atmospheric profiles and 

meteorological parameters within the oasis were used. Although both the GB and SSW sites are about 

10 km away from the center of the oasis, their atmospheres are much drier than at the oasis sites. The 

average atmospheric relative humidity at the GB and SSW sites around the ASTER overpass times was 

about 12% and 21% lower, respectively, than at the oasis sites. An in-depth investigation on modeling 

the atmospheric influences is necessary if one needs accurate LSTs in the outside barren areas. Therefore, 

the analysis in the following sub-sections is based on the homogeneous oasis samples. 

4.2.2. Implementing Methods with in Situ Measured LSEs and Alternative Atmospheric Parameters 

The bias and RMSE values of every method with in situ measured LSTs and alternative atmospheric 

profiles are shown in Table 4. The accuracy of the AC method decreases when using the MOD and UW 

atmospheric profiles compared with using the in situ measured atmospheric profiles. Therefore, users 

should pay close attention to alternative atmospheric profiles when using the AC method. In contrast, 

when using the WVC and τ derived from the MOD and UW atmospheric profiles, the MW method has 

the same or slightly improved accuracies compared with using the in situ atmospheric profiles. From the 

findings of the AC method, it can be concluded that MOD and UW atmospheric profiles are not as 

accurate as the in situ atmospheric profiles. Therefore, the improved accuracies of the MW method may 

result from the compensated errors in the atmospheric profiles and the methodology; similar results are 

found when using the SC method and WVC and τ derived from MOD and UW atmospheric profiles. 

The SW-WE method has almost the same accuracy, demonstrating that it has weak sensitivity to the 

source of the WVC. 

When using the estimated WVC and τ, the accuracy of the MW method decreases. However, the SC 

method is more accurate when the WVC is estimated from the MOD atmospheric profiles but less 

accurate when the WVC is estimated from the UW atmospheric profiles. The accuracy of the SW-WE 

method remains invariant. Table 4 also indicates that better accuracy is obtained in channel 13 than in 

channel 14. 

4.2.3. Implementing Methods with Alternative LSEs and in Situ Measured Atmospheric Parameters 

The biases and RMSEs of the LSTs estimated with the in situ measured atmospheric parameters and 

alternative LSEs are shown in Table 5. Comparing Table 3 and Table 5, no significant deterioration of 

the accuracies occurs for the AC, MW, and SC methods in channel 13. Therefore, when the in situ LSE 

measurements are unavailable in our study area, the emissivities of the MODIS UCSB Emissivity 

Library can be used. The accuracy of the SC method was higher for channel 14 than for channel 13. 

However, the RMSE is still greater than 2 K. The accuracy of the SW-WE method decreases to 

approximately 2.40 K when the alternative LSEs are used. 
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Table 4. Biases and RMSEs of the LSTs estimated with different methods with in situ 

measured LSEs and alternative atmospheric parameters. 

Method 

Bias and RMSE with Derived WVC and 

τ from the Atmospheric Profile (K) 

Bias and RMSE with Estimated WVC and 

τ (K) 

Homogenous Samples 
All Samples 

Homogenous Samples 
All Samples 

All Oasis All Oasis 

AC-13-ISE-MOD 2.18 / 3.03 2.24 / 2.66 2.14 / 3.39 -- -- -- 
AC-14-ISE-MOD 2.61 / 3.48 2.68 / 3.16 2.55 / 3.82 -- -- -- 
MW-13-ISE-MOD 0.10 / 2.29 0.15 / 1.46 0.09 / 2.68 −0.11 / 2.22 0.0 / 1.56 −0.20 / 2.57 

