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Abstract: A method was developed to estimate the consumption of CH4 and the release of 

CO2 by gas flaring using VIIRS nighttime data. The results agreed with the field data 

collected at six stations in Bakken field, North Dakota, USA, within ±50%, as measured by 

mean relative errors and with a correlation coefficient of 0.75. This improved over the 

NOAA NightFire estimates, likely due to: (1) more stringent data selection using only the 

middle portion of cloud-free VIIRS nighttime imagery; (2) the use of a lower heating rate, 

which is more suitable for the field condition; and (3) more accurate efficiency factors in 

calculating completeness in combustion and conversion of total reaction energy into radiant 

energy that can be sensed by a satellite sensor. While using atmospherically-corrected data 

can further improve the estimate of CH4 consumption by ~10%, the major uncertainty 

remains as being the form factor of the flares, particularly the ratio of total surface area of a 

flare to the cross-section area that was seen by a satellite sensor. 
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1. Introduction 

Flaring is a routine practice in the petroleum industry for the disposal of a large quantity of flammable 

gases and vapors that cannot be utilized or stored immediately. In 2013, about 7.4 × 109 m3 of natural 

gas are burned in the U.S. often due to processing upsets or constraints in infrastructure for transmission 

and storage. This represents not only a significant waste of natural resources, but also emissions of CO2, 

which can contribute to global greenhouse gas accumulations [1]. To better understand the 

environmental impact of natural gas flaring, regular monitoring of flares and quantification of the amount 

of gas consumption and associated CO2 footprint is required [2,3]. 

Satellite remote sensing has been used to study active fire since the 1980s (e.g., [4]). Like typical biomass 

burning, flares are sub-pixel objects seen by a medium-resolution remote sensing sensor, the data of which 

typically is freely accessible to the public. Dozier [5] demonstrated the detection of a sub-pixel hot source 

and its characterization in terms of temperature and area from nighttime remote sensing data at two infrared 

wavelengths, between which there exists a significant contrast in the thermal radiation by the hot target. The 

technique has been applied to detect fires and to determine the subpixel size of the active fire(s) and average 

fire temperature using the Visible Atmospheric Sounder (VAS) sensor on the Geostationary Orbiting 

Environmental Satellite (GOES) [6,7], the NOAA Advanced Very High Resolution radiometer (AVHRR) 

sensors [8,9], the Visible and Infrared Spectrometer (VIRS) on the Topical Rainfall Measuring Mission 

(TRMM) [10], the Moderate-Resolution Imaging Spectroradiometer (MODIS) sensors [11,12] and the 

Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi National Polar-orbiting Partnership 

satellite [13]. Through a sensitivity analysis, Giglio and Kendall [14] found that systematic retrieval errors 

can become enormous when the size fraction of the active fire is <0.005. A gas flare, typically of a size  

of <10 × 10 m2 [15], occupies at most a fraction of 1 × 10−4 within a medium-resolution pixel, typically of a 

size of approximately 1 × 1 km2. In addition, the temperatures of gas flares (1500–3000 K) are typically 

much higher than the biomass fires (around 1000 ± 200 K or less) [16,17]. While the Dozier method has been 

used to quantify gas flares (e.g., [8]), methodological improvement is needed to better constrain the retrieval 

of gas flares from remote sensing data. 

Elvidge et al. [18] empirically related nighttime radiance collected by the Operational Linescan 

System (OLS) sensor with a single panchromatic spectral band from the Defense Meteorological 

Satellite Program (DMSP) to natural gas flaring. The VIIRS sensor, following the legacy of AVHRR 

and MODIS, offers 16 medium-resolution bands in the visible and infrared wavelengths between 0.4 

and 12 μm [19]. Utilizing additional bands offered by the VIIRS sensor, Elvidge et al. [17] recently 

developed a method estimating the source area and temperature of flares using VIIRS data at multiple 

infrared bands. The results of the Elvidge et al. [17] method have been extended to estimate the gas 

emission through flaring. However, these results on gas emission have not been validated. Through 

collaboration, we have collected a limited amount of publicly-available data on associated gas flaring 

rates in Bakken field. These field data allow us to develop and validate a VIIRS-based method estimating 

CH4 consumption and CO2 emission rates from gas flaring. 
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2. Data and Method 

2.1. Data  

The Bakken Shale or Bakken Formation [20] ranks as one of the largest oil developments in the U.S. 

in the past 40 years (Figure 1). Today, the Bakken produces more than ten percent of all U.S. oil production, 

and North Dakota is the second largest oil producing state in the U.S. in volume of production. From 

monthly oil and gas production reports publicly available at the North Dakota Department of Mineral 

Resources, we have collected a limited amount of data from January 2013–June 2014 on gas flaring rates 

at 6 stations located in North Dakota, USA (Figure 1). The reports include monthly production of gas, the 

amount of gas sold and the number of days of production, from which we estimated the average daily gas 

flaring rate as the difference between gas production and gas sold divided by the number of days. We did 

not account for the amounts of gas that are sometimes used to produce power on the well sites, because 

the quantities are small and not measured. In this study, we used these data to validate our results.  

