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Abstract: In the past few years, volunteers have produced geographic information of different
kinds, using a variety of different crowdsourcing platforms, within a broad range of contexts.
However, there is still a lack of clarity about the specific types of tasks that volunteers can perform for
deriving geographic information from remotely sensed imagery, and how the quality of the produced
information can be assessed for particular task types. To fill this gap, we analyse the existing literature
and propose a typology of tasks in geographic information crowdsourcing, which distinguishes
between classification, digitisation and conflation tasks. We then present a case study related to the
“Missing Maps” project aimed at crowdsourced classification to support humanitarian aid. We use our
typology to distinguish between the different types of crowdsourced tasks in the project and choose
classification tasks related to identifying roads and settlements for an evaluation of the crowdsourced
classification. This evaluation shows that the volunteers achieved a satisfactory overall performance
(accuracy: 89%; sensitivity: 73%; and precision: 89%). We also analyse different factors that could
influence the performance, concluding that volunteers were more likely to incorrectly classify tasks
with small objects. Furthermore, agreement among volunteers was shown to be a very good predictor
of the reliability of crowdsourced classification: tasks with the highest agreement level were 41 times
more probable to be correctly classified by volunteers. The results thus show that the crowdsourced
classification of remotely sensed imagery is able to generate geographic information about human
settlements with a high level of quality. This study also makes clear the different sophistication levels
of tasks that can be performed by volunteers and reveals some factors that may have an impact on
their performance.

Keywords: crowdsourced geographic information; citizen science; crowdsourcing; disaster
management; volunteered geographic information

1. Introduction

The ever-growing research field of Volunteered or Crowdsourced Geographic Information
encompasses several modes of production of geographic information by citizens [1]. These range from
the by-products of the information exchange in common social media platforms [2] to data that is
actively contributed by citizens, e.g., in platforms such as OpenStreetMap (OSM) [3]. In this paper, we
are interested in such more active approaches, which are sometimes referred to as citizen science [4]
and human computation [5], and have been increasingly used to mobilise the interpretive skills of
citizens in a variety of application domains, including the analysis of remotely sensed imagery.
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Previous studies in this field have focused on the analysis of the geographic data that is produced
by citizens for different purposes [6–9]. These studies addressed important research questions as
regards to the design of effective crowdsourcing approaches, such as: Are there differences in the
performance of experts and non-expert volunteers [7]? How to choose the volunteers with the most
appropriate skill set for particular tasks [5]? Which tasks may benefit from more specialised and
trained volunteers and which tasks are suitable for a broader public [8]? What is the best strategy for
merging the crowdsourced results achieved by different volunteers [10]? Since the crowdsourcing
projects analysed in these studies are based on different types of tasks, which vary considerably in
complexity and difficulty, it is still challenging to interpret and put together their results to compose a
broader panorama.

The present paper attempts to make a contribution towards filling this gap by examining the
following specific research question: RQ1—Which types of tasks can be crowdsourced for generating
and validating geographic information from remotely sensed imagery? To answer this question, we
review the related literature and propose a typology that consists of three types of tasks that volunteers
can perform in the production and validation of geographic information using crowdsourcing:
classification, digitisation, and conflation.

Building upon this typology, we are interested in examining how these different tasks are used in
existing crowdsourcing projects in the domain of humanitarian aid and disaster risk management [10–14].
This domain is particularly interesting for crowdsourcing, since several mapping tasks that are
typical in humanitarian context can only be partially automated, such as the assessment of buildings,
roads, critical infrastructure, and the tracking of refugees/internally displaced persons (IDP).
The difficulty in automating these tasks comes mainly from the fact that the features of interest in the
humanitarian context are often small in size, heterogeneous and inconsistent [15]. In this context, this
paper investigates in detail the results achieved within the “Missing Maps” project, which was recently
started with the goal of preventively producing maps in OpenStreetMap for areas that are vulnerable
to humanitarian crises. We analyse the results of a crowdsourced classification task aimed at detecting
settlements and roads in South Kivu in the Democratic Republic of Congo, seeking to investigate the
following research question: RQ2—How well can crowdsourced classification generate information
from satellite imagery and what are the factors that influence the performance of crowdsourcing?

The remainder of this paper is organised as follows. The next section presents the basis for
this research, summarising the existing literature and proposing the typology of tasks in geographic
information crowdsourcing. Section 3 thus presents the case setting, data sets and methodology
used for analysing the Missing Maps project, whilst Section 4 presents the results achieved from this
analysis. Section 5 provides a discussion of the results and Section 6 concludes this paper and makes
recommendations for future research.

2. Background: Typology of Tasks in Geographic Information Crowdsourcing

In reviewing the literature on geographic information crowdsourcing, we are interested in
analysing existing approaches as regards to the type of tasks that they propose to volunteers to
derive geographic information. Volunteers can use their spatial cognitive skills to perform tasks with
varying levels of sophistication and complexity, and to recognise this, we propose to distinguish
between three types of crowdsourced tasks: classification, digitisation and conflation. An overview of
these types is presented in Table 1 and the next sections describe each of them in detail.
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Table 1. Types of tasks in geographic information crowdsourcing.