MW-14-ISE-MOD 0.02 / 2.49 0.09 / 1.65 0.0 / 2.87 −0.23 / 2.39 −0.10 / 1.75 −0.36 / 2.77 

SC-STD-13-ISE-MOD 2.30 / 3.08 2.35 / 2.66 2.31 / 3.53 1.67 / 2.43 1.80 / 2.08 1.59 / 2.81 

SC-STD-14-ISE-MOD 2.60 / 3.39 2.67 / 3.01 2.63 / 3.89 1.77 / 2.51 1.93 / 2.21 1.67 / 2.93 

SC-TIGR-13-ISE-MOD 2.04 / 2.87 2.10 / 2.43 2.03 / 3.27 1.52 / 2.33 1.64 / 1.96 1.42 / 2.70 

SC-TIGR-14-ISE-MOD 2.40 / 3.20 2.48 / 2.82 2.39 / 3.62 1.73 / 2.49 1.89 / 2.17 1.60 / 2.86 

SW-WE-ISE-MOD 0.03 / 2.03 0.12 / 1.68 -0.05 / 2.46 −0.01 / 2.03 0.08 / 1.69 −0.09 / 2.47 

AC-13-ISE-UW 0.95 / 2.15 1.06 / 1.62 0.87 / 2.54 -- -- -- 
AC-14-ISE-UW 1.01 / 2.22 1.15 / 1.71 0.91 / 2.64 -- -- -- 
MW-13-ISE-UW −0.09 / 2.26 0.0 / 1.57 −0.16 / 2.62 0.37 / 2.58 0.38 / 1.72 0.32 / 2.81 

MW-14-ISE-UW −0.21 / 2.44 −0.09 / 1.77 −0.30 / 2.83 0.33 / 2.81 0.34 / 1.94 0.25 / 3.05 

SC-STD-13-ISE-UW 1.68 / 2.49 1.79 / 2.13 1.61 / 2.87 2.98 / 4.02 2.90 / 3.31 2.91 / 4.15 

SC-STD-14-ISE-UW 1.79 / 2.60 1.94 / 2.28 1.70 / 3.01 3.51 / 4.76 3.40 / 3.95 3.42 / 4.85 

SC-TIGR-13-ISE-UW 1.51 / 2.38 1.62 / 1.99 1.43 / 2.76 2.68 / 3.67 2.64 / 3.03 2.60 / 3.81 

SC-TIGR-14-ISE-UW 1.72 / 2.56 1.87 / 2.22 1.61 / 2.94 3.25 / 4.34 3.19 / 3.65 3.14 / 4.43 

SW-WE-ISE-UW −0.02 / 2.03 0.07 / 1.68 −0.09 / 2.46 0.09 / 1.99 0.19 / 1.66 0.01 / 2.43 

Table 5. Biases and RMSEs of the LSTs estimated with different methods with in situ 

measured atmospheric parameters and alternative LSEs. 

Method 

Bias and RMSE with Derived WVC and τ 

from the Atmospheric Profile (K) 

Bias and RMSE with Estimated WVC 

and τ (K) 

Homogenous Samples 
All Samples 

Homogenous Samples 
All Samples 

All Oasis All Oasis 

AC-13-LIB-ISA 0.59 / 2.08 0.71 / 1.51 0.55 / 2.56 -- -- -- 

AC-14-LIB-ISA 0.13 / 2.11 0.25 / 1.43 0.08 / 2.63 -- -- -- 

MW-13-LIB-ISA −0.01 / 2.25 0.09 / 1.60 −0.03 / 2.69 0.03 / 2.33 0.12 / 1.66 −0.02 / 2.76 

MW-14-LIB-ISA −0.61 / 2.55 −0.51 / 1.87 −0.65 / 2.98 −0.55 / 2.62 −0.47 / 1.93 −0.62 / 3.05 

SC-STD-13-LIB-ISA 1.91 / 2.65 2.03 / 2.32 1.90 / 3.11 2.04 / 2.96 2.09 / 2.47 1.95 / 3.22 

SC-STD-14-LIB-ISA 1.61 / 2.51 1.73 / 2.08 1.60 / 3.02 1.79 / 3.00 1.82 / 2.36 1.68 / 3.25 

SC-TIGR-13-LIB-ISA 1.73 / 2.52 1.85 / 2.17 1.70 / 2.96 1.86 / 2.79 1.93 / 2.33 1.76 / 3.08 

SC-TIGR-14-LIB-ISA 1.52 / 2.45 1.64 / 2.02 1.49 / 2.93 1.71 / 2.86 1.76 / 2.28 1.59 / 3.14 

SW-WE-LIB-ISA 1.62 / 2.48 1.81 / 2.40 1.48 / 2.81 1.61 / 2.48 1.80 / 2.39 1.47 / 2.81 

4.2.4. Implementing Methods with Alternative LSEs and Atmospheric Parameters 

In most real applications, both the in situ measured LSEs and atmospheric parameters are commonly 