 

Figure 1. The general area of Bakken field in the U.S. and the major land uses of the region. 

The blue dots are the flares that have been identified in this study, and the red dots denote 

the locations of the six oil wells where the field data on gas flaring rates have been collected. 

The NightFire project has been routinely processing the VIIRS data for detecting and monitoring flares [17]. 

Daily products for the same period have been collected from NOAA National Centers for Environmental 

Information (http://www.ngdc.noaa.gov/eog/viirs/download_viirs_fire.html). The latest version of the product 

is V2.1, but only available for data starting February 2014 (as of the time of writing). The earlier version V1 is 

available for data from September 2012 to January 2014. For our study, we downloaded the V1 version for 

data from January 2013 to January 2014 and the V2.1 version for data from February 2014 to June 2014. For 

each flare identified, the NightFire product provides the radiance of the flare-containing pixel and estimates on 

its temperature, methane consumption and carbon dioxide production. 

The VIIRS data we used are downloaded from NOAA Comprehensive Large Array-Data Stewardship 

System (CLASS). The size of a flare is approximately 10 × 10 m2 or less, whereas the size of a VIIRS 

pixel is approximately 800 × 800 m2. Therefore, detecting a flare, a sub-pixel object only occupying at 

most a 1/5000 fractional area, is sensitive to the contamination of the pixels. For quality control, we used 

only VIIRS nighttime images that are cloud free (i.e., cloud mask values are 0 or 1). An additional check 

on clouds is to examine the temperature estimated for the background pixels (see below); unseasonably 
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cold pixels (e.g., −30 °C in May) would indicate the presence of clouds. Another quality control step is 

that we used only the middle portion of an image, i.e., the first aggregation zone. VIIRS uses a unique 

approach of aggregating raw samples to control pixel growth towards the end of a scan line: three raw 

samples are aggregated in Zone 1 (±31.72° out from the nadir), two samples aggregated in Zone 2 

(31.72°–44.86°) and no aggregation in Zone 3 (44.86°–56.28°) [21]. The use of only Zone 1 data in our 

study offers four areas of benefits. The aggregation results in higher signal-to-noise ratio at Zone 1 [17]. 

Secondly, it can avoid the so-called bowtie deletion. The bowtie effect is a geometric feature of the 

VIIRS scan lines, which will overlap as approaching the edge of a swath. These overlapping 

samples/pixels are removed onboard in order to minimize the bandwidth usage on the broadcast. Thirdly, 

VIIRS pixel sizes increase from 734 × 770 m2 at nadir to 1613 × 1643 m2 at the edges of a scan [21], 

effectively lowering the fractional contribution to the total signal by flares located towards edges of a 

scanline. Lastly, the surface signal from edge pixels has to pass a longer atmosphere with greater 

attenuation. However, we do recognize the impact of this screening, which significantly restricts both 

spatial and temporal sampling. This is a compromise between quality and quantity.  

2.2. Improved Estimates of Methane Consumption 

We use “Moderate” resolution bands M7, M8, M10, M12, M13, M14, M15 and M16 of the VIIRS 

sensor to detect and characterize flares. Examples of the radiance spectra for a pixel containing a flare and 

for a flare-free pixel are shown in Figure 2. The spectral locations of the peaks are determined by the 

temperatures of the background and the flares through Wien’s law. For the specific examples shown in 

Figure 2, the temperature of the flare is about 1600 °C and about −16 °C for the background. The traditional 

Dozier [5] method, designed for detection of biomass fire, would use Bands M12 and M15; apparently the 

band M12 is not optimal for the detection of flares, which, due to their greater temperature than biomass 

burning, exhibit a radiation peak around 1.6 μm. 

 

Figure 2. Examples of nighttime radiance spectra collected on 11 December 2013 for pixels 

that are flare free and contain a flare. The VIIRS bands used in this study are shown as shaded 

boxes and their band numbers in the top x-axis. 

