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Abstract: Land cover mapping of the urban environment by means of remote sensing remains a
distinct challenge due to the strong spectral heterogeneity and geometric complexity of urban scenes.
Airborne imaging spectroscopy and laser altimetry have each made remarkable contributions to
urban mapping but synergistic use of these relatively recent data sources in an urban context is still
largely underexplored. In this study a synergistic workflow is presented to cope with the strong
diversity of materials in urban areas, as well as with the presence of shadow. A high-resolution
APEX hyperspectral image and a discrete waveform LiDAR dataset covering the Eastern part of
Brussels were made available for this research. Firstly, a novel shadow detection method based
on LiDAR intensity-APEX brightness thresholding is proposed and compared to commonly used
approaches for shadow detection. A combination of intensity-brightness thresholding with DSM
model-based shadow detection is shown to be an efficient approach for shadow mask delineation.
To deal with spectral similarity of different types of urban materials and spectral distortion induced
by shadow cover, supervised classification of shaded and sunlit areas is combined with iterative
LiDAR post-classification correction. Results indicate that height, slope and roughness features
contribute to improved classification accuracies in descending order of importance. Results of this
study illustrate the potential of synergistic application of hyperspectral imagery and LiDAR for urban
land cover mapping.

Keywords: urban; land cover; shadow detection; shadow compensation; support vector machines;
hyperspectral remote sensing; APEX; LiDAR; post-classification

1. Introduction

In light of the challenges presented by climate change and urbanization, more than ever urban
areas need to be monitored in order to gain a better physical understanding of this complex and
dynamic environment. Over the past decades, urban remote sensing has presented itself as a viable
means to systematically acquire information on different spatial, spectral and temporal scales using
a wide range of spaceborne and airborne Earth observation platforms. Remote sensing of urban
scenes remains a challenging topic though due to characteristic difficulties presented by the urban
environment and limitations of traditional sensors. Urban areas are composed of a complex mosaic
of different materials that can usually be attributed to a combination of four material components:
minerals, vegetation, oil-derived products and other artificial materials including metals [1]. Each
material displays specific reflectance features in the Visible Near-Infrared (VNIR) and Short Wave
Infrared (SWIR) wavelength regions so consequently cities are characterized by a very high degree of
spectral heterogeneity [2,3]. Adding to the complexity is the fact that some materials that are used
for different purposes (e.g., roof versus road materials) do share similar material compositions and
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thus also show similar spectral behavior [4]. Variations in composition within a material type, material
weathering and material condition can furthermore induce a significant degree of spectral intra-class
confusion [5–8]. Another concern of urban remote sensing is the complex geometry of the urban
environment. Most observed urban objects tend to have rather small spatial dimensions compared
to objects encountered in natural environments and these objects are often arranged in complex
site-specific geometries [1,4]. The characteristic geometric assembly and the differences in surface
roughness of urban areas result in substantial impact of direction-dependent reflectance properties
and in the presence of shade. Both these phenomena lead to a substantial increase in heterogeneity in
the measured spectral response of urban materials [8].

The complexity of urban scenes has led to an increased demand for more advanced, high
resolution remote sensing solutions. Especially in the past decade there has been a steady growth in
the development and availability of new sensors able to better cope with the challenges outlined above.
Two technologies that have made remarkable contributions are hyperspectral remote sensing, also
referred to as imaging spectroscopy, and Light Detection And Ranging (LiDAR) [9–11]. As opposed to
broadband multispectral sensors, hyperspectral sensors tend to extensively cover both the VNIR and
SWIR regions with a high number (ranging from tens to hundreds) of narrowly defined spectral bands,
allowing them to capture even subtle spectral features, strongly improving the ability to discriminate
different materials and in some cases even material conditions [10]. LiDAR technology can be described
as a laser profiling and scanning system emitting monochromatic NIR pulses that produce very dense
point clouds in which each point is accurately positioned in 3D using direct geo-referencing. As such,
LiDAR is a powerful tool for altimetric modelling of nearly any terrain [9]. The advent of LiDAR
marked a major step forward in urban remote sensing since it allowed to move beyond the limits
dictated by multi- and hyperspectral imagery by adding new components to the equation such as
height, intensity and multiple return/texture features [9,12–15].

Despite the merits that hyperspectral and LiDAR data possess on their own, it is mainly through
synergistic use of both these technologies that urban mapping has managed to produce some of its most
interesting and promising results in recent years [16–20]. Data fusion of imaging spectroscopy and laser
altimetry or hyperspectral-LiDAR synergy is a young but dynamic research field that has only started to
develop fully in the last decade. Approaches for synergy can be differentiated based on how the LiDAR
data are integrated in the land-cover mapping workflow: through vector stacking (feature selection
or pre-processing), re-classification or in a post-classification phase [21]. Vector stacking should be
understood as a process of combining raw spectral, textural or object-based features derived from a
hyperspectral image and a LiDAR point cloud before being used as input for a classifier [22]. Given the
completely different nature of hyperspectral and LiDAR data, machine learning classifiers are preferred
in this approach, since these classifiers are non-parametric and do not make assumptions regarding the
distribution of the input variables [23]. Re-classification involves a two-step mapping process where
the first step consists of a classification based on hyperspectral data, which is followed by a second
classification using the output of the spectral classifier and LiDAR derived features as its input. More
than just improving the accuracy of the spectral classification, adding height (derived) information
can improve thematic detail in land cover mapping [18]. Finally, post-classification involves the
improvement of classification output using external data (in this case LiDAR) in combination with
a specific ruleset. Rulesets for post-classification can be constructed manually or semi-automatically
using discrete thresholds, soft classification output, object-based and/or statistical information in
order to perform correction [24]. A number of examples can be found in the literature where multiple
approaches for hyperspectral-LiDAR synergy are combined within one workflow [17,18]. Regardless
of the approach, LiDAR height information and derivatives naturally complement hyperspectral
data because they may allow discriminating between geometrically dissimilar but spectrally similar
material classes.