unavailable. Therefore, we calculate the biases and RMSEs of the LSTs estimated with different methods 

with alternative LSEs and atmospheric parameters. The results are shown in Table 6. The biases and 

RMSEs of the AC method demonstrate that similar accuracies can be obtained when the library LSEs 

are used. An even better accuracy is achieved with channel 14. The MW method does not provide 
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significant systematic estimations at the ground sites, particularly in channel 13. In channel 13, the 

RMSE varies from 1.49 K and 1.60 K when the WVC and τ are derived directly from MOD and UW 

atmospheric profiles and from 1.58 K and 1.74 K when the estimated WVC and τ are used. The 

accuracies of the MW method are lower in channel 14 than in channel 13 because the MW method is 

less able to remove the atmospheric influences in channel 14. 

Table 6. Biases and RMSEs of the LSTs estimated with different methods with alternative 

LSEs and atmospheric parameters. 

Method 

Bias and RMSE with Derived WVC and τ 

from the Atmospheric Profile (K) 

Bias and RMSE with Estimated WVC 

and τ (K) 

Homogenous Samples 
All Samples 

Homogenous Samples All 

Samples All Oasis All Oasis 

AC-13-LIB-MOD 2.13 / 2.95 2.23 / 2.65 2.10 / 3.35 -- -- -- 

AC-14-LIB-MOD 2.09 / 3.12 2.18 / 2.77 2.07 / 3.53 -- -- -- 

MW-13-LIB-MOD 0.04 / 2.22 0.13 / 1.49 0.06 / 2.67 −0.16 / 2.18 −0.02 / 1.58 −0.24 / 2.60 

MW-14-LIB-MOD −0.52 / 2.52 −0.44 / 1.73 −0.50 / 2.93 −0.79 / 2.50 −0.64 / 1.89 −0.89 / 2.91 

SC-STD-13-LIB-MOD 2.24 / 3.00 2.33 / 2.66 2.28 / 3.49 1.62 / 2.36 1.78 / 2.08 1.55 / 2.80 

SC-STD-14-LIB-MOD 2.07 / 3.00 2.16 / 2.60 2.14 / 3.59 1.23 / 2.15 1.41 / 1.78 1.17 / 2.69 

SC-TIGR-13-LIB-MOD 1.99 / 2.79 2.08 / 2.43 2.00 / 3.24 1.47 / 2.26 1.63 / 1.96 1.38 / 2.69 

SC-TIGR-14-LIB-MOD 1.87 / 2.83 1.96 / 2.40 1.89 / 3.32 1.18 / 2.13 1.35 / 1.75 1.09 / 2.63 

SW-WE-LIB-MOD 1.61 / 2.47 1.80 / 2.39 1.47 / 2.80 1.64 / 2.49 1.83 / 2.41 1.50 / 2.81 

AC-13-LIB-UW 0.90 / 2.09 1.04 / 1.63 0.83 / 2.55 -- -- -- 

AC-14-LIB-UW 0.49 / 2.04 0.64 / 1.47 0.42 / 2.55 -- -- -- 

MW-13-LIB-UW −0.15 / 2.21 −0.02 / 1.60 −0.20 / 2.65 0.32 / 2.50 0.36 / 1.74 0.28 / 2.81 

MW-14-LIB-UW −0.77 / 2.55 −0.63 / 1.91 −0.83 / 2.96 −0.20 / 2.78 −0.18 / 1.96 −0.25 / 3.07 

SC-STD-13-LIB-UW 1.62 / 2.42 1.77 / 2.13 1.57 / 2.87 2.93 / 3.93 2.89 / 3.31 2.88 / 4.10 

SC-STD-14-LIB-UW 1.24 / 2.26 1.41 / 1.87 1.19 / 2.77 3.02 / 4.39 2.93 / 3.56 2.96 / 4.52 

SC-TIGR-13-LIB-UW 1.45 / 2.31 1.60 / 1.99 1.39 / 2.76 2.63 / 3.58 2.62 / 3.02 2.57 / 3.76 

SC-TIGR-14-LIB-UW 1.16 / 2.22 1.32 / 1.82 1.09 / 2.72 2.75 / 3.96 2.70 / 3.26 2.67 / 4.11 

SW-WE-LIB-UW 1.65 / 2.50 1.83 / 2.42 1.50 / 2.82 1.56 / 2.45 1.75 / 2.36 1.42 / 2.79 

