Digging the METEOSAT Treasure—3 Decades of Solar Surface Radiation
Abstract
:1. Introduction
2. The Retrieval Method
2.1. Outline of the Method
2.2. Retrieval of the Effective Cloud Albedo–The Heliosat Method
2.3. The Module for the Calculation of the All Sky Irradiance
2.4. Spectral Correction of the Broadband Cloud Transmission
2.5. Direct Irradiance
2.6. Input on Atmospheric State
2.6.1. Satellite Raw Images
2.6.2. Aerosol
2.6.3. Atmospheric Absorbers: Water Vapor and Ozone
2.6.4. Surface Albedo
3. Validation of the SARAH CDRs
3.1. Reference Data for Validation
3.2. Statistical Measures
3.3. Validation Results—Comparison Method
3.4. Validation Results—SIS
3.4.1. Daily Means
3.5. Validation Results: SID and DNI
3.5.1. Daily Means
3.6. Validation Results: CAL
3.7. Homogeneity/Stability of CDRs
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Glossary–List of Acronyms in Alphabetical Order
AOD | Aerosol Optical Depth |
CAL | Effective Cloud Albedo |
DNI | Direct Normal Irradiance |
k | Clear sky index |
LUT | Look-up table |
MACC | Monitoring Atmospheric Composition and Climate |
MFG | Meteosat First Generation |
MVIRI | Meteosat Visible-InfraRed Imager |
MSG | Meteosat Second Generations |
RTM | Radiative Transfer Model |
SEVIRI | Spinning Enhanced Visible and Infrared Imager |
SID | Surface Direct Irradiance (beam) |
SIS | Solar Surface Irradiance |
SZA | Sun Zenith Angle |
SSA | Single Scattering Albedo |
References
- Schmetz, J.; Pili Tjemkes, P.S.; Just, D.; Kerkmann, J.; Rota, S.; Ratier, A. An introduction to Meteosat Second Generation (MSG). Bull. Am. Met. Soc. 2002, 83, 977–992. [Google Scholar]
- GCOS. The Second Report on the Adequacy of the Global Observing Systems for Climate in Support of The UNFCCC; WMO: Geneva, Switzerland, 2003; Volume Rep. GCOS-82. [Google Scholar]
- Woick, H.; Dewitte, S.; Feijt, A.; Gratzki, A.; Hechler, P.; Hollmann, R.; Karlsson, K.G.; Laine, V.; Loewe, P.; Nitsche, H.; et al. The satellite application facility on climate monitoring. Adv. Space Res. 2002, 30, 2405–2410. [Google Scholar]
- Schulz, J.; Albert, P.; Behr, H.; Caprion, D.; Deneke, H.; Dewitte, S.; Dürr, B.; Fuchs, P.; Gratzki, A.; Hechler, P.; et al. Operational climate monitoring from space: The EUMETSAT satellite application facility on climate monitoring (CM-SAF). Atmos. Chem. Phys. Discuss 2008, 8, 8517–8563. [Google Scholar]
- Babst, F.; Mueller, R.; Hollmann, R. Verification of NCEP reanalysis shortwave radiation with mesoscale remote sensing data. IEEE Geosci. Remote Sens. Lett. 2008, 5, 34–38. [Google Scholar]
- Träger-Chatterjee, C.; Mueller, R.W.; Trentmann, J.; Bendix, J. Evaluation of ERA-40 and ERA-interim re-analysis incoming surface shortwave radiation datasets with mesoscale remote sensing data. Meteorol. Zeitschrift 2010, 19, 631–640. [Google Scholar]
- Dobler, A.; Müller, R.; Ahrens, B. Development and evaluation of a simple method to estimate evaporation from satellite data. Meteorol. Zeitschrift 2011, 20, 615–623. [Google Scholar]
- Journée, M.; Müller, R.; Bertrand, C. Solar resource assessment in the Benelux by merging Meteosat-derived climat data and ground measurements. Solar Energy 2012, 86, 3561–3574. [Google Scholar]
- Rossow, W.B.; Zhang, Y.Z. Calculation of surface and top of atmosphere radiative fluxes from physical quantities based on ISCCP data sets: 2. Validation and first results. J. Geophys. Res. 1995, 100, 1167–1197. [Google Scholar]