Use of LiDAR data in combination with hyperspectral data may also prove useful for dealing
with the omnipresence of shadow in urban areas. Shadow is the result of a complete or partial
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blocking of direct irradiance. It is particularly problematic for analysis of imagery covering cities
with a strong degree of high-rise development or strong topographic features. Likewise, imagery
acquired before or after solar noon, outside of the summer season, during cloudy weather conditions
or in temperate to arctic climate zones may be severely tainted by shadow [25,26]. Whereas for
sunlit surfaces direct irradiance will be the main contributing factor to the total radiance budget,
for shaded areas the relative contributions of environmental and atmospheric radiance will be far
greater while direct irradiance may even be reduced to zero [27]. Because shadow distorts the spectral
signature of materials, accurate mapping of urban areas requires dedicated approaches to deal with
shadow. A distinction can be made between shadow detection and shadow compensation techniques.
Shadow detection answers the question where and to what extent shadow occurs in an image [28].
Shadow compensation on the other hand encompasses methods that can be used to reduce or avoid
the impact of shadow cover on mapping [29]. A considerable number of shadow detection and
compensation techniques have been developed for remote sensing but most focus on high resolution
multispectral data. Only more recently have techniques been proposed that attempt to benefit from
LiDAR and hyperspectral imagery. Model-based or geometric shadow detection approaches utilize
a-priori information, in most cases Digital Surface Models (DSM) and solar illumination angles at the
time of image acquisition, to perform line-of-sight analysis or ray tracing [30–33]. These geometric
approaches have the advantage of avoiding errors in shadow detection induced by spectral confusion
but their output will be directly dependent on the quality of the DSM and its co-registration with
the image data. Color Invariant approaches, on the other hand, select certain image bands, spectral
indices or color space components that are (near) insensitive to lighting conditions and compare
those with light dependent features [34]. Machine learning shadow detection relies on the unique
spectral characteristics of shaded materials to detect shadow induced spectral features. Support Vector
Machines (SVM) are currently prevalent classification algorithms used for this purpose [35]. The main
drawback of the machine learning approach, however, is the need to produce a dedicated training
dataset of shaded areas, which can be very difficult and labor intensive. Machine learning shadow
detection methods will be inclined to produce more satisfying results when used with high resolution
spectral information, but will in any case still be prone to spectral confusion [28,29].

Shadow compensation includes a wide range of methods. A differentiation can be made between
pre-processing, classification and post-processing techniques. Illumination effects in hyperspectral
imagery can be suppressed in pre-processing by converting radiance or reflectance information to
spectral angles and linearly correcting them based on shadow/non-shadow statistics [36]. A more
intricate method to compensate for the effect of shadow in hyperspectral urban imagery using LiDAR
information has been proposed in [37]. Here, a DSM and other LiDAR derived features such as sky
view factor are used to model different irradiance components which are in turn entered in a non-linear
spectral correction model. Direct classification or classification of shaded areas using shaded material
training data is a shadow compensation technique that has been applied with relative success for
classifying multispectral imagery [38] but remains remarkably unexplored for hyperspectral data. This
approach relies on the idea that radiances received from shaded areas are still material dependent and
assumes that a significant amount of class related spectral information is still present in shadow [28].
Shadow compensation can also be achieved in a post-classification phase by training a machine
learning classifier with a separate shadow class and then running a second, dedicated classifier to
assign shadow pixels identified in the first step to meaningful non-shadow classes [24].

Few studies so far have combined airborne hyperspectral and LiDAR data for accurate urban
land cover mapping on a high level of thematic detail, exploiting LiDAR for shadow detection as well
as improvement of land-cover classification output. Dealing with shadow remains a topic that has
been mainly explored for urban mapping with multispectral high-resolution imagery. The general
objective of this paper is to investigate the potential of hyperspectral-LiDAR synergy for urban land
cover mapping when faced with strong spectral heterogeneity of materials, between-class spectral
confusion and shadow cover. Three specific research objectives are envisioned: (1) defining a novel
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approach for shadow detection in urban scenes by combining hyperspectral imagery with LiDAR
features; (2) assessing the performance of hyperspectral SVM classification in shadow and non-shadow
areas, using both sunlit and shaded training data for a large variety of urban materials; (3) assessing
the added value of different height-derived LiDAR features for post-classification improvement of
hyperspectral classification output. The two primary data sources used in this research are an APEX
airborne hyperspectral image and a discrete waveform LiDAR dataset, both covering a NW–SE
urban transect in the eastern part of the Brussels Capital Region (BCR). In the first part of the paper,
a novel intensity-brightness thresholding technique for shadow detection is proposed. Next, a detailed
mapping of urban land cover in both shaded and non-shaded areas is performed, using Support Vector
Classification (SVC). SVC has been selected based on its flexibility, robustness, relative ease of use,
performance and its soft class probability output. Finally, an iterative post-classification correction
algorithm using SVC class membership probabilities and LiDAR features is proposed and tested on
the APEX hyperspectral classification result. This study illustrates the strengths of combining airborne
imaging spectroscopy and laser altimetry for urban material mapping as well as the potential of APEX
hyperspectral data, when used in combination with high-resolution LiDAR data.

2. Materials and Methods

2.1. Data and Study Area

2.1.1. APEX Hyperspectral Imagery and Image Preprocessing

The Airborne Prism Experiment or APEX sensor is a dispersive pushbroom imaging spectrometer
designed for airborne applications as well as simulation and calibration of (future) spaceborne missions.
The sensor has a spectral coverage of 372–2540 nm but the number and widths of the spectral bands can
be configured for the purpose of the application [39,40]. An APEX image was acquired on 8 July 2013
around 11 h local time covering the eastern part of the Brussels Capital Region and most of the
Sonian forest (Figure 1). The East of the BCR is characterized by a strongly heterogeneous urban
fabric composed of residential, commercial service-oriented and mixed function areas with differing
densities, as well as leisure infrastructure, parks and other green spaces. Four NW-SE oriented flight
lines were needed to cover the study area, each recorded at an altitude of approximately 3650 m a.s.l.
The instrument was configured to perform measurements over 288 spectral bands but bands 147–160
and 198–219 were removed from further analyses due to atmospheric absorption effects, leaving
252 bands. The initial level 1C product was geometrically corrected using direct georeferencing
and atmospherically corrected using the MODTRAN4 radiative transfer code to derive bottom-of
atmosphere reflectance [41–44]. The final level 2B image was registered in the Belgian Lambert 72
coordinate system with dimensions encompassing 8860 rows by 3491 columns and a pixel size of
2 × 2 m2.

To ease computational burdens, use was made of the BandClust dimensionality reduction
algorithm. BandClust is a recursive non-parametric semi-unsupervised band clustering algorithm that
employs minima in Mutual Information plots over a range of adjacent bands to find optimal splitting
points. Bands located between two splitting bands are clustered by averaging in order to acquire a
reduced number of bands. For more information on the BandClust algorithm the reader is referred
to [45]. A total of 21 bands was retained after performing BandClust. Previous research with APEX on
the BCR has shown that BandClust has no negative impact on classification accuracies compared to
using the full hyperspectral image dataset when working with a large number of urban classes [46].