The SC method has significant systematic overestimations at the ground sites when using the 

alternative LSEs and atmospheric parameters. Higher accuracies are obtained when the WVC and τ of 

the UW atmospheric profiles are used than when the MOD atmospheric profiles are used. However, 

when the estimated WVC and τ are used, higher accuracies are obtained with the MOD atmospheric 

profiles. In this case, the RMSEs in channel 14 are approximately 0.2~0.3 K higher than those in 

channel 13. Generally, higher accuracies appear when the coefficients trained by the TIGR atmospheric 

profile database are used. Therefore, the coefficients trained by the TIGR atmospheric profile database 

are more appropriate for our study area than those trained by the STD atmospheric profile database. The 

RMSEs of the SW-WE method using alternative LSEs and atmospheric parameters are approximately 

2.40 K. Comparing Table 4 and Table 6, it is obvious that the low accuracy of the SW-WE method may 

result from the LIB LSEs. Among all the LSE and atmospheric profile combinations, MW-13-LIB-MOD 

and AC-14-LIB-UW have the highest accuracies, with corresponding biases/RMSEs of 0.13 K/1.49 K 

and 0.64 K/1.47 K, respectively. 
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4.3. Comparisons between ASTER LST Images 

The analysis in Section 4.2 reveals that many factors influence the validations of ASTER LSTs 

with in situ measured LSTs. Therefore, the radiance-based method is used simply here [40]. ASTER 

channel 13 is used as the reference band to calculate the ground LSTs because it suffers fewer 

atmospheric influences than the other channels. In addition, AC-13-ISE-ISA LST is selected as the 

reference LST because it has been found to be more accurate than most of the methods. LSTs from 

MW-13-LIB-MOD, SC-TIGR-13-LIB-MOD, SC-TIGR-14-LIB-MOD, SW-WE-LIB-MOD,  

MW-13-LIB-UW, SC-TIGR-13-LIB-UW, SC-TIGR-14-LIB-UW, SW-WE-LIB-UW, and  

SW-QUAD are selected for comparison, according to the evaluations based on the in situ LST 

measurements. Note that we do not select the methods with the in situ LSEs and atmospheric 

parameters here because these two datasets are commonly unavailable in actual applications. The three 

case studies selected are 30 May, 11 August, and 12 September because these three dates had different 

surface characteristics and meteorological conditions, as shown in Figure 6; the scatter plots for  

30 May, 11 August, and 12 September are shown in Figures 7–9, respectively. 

 

Figure 7. Scatter plots between the LSTs estimated with AC-13-ISE-ISA and other methods 

on 30 May for the entire study area. STD here denotes the standard deviation of LST errors. 