- Gupta, S.; Ritchey, N.; Wilber, A.; Whitlock, C. A climatology of surface radiation budget derived from satellite data. J. Clim. 1999, 12, 2691–2709. [Google Scholar]
- Mueller, R.; Trentmann, J.; Träger-Chatterjee, C.; Posselt, R.; Stöckli, R. The role of the effective cloud Albedo for climate monitoring and analysis. Remote Sens. 2011, 3, 2305–2320. [Google Scholar]
- Evan, A.T.; Heidinger, A.K.; Vimont, D.J. Arguments against a physical long term trend in ISCCP cloud amounts. Geophys. Res. Lett. 2007, 34, L04701. [Google Scholar]
- Kato, S.; Loeb, N.G.; Rose, F.G.; Doelling, D.R.; Rutan, D.A.; Caldwell, T.E.; Yu, L.; Weller, R.A. Surface irradiances consistent with CERES-derived top-of-atmosphere shortwave and longwave irradiances. J. Clim. 2013, 26, 2719–2740. [Google Scholar]
- Rigollier, M.; Levefre, M.; Wald, L. The method Heliosat-2 for deriving shortwave solar radiation from satellite images. Solar Energy 2004, 77, 159–169. [Google Scholar]
- Vernay, C.; Pitaval, S.; Blanc, P. Review of satellite based surface solar irradiation databases for the engineering, the financing and the operating of photovoltaic systems. Energy Procedia 2014, 57, 1383–1391. [Google Scholar]
- Möser, W.; Raschke, E. Incident solar radiation over Europe estimated from METEOSAT data. J. Clim. Appl. Meteorol. 1984, 23, 166–170. [Google Scholar]
- Cano, D.; Monget, J.; Albuisson, M.; Guillard, H.; Regas, N.; Wald, L. A method for the determination of the global solar radiation from meteorological satellite data. Solar Energy 1986, 37, 31–39. [Google Scholar]
- Bishop, J.; Rossow, W. Spatial and temporal variability of global surface solar irradiance. J. Geophys. Res. 1991, 96, 839–858. [Google Scholar]
- Pinker, R.; Laszlo, I. Modelling surface solar irradiance for satellite applications on a global scale. J. Appl. Meteorol. 1992, 31, 166–170. [Google Scholar]
- Darnell, W.; Staylor, W.; Gupta, S.; Ritchey, N.; Wilber, A. Seasonal variation of surface radiation budget derived from ISCCP-C1 data. J. Geophys. Res. 1992, 97, 15741–15760. [Google Scholar]
- Deneke, H.; Feijt, A. Estimation surface solar irradiance from METEOSAT SEVIRI-derived cloud properties. Remote Sens. Environ. 2008, 112, 3131–3141. [Google Scholar]
- Mueller, R.; Matsoukas, C.; Gratzki, A.; Hollmann, R.; Behr, H. The CM-SAF operational scheme for the satellite based retrieval of solar surface irradiance–A LUT based eigenvector hybrid approach. Remote Sens. Environ. 2009, 113, 1012–1022. [Google Scholar]
- Perez, R.; Ineichen, P.; Moore, K.; Kmiecik, M.; George, R.; Vignola, F. A new operational model for satellite-derived irradiances: description and validation. Solar Energy 2002, 73, 307–317. [Google Scholar]
- Mueller, R.; Behrendt, T.; Hammer, A.; Kemper, A. A new algorithm for the satellite-based retrieval of solar surface irradiance in spectral bands. Remote Sens. 2012, 4, 622–647. [Google Scholar]
- Posselt, R.; Mueller, R.; Stöckli, R.; Trentmann, J. Remote sensing of solar surface radiation for climate monitoring–The CM-SAF retrieval in international comparison. Remote Sens. Environ. 2011, 118, 186–198. [Google Scholar]
- DOI of CM-SAF MVIRI data set: 10.5676/EUM_SAF_CM/RAD_MVIRI/V001. 2011. Available online: http://dx.doi.org/10.5676/EUM_SAF_CM/RAD_MVIRI/V001 accessed on 17 June 2015.