Also, in this study, comparative kappa analysis did confirm that use of BandClust did not result
in lower classification accuracies compared to using all bands, but even improved image classification
accuracy slightly.
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Figure 1. (a) RGB-image (R = band 36, G = band 18 and B = band 5) of the 2013 APEX image covering 
the Eastern part of the Brussel Capital Region and (b) inset map for VUB university campus. 
Annotations in (b) refer to material spectra (see below). 
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was used to interpolate caveats in the DSM although these were rare due to the very high LiDAR 
point density. Subsequently, this DSM was co-registered with the hyperspectral image and 
resampled to the APEX 2 m resolution. Performing this two-step procedure proved to avoid 
oversensitivity of the DSM to narrow tall or linear objects present in the urban environment (e.g., 
antennae and power cables). A normalized DSM or nDSM at 2 m resolution describing the height of 
pixels above ground level, was produced by subtracting a LiDAR derived Digital Elevation Model 
(DEM) from the DSM (Figure 2a). From the 25 cm DSM, a slope image was extracted which was in 
turn used to construct a roughness image (Figure 2b,c). Roughness was acquired by taking the 
standard deviation of all 25 cm slope pixels located within a 2 m pixel, while slope was calculated by 
taking the mean value. By means of a procedure similar to that for DSM extraction but with average 
binning, a LiDAR intensity image was produced (Figure 2d). LiDAR intensity represents the peak 
amplitude of a backscattered pulse and although this measure is subject to a number of factors, what 
is mainly important for this study is its correlation with inherent surface brightness and near 
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will be illustrated further on. It has to be noted that due to sensor-to-surface angles of incidence and 
scattering effects of LiDAR pulses on oblique and very rough surfaces (e.g., canopy), intensity values 
will not be representative for each material class. Since intensity was delivered in the unitless range 
of [0, 1500], this range has been rescaled to [0, 1] in order to avoid computational issues during 
classification and to facilitate comparison with brightness data. 

Figure 1. (a) RGB-image (R = band 36, G = band 18 and B = band 5) of the 2013 APEX image covering
the Eastern part of the Brussel Capital Region and (b) inset map for VUB university campus. Annotations
in (b) refer to material spectra (see below).

2.1.2. LiDAR and Derived Features

An airborne discrete waveform LiDAR dataset acquired in the winter of 2012 with an average
point density of 35 points/m2 after point filtering has been used for this study (LiDAR data provided
by the Brussels Regional Informatics Centre). The original extent covering the whole BCR was reduced
to that of the hyperspectral image and a 25 cm resolution DSM was extracted using the LAS dataset
to raster tool provided in ArcGIS with maximum height values for binning. Linear void filling was
used to interpolate caveats in the DSM although these were rare due to the very high LiDAR point
density. Subsequently, this DSM was co-registered with the hyperspectral image and resampled to the
APEX 2 m resolution. Performing this two-step procedure proved to avoid oversensitivity of the DSM
to narrow tall or linear objects present in the urban environment (e.g., antennae and power cables).
A normalized DSM or nDSM at 2 m resolution describing the height of pixels above ground level, was
produced by subtracting a LiDAR derived Digital Elevation Model (DEM) from the DSM (Figure 2a).
From the 25 cm DSM, a slope image was extracted which was in turn used to construct a roughness
image (Figure 2b,c). Roughness was acquired by taking the standard deviation of all 25 cm slope
pixels located within a 2 m pixel, while slope was calculated by taking the mean value. By means of a
procedure similar to that for DSM extraction but with average binning, a LiDAR intensity image was
produced (Figure 2d). LiDAR intensity represents the peak amplitude of a backscattered pulse and
although this measure is subject to a number of factors, what is mainly important for this study is its
correlation with inherent surface brightness and near insensitivity to surface lighting conditions. These
are useful characteristics for shadow detection as will be illustrated further on. It has to be noted that
due to sensor-to-surface angles of incidence and scattering effects of LiDAR pulses on oblique and very
rough surfaces (e.g., canopy), intensity values will not be representative for each material class. Since
intensity was delivered in the unitless range of [0, 1500], this range has been rescaled to [0, 1] in order
to avoid computational issues during classification and to facilitate comparison with brightness data.
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Figure 2. LiDAR features used in this research illustrated for the VUB university campus with
(a) normalized DSM; (b) slope; (c) roughness and (d) intensity (expressed in uncalibrated Digital
Numbers (DN)).

2.1.3. Very High-Resolution Orthophotos and other Ancillary Data

A 2012 winter acquisition RGB-NIR orthophoto with a resolution of 7.5 cm, obtained from the
Brussels Regional Informatics Centre, was used as visual reference for the purpose of producing
ground truth data over the study area. Ancillary vector datasets from the UrbIS spatial database
of Brussels2, including water and building shapefiles, have been utilized in this study to improve
classification results in post-processing. Google Street View proved to be invaluable in assisting in
discriminating different materials at street level, both in and out of shadow. Oblique aerial imagery has
also been used to complement the earlier mentioned orthophotos for material discrimination (acquired
at http://geoloc.irisnet.be).

2.2. Methodology

2.2.1. Classification Scheme and Sampling Strategy

The complete workflow adopted in this study is depicted in Figure 3. All steps will be explained
in further detail over the following paragraphs. The first step in the workflow was the design of a
hierarchical classification scheme in which level 2 or the material class level is of particular interest
(Table 1). For clarity’s sake, all mention of land cover classes will refer to level 2 unless explicitly
stated otherwise. A total of 27 classes were included in the scheme describing some of the most
common urban materials (Figure 4) but also some that have only recently been introduced in the urban
landscape on a significant scale (e.g., solar panels, reflective hydrocarbon roofing, extensive green

http://geoloc.irisnet.be
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roofs). Note that bright roof material is actually a conglomerate of different white PVC, EPDM and
other bright hydrocarbon roofing materials as well as bright coatings applied on metal roofs. Attempts
to map these as separate classes were unsuccessful due to their spectral similarity and since all these
materials serve the same purpose of providing bright impervious roofing, the decision was made to
cluster them. Reflective hydrocarbon also mainly consists of PVC and EPDM based roofing materials
but here the prevailing colors are gray and to a lesser extent green and red.
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Figure 4. Examples of different material spectra sampled from the APEX image and included in the set
of ground truth data with (a) sunlit spectra and (b) shaded spectra. Notice that the materials have been
annotated in Figure 1b.