In principle, the spectral radiance (L(λ)) received from a pixel can be modeled as [14]: 
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where λ is the wavelength, T the absolute temperature of a flare, T0 the temperature of the background, 

f the fractional area of the flare, ߝ the emissivity of the flare, ε0 the emissivity of the background, τ the 

atmospheric transmittance, Id the atmospheric downwelling irradiance, Latm the upwelling atmospheric 

radiance and P(T,ߣ) the Planck function, 
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and kb the Boltzmann constant, h the Planck constant and c the speed of light. In Equation (1), the first 

term on the right-hand side represents the radiance from the flare; the second term is the radiance from the 

background; the third term is the reflected radiance due to downward atmospheric radiation; and the last 

term is the contribution due to upward atmospheric radiation. For a neighboring, flare-free pixel, which is 

assumed to have identical surface and atmospheric conditions as the flare-containing pixel, Equation (1) 

can be written as: 
( ) ( ) ( ) ( , ) ( )(1 ( )) ( )b o o o d atmL P T I L                (3) 

Inserting Equation (3) into Equation (1), we have: 

( ) ( ) ( ) ( , ) (1 ) ( ) ( )b atmL f P T f L fL             (4) 

We have followed Giglio and Kendall [14] in deriving Equation (4). Since f is extremely small for a flare 

(typically <1/5000), 1 − f ≈ 1, and the fLatm term in Equation (4) is very small as compared to either the 

first or second term of Equation (4). Therefore, Equation (4) can be further approximated as: 

( ) ( ) ( , ) ( )e bL f P T L        (5) 

where the effective area fe = f × ε. Comparing to Equation (1), Equation (5) contains less unknowns and, 

hence, is easier to solve. The use of Equation (5) requires the presence of neighboring pixel(s) that do not 

contain flares and have similar land and atmospheric conditions as the flaring-containing pixels. This 

condition is generally met in Bakken field. Gas flares are usually separated by 2–3 km, the normal distance 

between Bakken well pads; therefore, for two neighboring pixels on a VIIRS image, both seldom contain 

flares. The land cover in the region is relatively homogeneous, mainly with crops and grass [22] (Figure 1). 

The emissivity values for the major land cover types in the region are very similar. For example, the 

emissivity is approximately 0.93 for frozen soil, 0.94 for barren or sparsely-vegetated land and 0.97 for 

grassland [23]. There are three unknowns in Equation (5); fe and T are associated with a flare, and τ is the 

atmospheric transmittance, which varies with atmospheric conditions. Here, we further assumed τ = 1; the 

implication of this assumption is discussed later. We applied a constraint non-linear curve fitting to  

Equation (5) with inputs of two measured radiance spectra (one for flaring-containing pixel and one for  

flare-fee neighboring pixel) to solve for fe and T. The constraints applied are 0  ≤ fe ≤ 1, 1000  ≤ T ≤ 3000 K. 

To identify a hot flaring pixel, we compare the values of the M10 and M12 bands. For the background, 

whose temperature typically varies between −40 and 40 °C in the Bakken area, the radiance at M10 should 

always be less than that at the M12 band. For a pixel containing a flare, whose temperature is in a range of 

1500–3000 K, the radiance at M10 becomes greater than M12 (see, e.g., Figure 2). An example of solving 
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Equation (5) using data in Figure 2 is shown in Figure 3. There is a reported issue with the M12 band suffering 

from sub-pixel saturation in aggregation Zones 1 and 2 over hot pixels, i.e., averaging saturated and 

unsaturated pixels results in radiances below the saturation radiance, which is 3.39 W/(m2 µm sr)) [17]. This 

sub-pixel saturation, which effectively lowers the radiance level recorded at M12 compared to the actual 

value, if it occurs, would have a very limited impact on our algorithm for two reasons. First, a flare pixel is 

detected as having an M10 value greater than M12. A lowered M12 value will not affect this detection 

criterion. Second, our algorithm relies on the general shape of spectral radiance at eight M band wavelengths 

and the peak located at M10 in particular to characterize a flare. A lowered value at a single band of M12 is 

not expected to alter the general spectral shape of the radiance recorded over a flaring pixel dramatically, 

which typically contains two radiant peaks, one at M10 and the other at M15 or M16 (see, e.g., Figure 2).  

 

Figure 3. The measured radiance spectra shown in Figure 2 for both flaring and flare-free 

pixels are solved using Equation (5) to estimate the temperature and effective area for the flare.  