- Amillo, A.; Huld, T.; Müller, R. A new database of global and direct solar radiation using the eastern meteosat satellite. Remote Sens. 2014, 6, 8165–8189. [Google Scholar]
- Hakuba, M.Z.; Folini, D.; Sanchez-Lorenzo, A.; Wild, M. Spatial representativeness of ground-based solar radiation measurements. J. Geophys. Res. 2013, 118, 8585–8597. [Google Scholar]
- Hagemann, S.; Loew, A.; Andersson, A. Combined evaluation of MPI-ESM land surface water and energy fluxes. J. Adv. Model. Earth Syst. 2013, 5, 259–286. [Google Scholar]
- Huld, T.; Müller, R.; Gambardella, A. A new solar radiation database for estimating PV performance in Europe and Africa. Solar Energy 2012, 86, 1803–1815. [Google Scholar]
- Ohmura, A.; Dutton, E.G.; Forgan, B.; Fröhlich, C.; Gilgen, H.; Hegner, H.; Heimo, A.; Konig-Langlo, G.; McArthur, B.; Müller, G.; et al. Baseline Surface Radiation Network (BSRN/WCRP): New precision radiometry for climate research. Bull. Am. Meteorol. Soc. 1998, 79, 2115–2136. [Google Scholar]
- Hammer, A.; Heinemann, D.; Hoyer, C.; Kuhlemann, R.; Lorenz, E.; Mueller, R.; Beyer, H. Solar energy assessment using remote sensing technologies. Remote Sens. Environ. 2003, 86, 423–432. [Google Scholar]
- Mayer, B.; Kylling, A. Technical note: The libRadtran software package for radiative transfer calculationsdescription and examples of use. Atmos. Chem. Phys. 2005, 5, 1855–1877. [Google Scholar]
- Stammes, K.; Tsay, S.; Wiscombe, W.; Jayaweera, K. Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media. Appl. Opt. 1988, 27, 2502–2509. [Google Scholar]
- Kato, S.; Ackerman, T.; Mather, J.; Clothiaux, E. The k-distribution method and correlated-k approximation for a short-wave radiative transfer. J. Quant. Spectrosc. Radiat. Transfer. 1999, 62, 109–121. [Google Scholar]
- Posselt, R.; Mueller, R.; Stöckli, R.; Trentmann, J. Spatial and temporal homogeneity of solar surface irradiance across satellite generations. Remote Sens. 2011, 3, 1029–1046. [Google Scholar]
- Mueller, R.; Dagestad, K.; Ineichen, P.; Schroedter-Homscheidt, M.; Cros, S.; Dumortier, D.; Kuhlemann, R.; Olseth, J.; Piernavieja, G.; Resie, C.; et al. Rethinking satellite based solar irradiance modelling. The SOLIS clear-sky module. Remote Sens. Environ. 2004, 91, 160–174. [Google Scholar]
- Shettle, P.; Fenn, R.W. Models of the atmospheric aerosols and their optical properties. Proceedings of the AGARD Conference Proceedings No. 183, Optical Propagation in the Atmosphere, Symposium, Lyngby, Denmark, 27–31 October 1975.