For each class, a set of sunlit ground truth polygons with a maximum size of 12 APEX pixels was
manually digitized using all available data described above. Except for a limited number of classes,
250–300 spectra were collected per class. In addition, shaded ground truth polygons were digitized
for as many material classes as was deemed feasible. Classes with only a marginal occurrence in
shadow were excluded and finally 17 out of 27 classes were covered. The amount of digitized shaded
polygons is however considerably lower than the amount of sunlit polygons (Table 1). Subsequently,
the shaded and sunlit ground truth polygons were each split in training and validation sets based on a
1/3 training and 2/3 validation stratified sampling scheme. Given that the applied SVM classifier is
known to retain its ability to generalize even with a limited training sample size, this split ratio was
deemed appropriate for this study. The ground truth set of shaded polygons was already limited to
start with and the adopted sampling scheme thus ensures a representative accuracy assessment.
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Table 1. Hierarchical classification scheme adopted for this study with indication of number of
sunlit-shaded ground truth polygons and pixels for each level 2 material class.

Level 1 Level 2 Sunlit Polygons Sunlit Pixels Shaded Polygons Shaded Pixels

roof 1. red ceramic tile 25 247
2. dark ceramic tile 35 307 16 99
3. dark shingle 33 280 26 150
4. bitumen 29 260 12 121
5. fiber cement 28 306 11 92
6. bright roof material 27 311 14 122
7. hydrocarbon roofing 30 308 12 115
8. gray metal 15 143
9. green metal 20 216
10. paved roof 28 302 11 99
11. glass 13 153
12. gravel roofing 30 322
13. green roof 24 258
14. solar panel 28 309

pavement 15. asphalt 27 313 17 158
16. concrete 29 328 17 159
17. red concrete pavers 28 312 14 105
18. railroad track 29 300 12 91
19. cobblestone 20 229 10 100
20. bright gravel 19 195 13 135
21. red gravel 28 309 10 112
22. tartan 17 198
23. artificial turf 26 307 9 112
24. green surface 25 282

high vegetation 25. high vegetation 27 312 14 107
low vegetation 26. low vegetation 27 306 14 133

bare soil 27. bare soil 31 342
water◦ 28. water◦ n/a n/a n/a n/a

◦ = manually classified with mask.

2.2.2. Shadow Detection

A novel shadow detection method is presented here that is inspired by Invariant Color Model
shadow detection. The idea of the approach proposed is to use LiDAR derived intensity as an
image-external lighting invariant feature, more specifically as a proxy for inherent surface brightness of
the APEX image. The first step of the procedure encompasses taking the ratio of LiDAR intensity (scaled
to a [0, 1] range) over APEX image brightness. Brightness is calculated simply by taking the average
reflectance for each pixel. In this ratio image, high pixel values represent areas where inherent or
expected brightness is high compared to the observed brightness in the APEX image. The assumption
is made that such areas are affected by cast shadow. In the second step, a manually determined
threshold value is applied on the ratio image resulting in a binary shadow mask. A threshold value of
4 was found to cover almost all fully shaded areas without giving rise to overestimation. It should
be noted that this shadow detection approach is not suited for identifying areas affected by partial
shadow cover or self-shadow. In order to detect those brighter types of shadow, a lower threshold
value would be needed but tests indicated that this results in an overestimation of shadow cover on
darker sunlit areas.

To allow comparison with other approaches for shadow detection, a machine learning and a
geometry-based shadow mask were produced. The former was obtained by training a two class SVM
classifier with shaded and sunlit training data, the latter by applying the shadow volume approach
proposed by [32] on the 25 cm DSM using solar angles at the time of APEX image acquisition [31–33].
The shadow volume approach was implemented by developing a Matlab function that iteratively
shifts the DSM in the horizontal direction of cast shadow dx and dy while uniformly subtracting a
corresponding decrease in height dz from the DSM. This process continues until the accumulated
change in height surpasses the maximal height difference in the DSM or until a predefined number of
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iterations has been reached that reasonably allows all shadows to be fully projected. A near zenith
solar height will cast smaller shadows requiring fewer iterations and vice versa. The resulting shadow
volume model can subsequently be converted into a shadow mask simply by subtracting the original
DSM from it and converting all positive values to 1 (Figure 5).
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Figure 5. Overview of the DSM model-based shadow detection approach, in this paper referred to as
shadow volume approach.

2.2.3. Support Vector Classification

Support Vector Machines are a group of non-parametric statistical machine learning methods that
are capable of solving complex non-linear classification and regression problems. SVM has proven
itself to be robust even when faced with low observations to dimensionality training samples [47].
Not surprisingly, Support Vector Classification has witnessed a drastic growth in popularity over the
past decades in many different scientific disciplines, including remote sensing [48,49]. For this study,
the imageSVM Classification tools provided by the EnMAP-box software were used to perform SVC [50].
The SVC tools included in EnMAP-box are based on the LIBSVM algorithm. The primary output is
a class probability image from which a class image is derived by selecting the class with the highest
probability for each pixel [51]. A Support Vector Classification was performed using all sunlit and
shaded training data. The output was subjected to a majority filter with a 3 × 3 pixel kernel before
validation to smooth out oversensitivity to spectral variations within objects (also referred to as the
pepper and salt effect).

2.2.4. LiDAR Post-Classification Correction

An iterative post-classification correction workflow has been designed and implemented to
improve the accuracy of the original SVC (Figure 6 and Code S1 in Supplementary Materials).
Essentially, the correction algorithm assesses if the land cover class label assigned by the classifier
logically corresponds to the observed spatial characteristics as derived from the LiDAR data. This
logic correspondence is implemented by means of a user-defined look-up table in which each land
cover class is assigned to a certain range of allowed values of height, slope and roughness. If the
observed geometry of a pixel conflicts with any of the ranges of spatial attributes that are associated
with the class the pixel has been assigned to, the corresponding class membership probability is set to
zero and a new land cover class label is assigned based on the second highest probability. Since the
second highest probability will not necessarily provide an acceptable land cover class, this procedure is
repeated until no more conflicts are detected for each of the pixels in the image at which point the final
corrected land cover image is obtained. For ease of implementation, one threshold value was defined
for each LiDAR feature and land cover classes were linked to a range corresponding with all values
below or above the threshold. For some combinations of classes and LiDAR features, no thresholds
were used (e.g., asphalt can occur both on flat as well as sloped terrain). Based on the distribution of
LiDAR feature values for the ground truth data and expert knowledge, the following threshold values
were chosen: 0.5 m for height, 15◦ for slope and 1.8◦ for roughness. Because roughness is inherently
noisy due to spatial errors of LiDAR points, only class assignments for three classes with distinct
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roughness characteristics (asphalt, concrete and railroad track) were allowed to be corrected based
on this feature. In order to account for the presence of asphalt, railroad materials and concrete above
street level (as is the case on bridges and viaducts), a vector dataset describing buildings was used.
The occurrence of these three materials above 0.5 m was not flagged as a conflict if they occurred on a
location that was not a building. Before validation, the output of this correction was also subjected to a
majority filter (see above).
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2.2.5. Accuracy Assessment