The gas source of flaring in Bakken field is mostly methane (CH4): 

4 2 2 2CH +2O =CO +2H O outE  (6) 

where Eout (kJ/mol) is the total energy output of the CH4 burning reaction. For its value, we use methane’s 

lower heating value (LHV) of 802 (kJ/mol) [24]. Note that NOAA’s NightFire algorithm uses the higher 

heating value (HHV) accounting for additional latent heat released assuming all of the water vapor 

condenses into liquid form. This does not apply in the field where water is indeed released as vapor. 

Only part of the reaction energy from combusting gases is released as the radiant energy that a satellite 

can measure, while the other is lost as heating-up of the air as it passes through the volume of the flame. 

The efficiency or F-factor (F) of the total reaction energy emitted as radiation varies with wind speeds 

and the gas release velocity, averaging about 0.2% ± 10% [24]. To estimate the CH4 being consumed, 

combustion or flaring efficiency (C) has to be consider. Combustion efficiency measures the 

completeness of combustion, which varies with both wind and gas release speeds [25]. Leahey et al. [25] 

found that the efficiency for methane can be as low as 10% for a wind speed of 20 m/s. However,  

Cain et al. [26], upon reviewing prior studies up to the report, concluded that appropriately-designed  

and -operated flares are highly efficient, converting 98% or more of the hydrocarbon feed to carbon 

dioxide and water. The rate of CH4 consumption is then: 
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where σ	is the Stefan–Boltzmann constant and A is the area of the pixel containing the flare, which can 

be computed straightforwardly as a function of the pixel’s zenith angle [17]. It is clear from  

Equation (7) or Equation (8) that the use of effective fractional area, fe (= f × ε), does not affect the 

estimates of the gas consumption or release. We use α to represent the ratio of the total surface area of 

the flare, which emits radiation, to the satellite-sensing cross-section area, whose emittance is seen by 

the sensor. The values of α should be greater than one; for example, for a plane surface emitting in both 

sides with only one side being seen by a sensor, α = 2, and for a sphere, α = 4. The exact values depend 

on the general shape of a flare, which, in turn, is expected to vary with wind conditions. Since we could 

not find any studies reporting the values of α, we have assumed α = 1, understanding that this will 

underestimate the total radiant output of a flare. In Equation (7), the effective area fe and temperature T 

of flares are estimated from images, but the ratio of surface to cross-section areas α, combustion efficient 

C and F-factor F cannot be derived from remote sensing; therefore, their values have to be assumed. In 

addition, all of these three parameters vary with wind speeds. In this study, we have assumed α = 1,  

F = 0.20 [24] and C = 0.98 [26]. 

3. Results and Discussion  

Figure 4 compares the temperatures (a) and effective areas (b) estimated for all of the flares that have 

been detected within 12 h by both the NOAA NightFire algorithm and our method between  

January 2013 and June 2014. For the NOAA data, we only used those with viewing angles <32° (i.e., in 

aggregation Zone 1). The scatter of the comparison is expected because of the methodological differences 

in detecting the flares and estimating their temperatures between the two methods. The NOAA NightFire 

algorithm uses the spatial contrast to identify a flare, particularly at the band M10 (i.e., M10 for a flare is 

higher than the values of its neighboring pixels), whereas our method used the spectral difference to 

identify a flare, for which the radiance at the band M10 is greater than the value at the band M12. This 

detection difference arises from the fact that the NOAA NightFire algorithm is designed for the more 

general purpose of detecting hot sources with a wide range in temperature, while our algorithm was 

designed specifically for detecting flares, whose temperatures vary in a relatively tighter range of  

1500–3000 K [16,17] and for which the emittance at M10 is always greater than that at M12. In addition, 

the NOAA NightFire algorithm uses the bands M7, M8, M10, M12 and M13 for retrieval of flare 

temperature [17], whereas our method used Bands M7, M8, M10, M12, M13, M14, M15 and M16 (see 

Figure 2). For the background, the NOAA NightFire algorithm only removes the background signal from 

Bands M12 and M13, whereas our method accounted for the background over all of the bands using 

neighboring pixels (see Equation (4)). Furthermore, atmospheric correction is performed for the NightFire 

data, whereas our method has assumed that the atmospheric transmittance τ = 1. Despite these differences 

in methodology, the two methods agree with each other reasonably well in estimating the temperatures 

and the areas of flares. For temperature, there is no systematic bias (the mean relative error is almost zero) 
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and an absolute difference (as measured by root mean square error) of about 170 K; for area, the absolute 

difference is <0.5 m2, and the mean difference 26%. Furthermore, we did not find any significant difference 

in comparison between Versions 1 and 2 of the NOAA NightFire products.  