(a) MW-13-LIB-MOD, (b) SC-TIGR-13-LIB-MOD, (c) SC-TIGR-14-LIB-MOD,  

(d) SW-WE-LIB-MOD, (e) MW-13-LIB-UW, (f) SC-TIGR-13-LIB-UW,  

(g) SC-TIGR-14-LIB-UW, (h) SW-WE-LIB-UW, (i) SW-QUAD. 
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The scatter plots for the SW-WE method and the SW-QUAD method have larger standard deviations 

than the MW and SC methods. The term (Tbi − Tbj) in the expressions and the different atmospheric 

influences and noise in these two channels contribute to the high standard deviations. The SW-WE and 

SW-QUAD methods also have larger deviations than the AC-13-ISE-ISA LST. The RMSE values range 

from 2.96 K to 3.58 K on 30 May, from 3.37 K to 4.36 K on 11 August, and from 1.54 K to 1.77 K on 

12 September. These large RMSE values demonstrate that the two SW methods are limited in their 

ability to remove the atmospheric influences, particularly in the middle stage of the maize growth. 

Therefore, these two SW methods should be treated with caution when used to estimate the 

evapotranspiration of agricultural fields in the study area. 

 

Figure 8. Scatter plots between the LSTs estimated with AC-13-ISE-ISA and other methods 

on 11 August for the entire study area. STD here denotes the standard deviation of LST 

errors. (a) MW-13-LIB-MOD, (b) SC-TIGR-13-LIB-MOD, (c) SC-TIGR-14-LIB-MOD, 

(d) SW-WE-LIB-MOD, (e) MW-13-LIB-UW, (f) SC-TIGR-13-LIB-UW,  

(g) SC-TIGR-14-LIB-UW, (h) SW-WE-LIB-UW, (i) SW-QUAD. 

LSTs estimated based on the AC, MW, and SC methods are generally in good agreement because these 

methods are all applied to a single TIR channel. The MW and SC methods remove the atmospheric 

influences similarly to the AC method, according to their basic assumptions. Compared with channel 13, 

scatter plots for the LST calculated from channel 14 using the SC method have slightly dispersive patterns; 

see Figure 7c,g, Figure 8c,g, and Figure 9c,g. These dispersive patterns also result from the different 
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spectral response features, atmospheric influences, and noise in channels 13 and 14. The MW method 

seems to yield lower LST estimations than AC-13-ISE-ISA when WVC is on high level, and vice versa. 

The biases of the MW method are −1.21 K and −0.37 K on May 30, −1.87 K and −2.07 K on 11 August, 

and 0.04 K and 0.27 K on 12 September. This phenomenon also occurs when comparing the in situ LST 

measurements (see Tables 3 and 6). In contrast, the SC method generally has higher LST estimations than 

AC-13-ISA-ISE. Therefore, we assume that the MW method excessively corrects the atmospheric 

influences when the WVC is increasing, while the SC method insufficiently corrects the influences. 

 

Figure 9. Scatter plots between the LSTs estimated with AC-13-ISE-ISA and other methods 

on 12 September for the entire study area. STD here denotes the standard deviation of LST 

errors. (a) MW-13-LIB-MOD, (b) SC-TIGR-13-LIB-MOD, (c) SC-TIGR-14-LIB-MOD, 

(d) SW-WE-LIB-MOD, (e) MW-13-LIB-UW, (f) SC-TIGR-13-LIB-UW,  

(g) SC-TIGR-14-LIB-UW, (h) SW-WE-LIB-UW, (i) SW-QUAD. 

4.4. Evaluation with the Simulation Dataset 

Based on the simulation dataset, the previous methods applied to different channels are compared. 

The bias and RMSE values are shown in Table 7. Note that the temperature-emissivity separation method 

is not considered here because its performance is strongly related to the preliminary atmospheric 

correction. In addition, our purpose is to evaluate the methods’ abilities to remove the atmospheric 

influences. Therefore, the other sources of atmospheric profiles, i.e., MOD and UW, are not considered. 
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The methods applied to a single channel are expected to have better accuracies in channel 13 than in 

channel 14 due to the weaker atmospheric influences in the former channel, as described in Section 4.2. 