Using an independent set of shaded and sunlit validation polygons as reference data, confusion
matrices were constructed for SVM classification, before and after LiDAR post-classification. From
these matrices two overall accuracy measures were derived, being Percentage Correctly Classified
(PCC) and overall kappa K. Conditional class wise kappas Ki were also calculated. Kappa analysis
provides a statistical basis for deciding if the overall or class wise accuracies obtained with different
classification approaches significantly differ from each other. The latter can be achieved by calculating
the Z-statistic based on the estimates of kappa K1 and K2 and their respective estimated variances
var(K1) and var(K2) [52]:

Z =
|K1 −K2|√

var (K1) + var (K2)
(1)

Assuming a null hypothesis H0: (K1 − K2) = 0 and alternative hypothesis H1: (K1 − K2) 6= 0,
the null hypothesis is rejected when Z is greater than or equal to a critical value corresponding to a
desired level of confidence. In most cases, a critical value of 1.96 is used to assess significant difference
corresponding to a 95% confidence level.

3. Results

3.1. Shadow Detection

The three selected shadow detection approaches, being Support Vector Classification, shadow
volume and intensity-brightness thresholding, were applied on their corresponding input data.
In Figure 7, results obtained with the three methods are illustrated for a number of subscenes showing
the strengths and weaknesses of each approach. The main drawback of the SVC approach is its
susceptibility to false labelling of bright shaded materials as sunlit and dark sunlit materials as shadow.
This is clearly illustrated in column 1 of Figure 7 where for SVC dark sunlit roofing is wrongly mapped
as shadow while bright roofing located in cast shadow is omitted from the shadow mask. Also,
in column 2, parts of shadow cover on ground level are omitted using the SVC approach. Such spectral
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confusion is avoided by the intensity-brightness and shadow volume approaches but the shadow
volume mask does suffer from certain DSM related and APEX mosaicking related issues. Since the
APEX flight lines were acquired over a time period of about half an hour not long before solar noon,
non-negligible changes in solar azimuth and elevation can be observed in the image. These variations
induce considerable errors in some parts of the shadow mask as is highlighted in column 2 of Figure 7.
Shadow detection based on DSM height information is furthermore prone to errors caused by long
linear objects such as construction cranes and power cables, which is shown in column 3. The weakness
of the intensity-brightness approach is related to the effect of LiDAR sensor-to-surface incidence angles
on intensity. For materials with rough surfaces or on tilted roofs, a considerable fraction of the inbound
pulses will be lost due to scattering, resulting in an underestimation of intensity for those surfaces.
The underestimation of self-shadow on oblique roofs is clearly illustrated in column 4 of Figure 7.
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A rough quantitative validation of the shadow masks obtained with each approach was
accomplished by calculating a PCC based on all shaded validation pixels. Both the SVC and shadow
volume approach estimate shadow cover very well and obtain an almost equal PCC of 0.93 and 0.92
respectively. The intensity-brightness approach on the other hand seems to perform less well with a
PCC of 0.69. As discussed above, this is the result of a failure to detect brighter partial shadow cover or
self-shadow in the set of validation pixels. Nonetheless, an in depth visual analysis of the shadow mask
obtained with the brightness-intensity approach (see above) reveals its benefits compared to the other
approaches for detecting cast shadow. Based on these findings a hybrid or mixed shadow mask was
constructed by combining the intensity and shadow volume masks (bottom row of Figure 7). Ground
level shadow was modelled with the intensity mask while rooftop/canopy shadow was defined based
on the shadow volume mask. This hybrid approach combines the strengths of both methods and
avoids their weaknesses. The final shadow mask was subjected to intensive visual inspection and the
same validation procedure was applied as used on the other masks, yielding a superior result with a
PCC of 0.99.

3.2. SVC Land-Cover Mapping

A SVC model was parametrized based on both the sunlit and shaded training data and was
subsequently applied to the APEX image. The resulting land-cover classification is illustrated
in Figures 8 and 9. In the former four smaller image subsets are shown corresponding to
different urban typologies encountered in the image scene: commercial/light industry, university
campus, dense residential and sparse residential. In Figure 9, a somewhat larger subset, covering
the Cinquantenaire Park and its surroundings, is shown. All maps depict land cover at level 1 of the
classification scheme. Accuracy assessment of the land cover mapping output on level 2, based on
confusion matrices constructed from the independent set of sunlit and shaded validation polygons,
results in a PCC of 0.81 and an overall kappa of 0.80 for sunlit areas and a PCC of 0.67 and overall
kappa of 0.65 for shaded areas (Table 2). The difference between PCC and kappa is limited in this
case because the high amount of classes included in the classification scheme reduces the impact of
chance agreement. As could be expected, the accuracy for shaded areas is considerably lower with a
difference of 0.15 in overall kappa.

Table 2. Summary of level 2 sunlit-shaded overall accuracy results (overall kappa and PCC) for Support
Vector Classification and for each LiDAR post-classification correction. Bold underlined values indicate
significantly higher kappas (z = 0.05) compared to SVC before correction.

Mapping Result Sunlit Shaded

PCC Overall Kappa PCC Overall Kappa

SVC (before correction) 0.81 0.80 0.67 0.65
LiDAR correction (height) 0.85 0.84 0.71 0.69
LiDAR correction (slope) 0.84 0.83 0.68 0.65
LiDAR correction (roughness) 0.81 0.81 0.67 0.65
LiDAR correction (all) 0.88 0.87 0.71 0.69

Visual inspection of the results of Support Vector Classification in Figures 8 and 9 illustrates that
there is a considerable amount of confusion present in this output. In the campus and dense residential
areas of Figure 8, one can clearly observe that the presence of shadow has a considerable impact on
mapping results. Even sunlit pavement and roof classes are not well identified in multiple areas of
the commercial, campus and dense residential subsets. Notably, the sunlit part of the North-South
oriented boulevard in the commercial subscene indicates a very high degree of confusion between
roof and pavement classes. With exception of the sparse residential subscene, numerous examples of
pavement–roof confusion can be found in the different subscenes shown in Figure 8. Similar effects
can be observed in the Cinquantenaire subset (Figure 9) and here an intermixing between low and
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high vegetation can also be seen, especially in the shaded parts of canopy. Mapping output seems
to be quite noisy, making it difficult to identify the structures present in the urban environment well.
The sparse residential subset however seems to produce reasonably good results based on spectral
information only.