 

Figure 4. Comparison of the temperatures (a) and effective areas (b) estimated for the flares 

by the NOAA NightFire algorithm and our method. Also shown are the statistical evaluation 

of the comparison in terms of correlation coefficient (r), root mean square error (RMSE) and 

mean relative error (MRE). The blue dots are for NightFire V1 data and red dots V2. 

However, the comparison will be worse if we include NOAA data with viewing angles >32° (i.e., in 

aggregation Zones 2 or 3). For example, r, RMSE and MRE would be 0.44, 202 and −0.02, respectively, 

for temperature comparison; and 0.55, 0.50 and 0.33, respectively, for area comparison. As discussed 

earlier, a flare only occupies a tiny fraction of a VIIRS pixel (<1/5000), and hence, its detection is very 

sensitive to contamination or deterioration of signals. The pixels located towards the edges of VIIRS 

imagery would have a lower signal-to-noise ratio, a larger footprint size and, hence, a smaller 

contribution by a flare to the signal, longer atmospheric attenuation of the signal and are subject to bowtie 

deletion, all of which could potentially affect the detection and characterization of flares. 

The NOAA NightFire product and the results of this study that collocate with the field data within  

800 m (approximately the size for one VIIRS pixel) are averaged into monthly values for comparison with 

the field data. Again, we only used NOAA data with viewing angles <32°. Figure 5 shows the comparison 

for CH4 consumption. There is a significant difference between the two versions of the NOAA NightFire 

estimates in CH4 rates. For Version 1, the NOAA results underestimate the field data (MRE = −0.73) with 

a correlation coefficient of 0.37; for Version 2, the NOAA results overestimate the field data (MRE = 7.63) 

and r = 0.26. On the other hand, our estimates show significant correlation with field data (r = 0.75) with 

an underestimation of 50%. We need to point out that our method, due to its more stringent image selection 

scheme, results in only 16 matches with the monthly field data, whereas there were 57 matches between 

the NOAA NightFire results and the monthly field data. Among the 57 matches, 37 are from the Version 

1 product and 20 from Version 2. For the total energy output of methane burning (Eout in Equation (6)), we 

use methane’s lower heating value (LHV) of 802 (kJ/mol) [24], whereas NOAA’s NightFire algorithm 
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uses the higher heating value (HHV) of 889 (kJ/mol), which would lead to about 10% underestimates in 

CH4 consumption if everything else is the same. We do not know whether and what values the NightFire 

algorithm uses for the other parameters (α, C and F in Equation (7)) in estimating CH4 consumption. 

However, it is beyond the scope of this study to investigate the methodological details of the NOAA 

NightFire product on flaring. 

 

Figure 5. Comparison of methane consumed in million cubic meter per day (MCM/day) 

through flaring between field and remote sensing estimates. Also shown in the legend are 

the correlation coefficient (r) and mean relative error (MRE) between the satellite estimates 

and the field data. The grey line represents a 1:1 relationship. 

With the current setup, our results are expected to underestimate the consumption rates for two reasons: 

(1) the atmospheric correction is not applied; and (2) the minimum value of α has been assumed. As 

mentioned above, we did not apply the atmospheric correction to the VIIRS data. To evaluate its effect on 

the retrieval of CH4 consumption, we used the MODTRAN radiative transfer model to estimate the 

transmittance, i.e., τ in Equation (5) for the VIIRS bands with three different atmospheric models:  

mid-latitude summer atmosphere, mid-latitude winter atmosphere and 1976 U.S. standard atmosphere. The 

first two atmospheric models generally apply to Bakken field, and the last model has been widely used in 

related studies [14,17]. Elvidge et al. [17] found that non-atmospherically-corrected estimates of 

temperature highly correlated with, yet on average underestimate, the atmospherically-corrected results, 

with an underestimation ranging from 0.1% to 4% for flare temperatures of 1500–2500 K. Underestimation 

of a similar magnitude was also reported by Giglio and Kendall [14]. Our results (Figure 6a) are generally 

consistent with these earlier studies. With atmospheric correction, the effective fractional areas estimated 

for the flares are greater than the estimates without atmospheric correction (Figure 6b), also consistent with 

the results of Elvidge et al. [17]. Applying atmospheric correction, the estimates of CH4 consumption 

would generally be 10% greater than the estimates without atmospheric correction (Figure 6c). However, 

this difference cannot fully explain the underestimation of CH4 consumption, which is on average 50% 

lower, when compared to the field data (Figure 5). 
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We have assumed α = 1 in the estimation of CH4 consumption (Equation (7)), where α represents the 

ratio of flare area to the cross-section area of the flare that a satellite sensor sees. Its value varies with 

the shape of a flare, but is always greater than one. For example, if we set α = 2, our estimates would on 

average agree with the field data with an MRE = 1%; if we set α = 3, our estimates would on average 

overestimate the field data with an MRE = 51%. 