- Shetlle, E. Models of aerosols, clouds and precipitation for atmospheric propagation studies. Proceedings of the AGARD Conference Proceedings No. 454, Atmospheric propagation in the UV, Visible, IR and mm-Region and Related System Aspects, Electromagnetive Wave Propagation Panel Specialist Meeting, Copenhagen, Denmark, 9–13 October 1989.
- Skartveit, A.; Olseth, J.; Tuft, M. An hourly diffuse fraction model with correction for variability and surface albedo. Solar Energy 1998, 63, 173–183. [Google Scholar]
- EUMETSAT. The METEOSAT system. In Technical Report Revision 4; EUMETSAT: Darmstadt, Germany, 2000. [Google Scholar]
- Cros, S.; Albuisson, M.; Wald, L. Simulating Meteosat-7 broadband radiances using two visible channels of Meteosat-8. Solar Energy 2006, 80, 361–367. [Google Scholar] [Green Version]
- Posselt, R.; Mueller, R.; Trentmann, J.; Stockli, R.; Liniger, M. A surface radiation climatology across two Meteosat satellite generations. Remote Sens. Environ. 2014, 142, 103–110. [Google Scholar]
- Morcrette, J.J.; Boucher, O.; Jones, L.; Salmond, D.; Bechtold, P.; Beljaars, A.; Benedetti, A.; Bonet, A.; Kaiser, J.W.; Razinger, M.; et al. Aerosol analysis and forecast in the European Centre for Medium-Range Weather Forecasts Integrated Forecast System: Forward modeling. J. Geophys. Res. 2009, 114. [Google Scholar] [CrossRef]
- Benedetti, A.; Morcrette, J.J.; Boucher, O.; Dethof, A.; Engelen, R.; Fisher, M.; Flentje, H.; Huneeus, N.; Jones, L.; Kaiser, J.; et al. Aerosol analysis and forecast in the European Centre for medium-range weather forecasts integrated forecast system: 2. Data assimilation. J. Geophys. Res. 2009, 114. [Google Scholar] [CrossRef]
- Bellouin, N.; Quaas, J.; Morcrette, J.J.; Boucher, O. Estimates of aerosol radiative forcing from the MACC re-analysis. Atmos. Chem. Phys. 2013, 13, 2045–2062. [Google Scholar] [Green Version]
- Kinne, S.; Schulz, M.; Textor, C.; Guibert, S.; Balkanski, Y.; Bauer, S.E.; Berntsen, T.; Berglen, T.F.; Boucher, O.; Chin, M.; et al. An AeroCom initial assessment-optical properties in aerosol component modules of global models. Atmos. Chem. Phys. 2006, 6, 1815–1834. [Google Scholar]
- Hess, M.; Koepke, P.; Schult, I. Optical properties of aerosols and clouds: The software package OPAC. Bull. Am. Meteorol. Soc. 1998, 79, 831–844. [Google Scholar]
- Koepke, P.; Hess, M.; Schult, I.; Shettle, E. global Aerosol Data Set; Technical Report No. 243; Max Planck Institut für Meteorologie: Hamburg, Germany, 1997. [Google Scholar]
- Kinne, S.; O’Donnel, D.; Stier, P.; Kloster, S.; Zhang, K.; Schmidt, H.; Rast, S.; Giorgetta, M.; Eck, T.F.; Stevens, B. MAC-v1: A new global aerosol climatology for climate studies. J. Adv. Model. Earth Syst. 2013, 5, 707–740. [Google Scholar]
- Mueller, R.; Tráger-Chatterjee, C. Brief accuracy assessment of aerosol climatologies for the retrieval of solar surface radiation. Atmosphere 2014, 5, 9699–9729. [Google Scholar]
- Müller, R.; Pfeifroth, U.; Träger-Chatterjee, C. Towards optimal aerosol information for solar surface radiation retrieval using Heliosat. Atmosphere 2015, in press. [Google Scholar]
- Gueymard, C.A. Temporal variability in direct and global irradiance at various time scales as affected by aerosols. Solar Energy 2012, 86, 3544–3553. [Google Scholar]
- Nikitidou, E.; Kazantzidis, A.; Salamalikis, V. The aerosol effect on direct normal irradiance in Europe under clear skies. Renew. Energ. 2014, 68, 475–484. [Google Scholar]