Also, accuracies at class level for sunlit and shaded areas have been estimated by means of
conditional kappas. These results can be found in the SVC column of Tables 3 and 4, respectively.
To ease interpretation of these extensive tables, summarizing graphs have been provided. In Figure 10,
the class-wise accuracy profile of the SVC mapping output (before correction) is illustrated separately
for sunlit and shaded areas. In sunlit areas, the classifier performs reasonably well up to very well for
most classes. Only four out of 27 land-cover classes have accuracies lower than 0.7 while the other
23 classes consequently have kappas higher than or equal to 0.7, 11 classes even have conditional
kappa values of more than 0.9. For the shaded part of the classification, the classes with poor to very
poor conditional kappas (<0.7) outnumber the classes with good to very good kappas (≥0.7). A total of
six classes out of 17 have very poor kappas (<0.5), underlining the difficulty of urban material mapping
in shadow.
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Figure 8. Illustration of level 1 mapping results of Support Vector Classification (third row) and
LiDAR post-classification correction (fourth row) for a selection of subsets representing different urban
typologies (commercial-light industry, university campus, dense residential and sparse residential)
present in the image scene. The RGB APEX image (first row) and the hybrid shadow mask (second
row) have been included in this figure as visual reference.
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Figure 9. The RGB APEX image (a) and the hybrid shadow mask (b) have been included in this figure as
visual reference. Support Vector Classification (c) and LiDAR post-classification correction (d) mapping
results are illustrated on level 1 for a larger subset covering the Cinquantenaire Park and surroundings.
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Figure 10. Cumulative histograms of class-specific kappa values listed in Tables 3 and 4 for (a) sunlit
and (b) shaded areas, before post-classification correction, and after LiDAR based correction using
height, slope, roughness, and all LiDAR features combined. Remember that a total of 17 shaded classes
were trained and validated compared to 27 sunlit classes.
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Table 3. Conditional kappas of level 2 sunlit land cover classes for Support Vector Classification and
for each LiDAR post-classification correction. Bold underlined values indicate significantly higher and
italic underlined values indicate significantly lower conditional kappas (z = 0.05) compared to SVC
before correction. Note that level 2 land cover numbering of Table 1 has also been used in this table.

Land Cover SVC Cor. (Height) Cor. (Slope) Cor. (Roughness) Cor. (All)

1. red ceramic tile 0.82 0.82 0.88 0.82 0.88
2. dark ceramic tile 0.81 0.95 0.95 0.81 0.99
3. dark shingle 0.51 0.51 0.94 0.50 0.94
4. bitumen 0.77 0.79 0.90 0.76 0.93
5. fiber cement 0.85 0.84 0.79 0.85 0.75
6. bright roof material 0.55 0.64 0.55 0.55 0.63
7. reflective hydrocarbon 0.75 0.90 0.81 0.73 0.95
8. gray metal 0.82 0.83 0.78 0.82 0.76
9. green metal 0.95 0.97 0.97 0.95 0.97
10. paved roof 0.87 0.89 0.87 0.87 0.88
11. glass 0.91 0.89 0.91 0.91 0.89
12. gravel roofing 0.71 0.81 0.69 0.70 0.83
13. extensive green roof 0.84 1.00 0.83 0.84 1.00
14. solar panel 1.00 1.00 0.96 1.00 0.95
15. asphalt 0.90 0.98 0.92 0.95 0.92
16. concrete 0.52 0.71 0.62 0.51 0.71
17. red concrete pavers 0.83 1.00 0.78 0.79 1.00
18. railroad track 0.83 0.70 0.80 0.98 0.98
19. cobblestone 0.59 0.75 0.53 0.62 0.69
20. bright gravel 0.90 0.72 0.90 0.90 0.72
21. red gravel 0.96 0.96 1.00 0.96 0.89
22. tartan 1.00 1.00 1.00 1.00 1.00
23. artificial turf 0.98 0.98 0.93 0.98 0.97
24. green surface 1.00 1.00 1.00 1.00 1.00
25. high vegetation 1.00 0.85 1.00 1.00 1.00
26. low vegetation 0.80 0.94 0.80 0.80 0.94
27. bare soil 0.93 0.85 0.92 0.93 0.85

Table 4. Conditional kappas of level 2 shaded land cover classes for Support Vector Classification and
for each LiDAR post-classification correction. Bold underlined values indicate significantly higher and
italic underlined values indicate significantly lower conditional kappa’s (z = 0.05) compared to SVC
before correction. Note that level 2 land cover numbering of Table 1 has also been used in this table.

Land Cover SVC Cor. (Height) Cor. (Slope) Cor. (Roughness) Cor. (All)

1. red ceramic tile 0.47 0.57 0.53 0.47 0.55
2. dark ceramic tile 0.72 0.67 0.60 0.72 0.57
3. dark shingle 0.28 0.36 0.48 0.28 0.49
4. bitumen 0.51 0.75 0.42 0.44 0.94
5. fiber cement 1.00 0.82 0.82 1.00 0.80
6. bright roof material 0.65 0.85 0.60 0.65 0.81
7. reflective hydrocarbon 0.77 0.93 0.96 0.77 0.86
8. gray metal 1.00 1.00 0.80 1.00 0.84
15. asphalt 0.41 0.51 0.48 0.46 0.57
16. concrete 0.24 0.30 0.25 0.18 0.25
18. railroad track 0.95 0.96 0.98 0.95 0.98
19. cobblestone 0.43 0.37 0.45 0.38 0.34
20. bright gravel 0.88 0.69 0.88 0.89 0.70
21. red gravel 0.87 0.74 0.98 0.87 0.81
23. artificial turf 0.66 0.76 0.69 0.66 0.72
25. high vegetation 0.42 0.50 0.39 0.72 0.94
26. low vegetation 0.94 0.98 0.95 0.94 0.98
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3.3. LiDAR Post-Classification Correction

As explained in Section 2.2.4, SVC class membership probabilities, LiDAR features (height, slope
and roughness) as well as user defined look-up tables and threshold values were entered in the iterative
post-classification correction algorithm. Corrections were run for each separate LiDAR feature and for
the combination of them all in order to assess their relative impacts on mapping accuracy. Subsets of
the corrected land-cover maps are included in Figures 8 and 9. Each LiDAR correction was validated
using the same procedure as above. The overall results of these validations are included in Table 2.
Correction with height clearly has the most positive impact on accuracies for both sunlit and shaded
surfaces, resulting in a significant increase in overall kappa from 0.80 to 0.84 and from 0.65 to 0.69,
respectively. Correction based on slope leads to a significant increase in overall kappa for sunlit areas
from 0.80 to 0.83. In terms of overall kappa, no significant improvement is achieved with a correction
based on roughness, neither for sunlit areas nor for shaded areas. Using all features together produces
the highest accuracies, with an overall kappa of 0.87 for sunlit pixels and 0.69 for shaded pixels.