The AC method has the highest accuracy, with no systematic error and an RMSE of 0.08 K. The error 

in the AC method may be caused by noise in the simulated brightness temperatures. The MW method 

underestimated the LSTs, with a bias of approximately 0.7 K and an RMSE of approximately 0.9 K in 

channel 13. The difference in the RMSEs between using the WVC and τ derived from the atmospheric 

profiles and using the estimated values is approximately 0.1 K, demonstrating that this method is 

practical for actual applications because the in situ measured WVC and τ are commonly unavailable. 

Table 7. Biases and RMSEs of the LSTs estimated with different methods based on the 

simulation dataset. 

Method 

With derived WVC and τ from the 

Atmospheric Profile (K) 
With Estimated WVC and τ (K) 

Bias RMSE Bias (K) RMSE 

AC-13 0.0 0.08 -- -- 

AC-14 0.0 0.10 -- -- 

MW-13 −0.77 0.84 −0.73 0.95 

MW-14 −0.95 1.02 −0.90 1.15 

SC-STD-13 1.25 1.26 1.20 1.33 

SC-STD-14 1.41 1.43 1.33 1.56 

SC-TIGR-13 1.02 1.03 1.00 1.15 

SC-TIGR-14 1.27 1.28 1.23 1.45 

SW-WE −1.06 1.37 −1.06 1.37 

Based on the simulation dataset, the SC method is less accurate than the MW method. The SC method 

systematically overestimates the LST shown by the biases. Similar overestimations are also found in 

Section 4.2. Higher accuracy is obtained by using the coefficients trained with the TIGR atmospheric 

profile database than those trained with the STD atmospheric profile database. Therefore, the coefficients 

of the TIGR database are recommended when using the SC method in the actual applications in our 

study area. The SW-WS method systematically underestimates the LST, with an accuracy of 1.37 K. No 

difference in the RMSEs is found when using the WVCs derived from the atmospheric profiles and the 

estimated WVCs. The SW-QUAD method also underestimates the LST, with a bias of −1.45 K; this 

method has the lowest accuracy among the methods considered here, with an RMSE of 1.91 K. We 

believe that the low accuracy is attributable to the lack of LSE and atmospheric parameters considered. 

Higher accuracy may be obtained if a look-up table method is constructed for different land cover types 

and atmospheric conditions. 

According to previous accuracy evaluations, the sensitivity analysis of the LSE uncertainty is 

conducted for the AC-13, MW-13, SC-TIGR-13, and SW-WE methods; the WVC uncertainty analysis 

is conducted for these methods, except for the AC-13 method, which requires an atmospheric profile as 

input. The results of the sensitivity analysis are shown in Figure 10. The SW-WE method is the most 

sensitive method to the LSE uncertainty. The AC, MW, and SC methods have similar sensitivities to the 

LSE uncertainty, and the LST uncertainty is approximately 1.0 K when the LSE uncertainty is 

approximately 0.02. This LSE accuracy can be obtained using the NDVITHM method [41]. Compared 
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with the other three methods, the SC-TIGR-13 method is the least sensitive to the LSE uncertainty in 

wet atmospheric conditions. However, the SC method is sensitive to the WVC uncertainty for the two 

selected dates because its ability to remove the atmospheric influences depends on the atmospheric 

functions of the WVC. The MW method is moderately sensitive to the WVC uncertainty in dry 

atmospheric conditions. The SW-WE method is only slightly sensitive to the WVC uncertainty. 

Therefore, the conventional meteorological observations can be used to estimate the WVC required by 

the MW and SW-WE methods during the vegetation growth in the study area. 

Figure 10. Sensitivities of the methods. (a) LST uncertainty induced by LSE uncertainty, 

(b) LST uncertainty induced by WVC uncertainty. 

5. Discussion 

Validation and performance evaluations are beneficial for developing LST methods and improving 

existing LST products. Thermal observations from ASTER are a good source for monitoring the 

evapotranspiration in agricultural fields. Although many LST methods have been proposed for global 

applications, they perform differently in different areas. Our previous research on Landsat-5 TM data in 

the upper reach of HRB (with an elevation approximately 2600–3400 m) shows that the SC method has 

similar accuracy to that of the AC method and better accuracy than the MW method [9]. The study area 

in the current research has a warmer and wetter atmosphere than the upper reach of HRB, and we find 

that methods perform differently. Similar findings exist when comparing our research with that of 

Jiménez-Muñoz and Sobrino [14,15]. Therefore, a preliminary comparison between different LST 

methods is important if one requires high LST accuracy. 