- Uppala, S.; Kållberg, P.; Simmons, A.; Andreae, U.; da Costa Becthold, V.; Firino, M.; Gibson, J.; Haseler, J.; Hernandez, A.; Kelly, G.; et al. The ERA-40 re-analysis. Q. J. R. Meteorol. Soc. 2005, 131, 2961–3012. [Google Scholar]
- Betts, A.K.; Ball, J.H.; Bosilovich, M.; Viterbo, P.; Zhang, Y.; Rossow, W.B. Intercomparison of water and energy budgets for five Mississippi subbasins between ECMWF re-analysis (ERA-40) and NASA Data Assimilation Office fvGCM for 1990–1999. J. Geophys. Res. 2003, 108. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppala, S. Variational bias correction of satellite radiance data in the ERA-interim reanalyis. Q. J. R. Meteorol. Soc. 2009, 135, 1830–1841. [Google Scholar]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar]
- Krämer, M.; Müller, R.; Bovensmann, H.; Burrows, J.; Brinkmann, J.; Röth, E.; Grooß, J.U.; Müller, R.; Woyke, T.; Ruhnke, R.; et al. Intercomparison of stratospheric chemistry models under polar vortex conditions. J. Atmos. Chem. 2003, 45, 51–77. [Google Scholar]
- Loveland, T. Belward. The IGBP-DIS global 1 km land cover data set, DISCover first results. Int. J. Remote Sens. 1997, 18, 3289–3295. [Google Scholar]
- Brown, J.F.; Loveland, T.; Merchant, J.W.; Reed, B.C.; Ohlen, D.O. Using multi-source data in global land-cover characterization: Concepts, requirements, and methods. Photogramm. Eng. Remote Sens. 1993, 59, 977–987. [Google Scholar]
- CERES/SARB SAL. Available online: http://mynasadata.larc.nasa.gov/ceres-surface-type-data accessed on 17 June 2015.
- Dickinson, R.E. Land surface processes and climate–Surface albedos and energy balance. Adv. Geophys. 1983, 25, 305–353. [Google Scholar]
- Ohmura, A.; Dutton, E.; Forgan, B.; Fröhlich, C.; Hegner, H.; Heimo, A.; König-Langlo, G.; McArthur, B.; Müller, G.; Philipopon, R.; et al. Baseline Surface Radiation Network (BSRN/WCRP): New precision radiometry for climate research. Bull. Am. Met. Soc. 1998, 79, 2115–2136. [Google Scholar]
- Long, C.N.; Shi, Y. An automated quality assessment and control algorithm for surface radiation measurements. Open Atmos. Sci. J. 2008, 2, 23–37. [Google Scholar]
- Roesch, A.; Wild, M.; Ohmura, A.; Dutton, E.G.; Long, C.N.; Zhang, T. Assessment of BSRN radiation records for the computation of monthly means. Measur. Techn. Discuss. 2010, 3, 339–354. [Google Scholar]
- Blanc, P.; Espinar, B.; Geuder, N.; Meyer, R.; Pitz-Paal, R.; Reinhardt, B.; Renne, D.; Sengupta, M.; Wald, L.; Wilbert, S. Direct normal irradiance related definitions and applications: The circumsolar issue. Solar Energy 2014, 110, 561–577. [Google Scholar] [Green Version]
- Gilgen, H.; Roesch, A.; Wild, M.; Ohmura, A. Decadal changes in shortwave irradiance at the surface in the period from 1960 to 2000 estimated from global energy balance archive data. J. Geophys. Res. 2009, 114. [Google Scholar] [CrossRef]
- Sanchez-Lorenzo, A.; Wild, M.; Trentmann, J. Validation and stability assessment of the monthly mean CM SAF surface solar radiation dataset over Europe against a homogenized surface dataset 1983–2005. Remote Sens. Environ. 2013, 134, 355–366. [Google Scholar]
- Bojanowski, J.S.; Vrieling, A.; Skidmore, A.K. A comparison of data sources for creating a long-term time series of daily gridded solar radiation for Europe. Solar Energy 2014, 99, 152–171. [Google Scholar]
- Operations Reports of the CM-SAF. Available online: http://www.cmsaf.eu assessed on 1 June 2015.