When looking at results obtained at class level (Tables 3 and 4), correction with height and
slope results in an increase of conditional kappa for some classes, but in a decrease in kappa for
other. Roughness does not seem to have much impact on classification accuracy at class level, except
for sunlit railroad track and for shaded high vegetation, which both show a substantial increase in
conditional kappa. Figure 10 shows class-based accuracy profiles for each type of correction, indicating
the number of classes reaching a certain level of accuracy, based on conditional kappas (Tables 3 and 4),
while Figure 11 depicts the number of classes with significantly higher and lower conditional kappa’s
after correction, compared to SVC based on spectral data only. When comparing accuracy profiles
before and after correction (Figure 10) one can see that the amount of classes with good (≥0.7) to
very good (>0.9) kappas tends to increase while the amount of classes with poor (<0.7) to very poor
(< 0.5) kappas decreases. In sunlit areas (Figure 10a), the improvement is most marked when using
height or slope as a feature for correction. The impact of roughness is clearly limited. Best results
are obtained when using all features together. In terms of the number of classes for which the kappa
value significantly improves (Figure 11a), height correction clearly has the strongest impact, followed
by slope correction, while the impact of roughness is limited. When using all features for correction,
the highest gain is reached, although it must be mentioned that correction also reduces the accuracy
for several classes (for details see Table 3). LiDAR correction yields less positive results for shaded
pixels (Figures 10b and 11b). Although correction undeniably improves overall accuracy, an increase
in accuracy for some classes seems to be counterbalanced by a decrease in accuracy for other.
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Comparison of the SVC and post-classification land-cover maps in Figures 8 and 9 clearly
indicates that synergistic use of machine learning classification of hyperspectral imagery and LiDAR
post-classification yields an improved mapping result. Even though the level 1 maps shown do not
display the full extent of between-material class confusion, especially in shadow, LiDAR correction
undeniably allows to capture the typical morphological characteristics of urban areas better compared
to mapping with only APEX data. Both in sunlit and shaded regions mapping results are less noisy
and one can clearly identify the building block and street patterns present in the subscenes. Besides
clearing out numerous cases of pavement-roof confusion, on Figure 9 it can be seen that shadow
located in canopy, before often wrongly classified as low vegetation, is corrected in the final map.
Improvements are limited for the sparse residential subset which is already mapped rather well using
spectral data only.

4. Discussion

4.1. Shadow Detection

Two established shadow detection approaches were applied in this study: an image-based SVM
machine learning approach and a LiDAR-based geometric model approach. Both approaches produce
good results but show different strengths and weaknesses. The SVM approach is better equipped
to handle self-shadow and partial shadow cover but suffers from spectral confusion between dark
materials and shadow. The geometric approach is not affected by spectral confusion but fails to capture
partial shadow cover. It also leads to errors induced by projection of linear objects and proves to be
sensitive to small differences in solar angle caused by mosaicking data obtained from consecutive flight
lines. Based on these observations a new hybrid shadow detection method has been proposed that
uses both image and LiDAR data and combines intensity-brightness thresholding with DSM-derived
shadow mask detection. The approach has been shown to benefit from the strength of both methods,
while compensating for their respective weaknesses.

The hybrid shadow mask allowed producing an estimate of the relative shadow cover in the
complete image scene which amounts to 17.64%, implying that the image is for nearly one fifth covered
by shadow. This highlights the importance of paying particular attention to the presence of shadow
in developing approaches for mapping of urban scenes, as well as in assessing the accuracy of the
mapping methods used. The hybrid shadow mask detection approach proposed in this study is
relatively easy to apply, and may be very useful as a preprocessing step prior to image classification,
to facilitate the collection of ground truth data needed for both training and validation of supervised
image classification approaches incorporating spectra for both shaded and sunlit areas. Moreover,
if validation is performed separately for sunlit and shadow areas, the shadow mask is also useful to
spatially identify regions characterized by lower mapping accuracies due to the presence of shadow,
and to demonstrate the impact of improvements induced by post-processing in both shaded and
non-shaded areas, as has been clearly demonstrated in this study. Use of a shadow mask in combination
with confusion matrices defined separately for shaded and sunlit areas also opens possibilities for
spatially explicit modelling of image classification uncertainty (at pixel level), thereby acknowledging
differences in the performance of the classifier within and outside shaded areas.

4.2. SVC Land-Cover Mapping

Results obtained with SVC, based on spectral information only, reveal that: (1) overall accuracies
are much higher for sunlit than for shaded areas; (2) a considerable degree of confusion occurs between
certain roof and pavement materials, particularly in shaded areas.

As shown in Table 3, most sunlit classes perform reasonably to very well in terms of mapping
accuracy. Sunlit classes with poor conditional kappas (kappa < 0.7) entail bright roof material,
cobblestone, concrete and dark shingle. The confusion matrix for sunlit areas (see Table S1 in
Supplementary Materials) reveals a number of spectral similarities between these and other sunlit
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classes. The most significant confusion occurs between bright roof material, concrete and to some
extent bare soil and between dark shingle, bitumen and hydrocarbon roofing. Also bitumen, dark
shingle and asphalt are to some extent confused by the SVM classifier, which could have been expected
based on the very similar and relatively unpronounced spectral features of these materials (Figure 4a).
Similar material compositions and/or effects related to material condition (e.g., degraded asphalt
or bitumen exhibiting a higher brightness) have a negative impact on land-cover mapping accuracy,
despite the high spectral resolution of the APEX image.

Class-specific conditional kappas in Table 4 provide a clearer picture of the specific strengths
and weaknesses of the SVC in the shaded part of the image scene. A number of classes seem to
perform relatively well in shadow (kappa > 0.8), including fiber cement and gray metal roofs as well
as railroad track, bright gravel, red gravel and low vegetation. Pavement materials that perform very
poorly (kappa < 0.5) include asphalt, concrete, cobblestone as well as bitumen, dark shingle, high
vegetation and red ceramic tile roofs. At least four factors can help explain why a material can be
mapped accurately or not in shadow cover: (1) the uniqueness of the material’s spectral signature
(also applies outside shadow); (2) the occurrence of the material’s characteristic spectral features inside
parts of the spectrum disturbed by shadow; (3) the amplitude of these features (also applies outside
shadow); and (4) the inherent brightness of the material that can often be related to (3) and vice versa.