For validation and performance evaluation purposes, accuracy is an important evaluation indicator. 

Although there have been several methods proposed by scientists for validation purposes, e.g., the 

radiance-based method and scene-based method [7,40,42], the temperature-based method is required to 

provide a direct comparison between the remotely sensed LSTs and the in situ measurements. The 

temperature-based method faces many limitations, including surface heterogeneity, scale matches 

between the pixel and the ground site, and the viewing and illumination geometries [43]. As shown in 

Tables 3–6, the influences of surface heterogeneity on the validation are significant in our study area. 

By removing the samples with large NDVI and LST heterogeneity, the potential influences of 



Remote Sens. 2015, 7 7150 

 

heterogeneity are reduced. The influence of scale mismatches is assumed to be small because the 

radiometers’ FOVs have scales comparable to those of the pixels. The influence from the viewing and 

illumination geometry for the sun-surface-ASTER sensor may be slight because the ASTER’s 

observation is approximately at the nadir point. However, uncertainty may result from the different view 

geometries between the ASTER and the longwave radiometer. The former provides a directional 

observation, while the latter provides a hemispherical observation. This issue cannot be accurately 

quantified at this stage due to lack of the directional emissivity at the ground sites. In addition, 

determinations of the LSEs in the FOVs and the accuracies of the longwave measurements also induce 

validation uncertainties [12]. 

Irrigation frequently occurred in the oasis agricultural fields of the study area. The spatial variations 

of the soil moisture induced by irrigation may aggravate the ground sites’ surface heterogeneity. In this 

research, the influences of irrigation on the ground sites’ surface heterogeneity were indirectly 

considered through examinations on the TASI LST and ASTER NDVI because both LST and NDVI are 

sensitive to soil background moisture [44]. When the maize fields are fully vegetated, the influences of 

soil moisture on surface heterogeneity decrease to a very low level due to canopy shielding. 

In an actual application, the selection of the LST method depends on whether the method yields 

acceptable accuracies. For example, Timmermans et al. (2007) reported that a 3 K deviation in the LST 

can induce a 75% deviation in the sensible heat flux of a two-source model [45]. By selecting Beijing as 

the study area, Zhou et al. (2010) found that a 1%–2% error in the LST can induce 17.8–48.1 W/m2 and 

11.6–32.3 W·m−2 errors in the net radiation flux in summer and winter, respectively [46]. In fact, the 

method’s accuracy relies on its ability to remove atmospheric influence and emissivity, its sensitivity to 

errors in the parameters, and the accuracies of the input parameters. As for the methods examined in this 

research, the AC and MW methods have the highest accuracies in general, even when they are executed 

with alternative inputs. Although the SW-QUAD method is highly accurate when compared with the in 

situ LST measurements, it is the least accurate among the methods when compared with the simulation 

dataset. We infer that its high accuracy may result from counteraction of the uncertainties of the 

algorithm and the in situ measured LSTs. 

In addition to the accuracy, we suggest that two other indicators should be considered in evaluating 

the methods’ performances. The first indicator is sensitivity. A good method should generate stable LSTs 

when the input parameters have acceptable errors. Therefore, we suggest that a method’s sensitivity is 

its robustness. For the methods examined in this research, two important input parameters are the LSE 

and atmospheric profile/parameter. The SW-WE method significantly relies on the LSE uncertainty. The 

MW, SC, and AC methods have relatively lower sensitivities to the LSE uncertainty. In cases without 

in situ measured LSEs, the LSEs calculated from the NDVI threshold method may be a good choice. As 

for the WVC uncertainty, the MW and SW-WE methods are not very sensitive. Thus, the MW method 

is relatively insensitive to the uncertainties in the input parameters. 