- Wilks, D.S. Statistical Methods in the Atmospheric Sciences, 2nd ed; International Geophysics Series; Volume 59, Academic Press: New York, NY, USA, 2006; ISBN ISBN-13: 9780127519654. [Google Scholar]
- Diekmann, F.J.; Happ, S.; Rieland, M.; Benesch, W.; Czeplak, G.; Kasten, F. An operational estimate of global solar irradiance at ground level from METEOSAT data: Results from 1985 to 1987. Met. Rdsch. 1988, 41, 65–79. [Google Scholar]
- Decoster, I.; Clerbaux, N.; Baudrez, E.; Dewitte, S.; Ipe, A.; Nevens, S.; Blazquez, A.V.; Cornelis, J. Spectral aging model applied to meteosat first generation visible band. Remote Sens. 2014, 6, 2534–2571. [Google Scholar]
- Govaerts, Y.; Clerici, M.; Clerbaux, N. Operational calibration of the meteosat radiometer VIS band. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1900–1914. [Google Scholar]
Input | Temporal/Spatial Resolution | Used for Estimation of | Further Information |
---|---|---|---|
Satellite raw images | Half-hourly, 0.05 × 0.05° | effective cloud albedo | 2.6.1 |
Aerosol | Monthly climatologies, 0.5 × 0.5 ° | clear sky radiation | 2.6.2 |
Water vapor | Monthly means, 0.5 × 0.5 ° | clear sky radiation | 2.6.3 |
Ozone | Climatological values | clear sky radiation | 2.6.3 |
Surface albedo | Climatology, 1/6 × 1/6 ° | clear sky radiation | 2.6.4 |
Satellite | from | to |
---|---|---|
MFG
| ||
Meteosat 2 | 16 August 1981 | 11 August 1988 |
Meteosat 3 | 11 August 1988 | 19 June 1989 |
Meteosat 4 | 19 June 1989 | 24 January 1990 |
Meteosat 3 | 24 January 1990 | 19 April 1990 |
Meteosat 4 | 19 April 1990 | 4 February 1994 |
Meteosat 5 | 4 February 1994 | 13 February 1997 |
Meteosat 6 | 13 February 1997 | 3 June 1998 |
Meteosat 7 | 3 June 1998 | 31 December 2005 |
MSG
| ||
Meteosat 8 | 1 January 2006 | April 2007 |
Meteosat 9 | 1 May 2007 | December 2012 |
Meteosat 10 | 1 January 2013 | December 2013 |
Station | Country | Code | Latitude [degN] | Longitude [degE] | Elevation [m] | Data Since |
---|---|---|---|---|---|---|
Cabauw | Netherlands | cab | 51.97 | 4,93 | 0 | 1.12.2005 |
Camborne | UK | cam | 50.22 | −5.32 | 88 | 1.1.2001 |
Carpentras | France | car | 44.05 | 5.03 | 100 | 1.8.1996 |
Cener | Spain | cnr | 42,82 | −1.6 | 471 | 1.7.2009 |
De Aar | South Africa | daa | −30.67 | 23.99 | 1287 | 1.5.2000 |
Florianopolis | Brasil | flo | −27.53 | −48.52 | 11 | 1.6.1994 |
Gobabeb | Namibia | gob | −23.56 | 15.04 | 407 | 15.5.2012 |