 

Figure 6. Effect of atmospheric correction (atm. corr.) on the estimates of flaring 

temperature (temp.) (a), effective fractional (frac.) area (b) and CH4 consumption (c).  

The grey line represents a 1:1 relationship. Three different atmospheric models available in 

MODTRAN have been tested: mid-latitude summer, mid-latitude winter and 1976  

U.S. standard. 

The ratio of surface to cross-section areas α, combustion efficient C and F-factor F cannot be derived 

from remote sensing, and therefore, their values have to be assumed. Furthermore, all of these three 

parameters decrease with wind speeds. For α, the stronger the wind, the more surface is exposed to a 

satellite sensor, and hence, its value becomes lower. On the other hand, the higher the wind, the greater the 

surface area (fe) of a flare would expose to a sensor from above. Therefore, the combined effect of wind 

on the value of α × fe is reduced compared to individual effects. For the F-factor (F), both observation and 

the model show that its value decreases with wind speeds, and the value of F for methane varies between 

10% and 30% [24]. The combustion efficiency (C) is relatively insensitive to wind speeds, even though its 

value can be lower under high wind conditions [26]. Since the estimate of gas flaring is proportional to 

ி
	(Equation (7)), in which three parameters (α, C and F) decrease and fe increases with wind speed, at 

least some the wind dependence is cancelled out. The exact impact of wind conditions on estimating gas 

consumption and emission needs to be investigated further. From our results, we did not find any 

significant co-variation between the estimates of CH4 consumption and wind conditions (r = −0.1) in this 

study (Figure 7).  
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Figure 7. The estimated daily CH4 consumption vs. the wind speeds. 

4. Conclusions  

In this study, a model was developed to estimate methane consumption of gas flaring using VIIRS 

nighttime data. Our estimates in methane consumption compared reasonably well with limited field data, 

whereas the NOAA NightFire estimates showed underestimation with Version 1 and overestimation 

with Version 2 (Figure 5). There are significant differences in methodology between the NOAA 

NightFire algorithm and our method. First, we applied a more stringent data screening filter, retaining 

only those images that are cloud free and in the middle portion of a scene. Because flares are an extremely 

small object within a pixel of the VIIRS sensor, any contamination due to cloud or deterioration of the 

flare signal recorded at a large viewing angle would directly affect the detection of flares. Additionally, 

the comparison on temperature and effective area of flares between the NightFire and our method did 

improve when the NightFire data with viewing angles >32° were excluded. Second, we adopted Giglio 

and Kendall’s [14] method using neighboring pixel(s) as the background and the spectral radiance at 

eight bands (M7, M8, M10, M12, M13, M14, M15 and M16) to derive the thermal temperature and 

fractional area of a flare (Equation (5)). Third, the lower heating value for methane combustion was used 

for calculations of thermal emissions and emissivity, which is more appropriate than the higher heating 

value that the NOAA NightFire algorithm uses. Finally, efficiency factors were accounted for to provide 

greater accuracy in calculating completeness in combustion and conversion of total reaction energy into 

radiant energy that can be sensed by a satellite sensor (Equation (7)).  

Remaining uncertainties include determining the exact value for α, relating the area of a flare to its 

cross-section area that a satellite sensor sees from above. This value depends on the shape of the flare, but 

might vary in a tight range between one and three, within which our results agreed with the field data 

within ±50%. Further improvement of the method employed in this work can be achieved by using 

atmospherically-corrected VIIRS nighttime data; however, the improvement in using atmospherically 

corrected data is limited because the major uncertainty remains estimating the form factor of the flares. 

We have validated the results using the field data collected in Bakken field. However, we believe the 

method is applicable to detecting and quantifying gas flaring in general, with the only assumption being 

that there exist neighboring pixel(s) with similar land and atmospheric conditions. Even though it is not 

evaluated in this study, it is straightforward to estimate the emission of CO2 using Equation (8) through 

gas flaring, which is one of our planned future works in continuing this study.  
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