The confusion matrix of the SVC for shaded areas (see Table S2 in Supplementary Materials)
reveals that there is a great deal of spectral confusion between pavement classes such as concrete
and asphalt. Figure 4a suggests that separability of sunlit concrete and asphalt is possibly due to
brightness differences even though the signatures of these two material classes share similar spectral
features. In shadow (Figure 4b), this brightness difference largely disappears, explaining the high
degree of confusion and suboptimal accuracies. In addition, there is a great deal of shadow
induced roof–pavement confusion, especially for asphalt–bitumen and cobblestone–red ceramic tile.
This confusion could be expected, and also occurs, be it to a smaller extent, in sunlit areas as these
classes share similar material compositions. Inherently bright classes such as bright roof materials or
bright gravel seem to suffer less from the effect of shadow on spectral response (Figure 4b).

4.3. LiDAR Post-Classification Correction

Three observations can be made based on the results obtained: (1) in order of decreasing
importance height, slope and roughness LiDAR features contribute to an improved mapping
output after LiDAR-based post-classification; (2) when used together the different features seem
to complement each other by improving accuracies of different material classes and compensating
for some of the decreases in conditional kappa observed when LiDAR features are used separately;
(3) improvements through post-classification are limited in shaded areas.

A few remarkable cases of confusion endure in sunlit regions even after correction (see Table S3 in
Supplementary Materials), including cobblestone-asphalt, bright roof materials-gray metal-paved roof
and bare soil-various materials with a mineral component. The latter is a classic problem encountered in
urban remote sensing that is apparently very difficult to eliminate fully even when using hyperspectral
information. A detailed look at the error matrix for shaded areas after post-classification correction
(see Table S4 in Supplementary Materials) points out that some low accuracy shaded pavement classes
are confused considerably. The same holds for some shaded roof classes. This finding indicates that
some degree of thematic aggregation may be needed to allow accuracies in shaded areas to reach
acceptable levels. Accuracy assessment of the final land-cover map on level 1 yields overall kappas
of respectively 0.96 and 0.95 for sunlit and shaded areas, but this relatively limited level of thematic
detail may have little added value for urban applications that require material (condition) information.

Based on the observations made above, some final considerations concerning the LiDAR correction
model are in place. For one it became clear that with each included LiDAR feature a trade-off
between increases in accuracy for certain material classes and decreases for other classes occurred
(Tables 3 and 4). The correction model starts from the SVC land-cover class membership probabilities
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from which the highest value is removed for each pixel when a conflict between the land cover
class the pixel is assigned to and the allowed ranges of LiDAR feature values for that class occurs.
The basic assumption underlying this approach is that class probability ranking allows the classifier to
identify the class that is actually present in a pixel after all classes with higher probabilities flagged
by conflict have been removed. This assumption will of course not be valid for all wrongly classified
pixels and so LiDAR correction will induce some commission errors on other classes. As long as the
correction balance remains positive, such losses in accuracy can be justified. Secondly, combining
different LiDAR features can lead to a compensation of decreases in class accuracies prompted by
the use of separate LiDAR features. Including multiple LiDAR features increases the detection of
possible conflicts and thus reduces the chance of accepting incorrect classes with high class membership
probabilities. Thirdly, the overall poorer response of shaded pixels to LiDAR post-classification can be
explained by spectral limitations. Besides having a very low brightness, signatures of shaded pixels are
also disturbed by radiance originating from the immediate environment and the atmosphere. These
combined effects result in less interpretable signatures and thus less reliable modelled class membership
probabilities. Clearly this has an impact on the effectiveness of the adopted post-classification approach
but nonetheless significant improvements in overall accuracy are still achieved.

5. Conclusions

Hitherto, few studies have looked into the potential of combining airborne imaging spectroscopy
and laser altimetry for managing particular difficulties of urban land-cover mapping. Especially
the topic of shadow remains underexplored in this setting. In the study presented here, an urban
land-cover mapping workflow was developed for synergistic use of an APEX hyperspectral image and
a discrete return LiDAR dataset and applied on an urban transect covering part of the Brussels Capital
Region. For the purpose of investigating the effect of shadow on classification performance, separate
shaded and sunlit ground truth polygons were digitized. A novel shadow detection method has been
proposed based on applying thresholding on a normalized LiDAR intensity over APEX brightness
ratio image. This approach was compared to a classification-based approach and LiDAR DSM shadow
volume detection. The results revealed that intensity-brightness thresholding, as proposed in this
study, and DSM-derived shadow mask detection each display unique strengths and weaknesses and
that combining both approaches results in a highly accurate shadow mask reflecting the strengths of
both methods.

Support Vector Classification with both shaded and sunlit training data followed by a majority
filtering yielded respective overall kappas of 0.65 and 0.80 for shaded and sunlit regions for a
classification distinguishing 27 land-cover types in sunlit areas and 17 land-cover types in shaded
areas. Accuracy assessment on class level revealed that the mapping output suffered considerably
from confusion induced by strong within-class spectral heterogeneity and spectral similarity between
classes with similar material compositions. The output of SVC mapping was corrected through an
iterative post-classification workflow using SVC class membership probabilities and LiDAR features
as an input. The use of different features, being height, slope and roughness, was tested separately
and combined in the correction workflow. All separate features significantly contributed to a better
outcome, either overall, on class level or both, but primarily height information and secondarily slope
information had the highest impact on accuracies. The overall kappas of the final correction with
all LiDAR features amounted to 0.87 and 0.69 for sunlit and shaded areas, respectively. Class-wise
accuracies confirmed that shaded pixels respond less positively to the proposed correction due to their
unreliable SVC class membership probabilities. Despite the satisfactory results achieved for sunlit
pixels, accuracies obtained for shaded pixels remained suboptimal after correction. Taking into account
the loss of spectral information due to shading, in addition to the challenge of mapping urban materials
even under optimal conditions, improvements obtained in shaded areas are still significant. The result
of this research underlines the potential, and perhaps even the necessity of combining hyperspectral
imagery and LiDAR for thematically detailed urban land-cover mapping.
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Supplementary Materials: The following are available online at www.mdpi.com/2072-4292/8/10/787/s1.
Code S1: Matlab code developed for performing iterative LiDAR correction in post-classification based on LiDAR
features and SVC class membership probabilities. Table S1: confusion matrix sunlit validation SVC, Table S2:
confusion matrix shaded validation SVC, Table S3: confusion matrix sunlit validation SVC after post-classification
correction with all LiDAR features, Table S4: confusion matrix shaded validation SVC after post-classification
correction with all LiDAR features.
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