Lerwick | UK | ler | 60.13 | −1.18 | 84 | 1.1.2001 |
Lindenberg | Germany | lin | 52.21 | 14.12 | 125 | 1.9.1994 |
Palaiseu Cedec | France | pal | 48.71 | 2.21 | 156 | 1.6.2003 |
Payerne | Switzerland | pay | 46.81 | 6.94 | 491 | 1.9.1992 |
Sede Boger | Israel | sbo | 30.9 | 34.78 | 500 | 1.1.2003 |
Solar Village | Saudi Arabia | sov | 24.91 | 46.41 | 650 | 1.8.1998 |
Tamanrasset | Algeria | tam | 22.78 | 5.51 | 1385 | 1.3.2000 |
Toravere | Estonia | tor | 58.25 | 26.46 | 70 | 1.1.1999 |
SIS | Nmon | Bias [W/m2] | MAB [W/m2] | SD [W/m2] | AC | Fracmon [%] |
---|---|---|---|---|---|---|
SARAH | 1672 | 1.27 | 5.46 | 7.34 | 0.92 | 5.6 |
MVIRI | 878 | 4.24 | 7.76 | 8.23 | 0.89 | 10.71 |
SIS | Ndaily | Bias [W/m2] | MAB [W/m2] | SD [W/m2] | AC | Fracdaily [%] |
---|---|---|---|---|---|---|
SARAH | 48,413 | 1.12 | 12.1 | 17.9 | 0.95 | 11.3 |
MVIRI | 29,790 | 4.41 | 15.1 | 23.4 | 0.92 | 16.3 |
SID | Nmon | Bias [W/m2] | MAB [W/m2] | SD [W/m2] | AC | Fracmon [%] |
---|---|---|---|---|---|---|
MVIRI | 805 | 0.89 | 11.0 | 15.7 | 0.83 | 15.4 |
SARAH | 1587 | 0.98 | 8.2 | 11.6 | 0.89 | 8.4 |
DNI | ||||||
SARAH | 1529 | 3.2 | 17.5 | 22.9 | 0.87 | 16.4 |
SID | Ndaily | Bias [W/m2] | MAB [W/m2] | SD [W/m2] | AC | Fracdaily [%] |
---|---|---|---|---|---|---|
MVIRI | 26,614 | 0.74 | 20.73 | 31.74 | 0.89 | 23.42 |
SARAH | 42,753 | 0.77 | 17.9 | 26.6 | 0.92 | 20.5 |
DNI | ||||||
SARAH | 41,253 | 3.8 | 34.0 | 48.4 | 0.91 | 32.8 |
© 2015 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Müller, R.; Pfeifroth, U.; Träger-Chatterjee, C.; Trentmann, J.; Cremer, R. Digging the METEOSAT Treasure—3 Decades of Solar Surface Radiation. Remote Sens. 2015, 7, 8067-8101. https://doi.org/10.3390/rs70608067
Müller R, Pfeifroth U, Träger-Chatterjee C, Trentmann J, Cremer R. Digging the METEOSAT Treasure—3 Decades of Solar Surface Radiation. Remote Sensing. 2015; 7(6):8067-8101. https://doi.org/10.3390/rs70608067
Chicago/Turabian StyleMüller, Richard, Uwe Pfeifroth, Christine Träger-Chatterjee, Jörg Trentmann, and Roswitha Cremer. 2015. "Digging the METEOSAT Treasure—3 Decades of Solar Surface Radiation" Remote Sensing 7, no. 6: 8067-8101. https://doi.org/10.3390/rs70608067
APA StyleMüller, R., Pfeifroth, U., Träger-Chatterjee, C., Trentmann, J., & Cremer, R. (2015). Digging the METEOSAT Treasure—3 Decades of Solar Surface Radiation. Remote Sensing, 7(6), 8067-8101. https://doi.org/10.3390/rs70608067