The second indicator is the method’s practicability or simplicity for a specific thermal sensor. The 

ASTER standard LST products need to be purchased from the ASTER Ground Data System. Therefore, 

if a method can be used by common users to calculate the LSTs, such a method should be practical and 

simple, and the input parameters can be easily obtained. All the methods examined in this research have 

this advantage, except for the AC method, which requires that the user be familiar with an atmospheric 

transfer model, such as MODTRAN. 
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The calculated ASTER LSTs are well able to estimate the field-scale evapotranspiration in the study 

area, with finer spatial resolutions than most of the current operational LST products, e.g., the MODIS 

LST product. In addition to the spatial resolution, another evapotranspiration consideration is its 

temporal resolution, depending on the LSTs with the same temporal resolutions. For the diurnal change 

in evapotranspiration, a diurnal temperature cycle model is helpful. This type of model can be applied 

to the LSTs acquired by a satellite sensor with multiple observations in the same area in a diurnal cycle, 

such as the thermal sensors on board the geostationary satellites [47]. However, the current diurnal cycle 

models have limited abilities in parameterizing the influences of varying meteorological conditions, e.g., 

wind and clouds. In addition, such LST products have low spatial resolutions, which cannot provide 

enough spatial details at the field scale. Constructing LSTs with high spatial and temporal resolutions 

and acceptable accuracies for agricultural areas remains a topic of ongoing research. 

6. Conclusions 

By selecting a flat agricultural oasis and the surrounding bare land as the study area, this study 

evaluated the performance of four methods that can be applied to ASTER data to estimate the LST: the 

atmospheric correction (AC) method, the mono-window (MW) method, the single-channel (SC) method, 

and the split-window (SW) method. The first three methods depend on a single TIR channel of ASTER, 

while the last method depends on two adjacent channels. Evaluations are conducted based on in situ LST 

measurements from 19 AMSs and a simulation dataset generated from MODTRAN5.2.2 code. The 

ASTER standard LST products are also evaluated with in situ LST measurements. 

Evaluations of these methods were conducted for different combinations of channels and input 

parameters. The results demonstrated that the SW-QUAD method has the best accuracy, with a bias and 

RMSE of 0.49 K and 1.38 K, respectively, when compared with the in situ measured LSTs at the oasis 

sites. However, this method should be used with caution because we find it has poor accuracy when 

compared with the simulation dataset. As with the SW-QUAD method, the SW-WE method has the 

advantage of simplicity. When compared with measurements from the oasis sites, its RMSE is about 

1.68 K when in situ measured LSEs are available. However, its accuracy decreases significantly if 

emissivities from spectral libraries are used. One possible reason for this decrease may be the 

shortcomings of the corresponding emissivities in the spectral libraries. Another possible reason may be 

the uncertainties of the estimated fractional vegetation abundance. For the ASTER standard LST product, 

the bias and RMSE are 1.39 K and 2.20 K, respectively. 

For the AC, MW, and SC methods, the results demonstrated that the LSTs estimated from channel 13 

are more accurate than those from channel 14 in general cases because channel 14 experiences stronger 

atmospheric influences. When the in situ measured atmospheric profiles are available, the AC method 

has the highest accuracy, with an RMSE of about 1.4–1.5 K at the homogenous oasis sites. For actual 

applications without such measurements, its practicability is low. The MW method is highly accurate 

when using alternative LSEs and estimated atmospheric parameters as inputs; the RMSE is around  

1.5–1.6 K. An evaluation based on the simulation confirmed its solid performance in estimating the LST 

for the study area. The advantage of the SC method is its simplicity because it relies on a single 

atmospheric parameter (i.e., WVC). But it shows a significant overestimation of LSTs. Therefore, the 

AC and MW methods are recommended to users who are interested in modeling eco-hydrological 
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processes in the middle reach of the HRB. Selecting methods depends on the availabilities of in situ 

measured atmospheric profiles and LSEs. With these methods, evapotranspiration maps with a 90-m 

resolution can be obtained, which is higher than those of most of the current satellite thermal images. 
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