Types Description Number of
Data Sources

Spatial Cognitive
Complexity

Examples in the
Extant Literature

I. Classification
The process of assigning predefined
attributes (values/categories) to
existing geographical information

single low [16–20]

II. Digitisation
The process of creating new digital
geographic objects based on existing
geographic information.

single medium [9,21,22]

III. Conflation

The process of integrating existing
geographic information representing
the same real-world object into a
consistent digital representation.

multiple high [23–25]

2.1. Classification

The first type of analytical tasks that volunteers can perform is related to the use of their
interpretive skills and background knowledge to classify an existing piece of geographic information.
In the case of airborne imagery, this usually consists of a specific part of an image for which its
geographical reference and extent is known, but it could also be any other type of geographic
information such as a georeferenced social media message. In a classification task, the volunteer
recognises features/objects in an existing piece of geographic information and then enriches this by
adding an extra attribute that represents a value or category. This additional attribute is often referred
to as a “property”, “label” or “tag”. One of the most widely used practical platforms for crowdsourced
classification is the Tomnod platform illustrated in Figure 1.
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Figure 1. Tomnod platform for classification tasks in Ethiopia. Volunteers are showed an image and
should indicate whether they identified buildings in the highlighted area [26].

In the humanitarian context, several past projects relied upon crowdsourced classification tasks.
Chan et al. [16] analysed crowdsourced classification of damage assessment in the aftermath of the
hurricane Sandy hitting the US east coast in 2012. Non-expert volunteers were asked to evaluate the
level of damage present in aerial images captured after the hurricane hit the coastline. A more recent
example is the MicroMappers crowdsourcing platform, with which volunteers can support disaster
management by reading and labelling tweets. Imran et al. [18] used this tool to classify social media
messages. The crowdsourced classifications obtained were, in turn, used to train supervised classifiers
that are applied to the stream of new of social media messages. A similar approach that combines
automated and human classification is pursued by Ostermann [19].
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Classification is the task type with the lowest level of spatial cognitive complexity in our typology
since it usually consists of analysing a single information source and selecting one category/label out
of a small number of options. For this reason, classification tasks have the potential to be distributed to
a large number of volunteers, since they tend to not require much previous experience or dedicated
time to complete each task. However, even if the spatial cognitive complexity of classification tasks
is the lower in our typology (i.e., it does not require too much spatial thinking and familiarity with
spatial tools), the interpretation of the contents of an image may pose varying levels of difficulty,
depending on the phenomenon to be identified and on the image type. For instance, the classification
of the damage level of buildings based on a remotely sensed imagery after an earthquake can be
a challenging task even for remote sensing experts [10], and this is also true for images acquired
on the ground [27]. In consonance with these studies, an initiative to assess the classifications of
building damage performed based on satellite imagery after the Typhoon Haiyan in the Philippines
also revealed low accuracy levels in comparison with data from field assessments [11].

2.2. Digitisation

Type II of our proposed classification (digitisation) consists of creating new digital geographic
objects based on existing geographic information. In a digitisation task, a volunteer also starts with the
recognition of a real-world object/feature in an existing piece of information, but then goes further
to produce a corresponding digital representation (i.e., usually a vectorial geographic object). This
representation should include both a geometry (which can be a point, lines or area) and a location
(which is usually defined relatively to the existing geographic information). In this manner, digitisation
tasks are analogous to the automated object-based analysis methods in the field of remote sensing
“which aim to delineate readily usable objects from imagery” [28].

OpenStreetMap (OSM) is certainly the most important project to rely upon crowdsourced
digitisation of geographic information, and this has been increasingly performed based on remotely
sensed imagery. Particularly in the humanitarian context, satellite providers (e.g., through the
International Charter on Space and Major Disasters) have provided high-resolution remotely sensed
imagery for a worldwide volunteer community to map disaster-affected areas. After the 2010
Haiti earthquake, for instance, crowdsourced digitisation of roads and building footprints based
on satellite imagery was performed and later used for the rapid analysis of the damage caused by
the earthquake [21]. After his, the Humanitarian OpenStreetMap Team (HOT) was created and has
organised several similar efforts to crowdsource the digitisation of geographic features after disasters
using a dedicated coordination tool (Figure 2).
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used to coordinate the simultaneous digitisation efforts of thousands of volunteers worldwide. It
presents instructions for volunteers and asks them to select a square to map. By doing this, the selected
region is opened for mapping in one of the OpenStreetMap editors.
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In research, several works have analysed crowdsourcing digitisation of geographic information.
Hillen and Höfle [9] present a crowdsourcing approach to digitising buildings from earth observation
data incorporating the reCAPTCHA concept. The ForestWatcher citizen science project asked
volunteers to draw polygons for regions that show deforestation [22].

In comparison with tasks of Type I, digitisation tasks require more advanced spatial cognitive
skills from volunteers, and can be favoured by previous experience and knowledge with remote
sensing and digital mapping tools or GIS software. However, the difficulty to accomplish digitisation
tasks may considerably vary depending on the geometry of the objects to be digitised (e.g., digitising
points is certainly easier in comparison with lines or polygons) and the difficulty involved in the
interpretation of the existing information.

2.3. Conflation

Conflation is proposed here as a third task type of geographic information crowdsourcing,
based on the common use of this word in the geospatial domain ([30,31]) to indicate “the process of
combining geographic information from overlapping sources so as to retain accurate data, minimize
redundancy, and reconcile data conflicts” [32]. This process is also related to the terms spatial data
integration [33] and data fusion [34]. Here we adopt the term “conflation” because it seems to be the
most general and closely connected to geographic features, thus being capable of encompassing the
multifarious tasks that volunteers can perform. Conflation thus requires that volunteers interpret
more than one source of geographic information, identify matching objects/features and bring them
in relation to producing new geographic information [31]. In this manner, conflation tasks can be
composed of subtasks that involve classification (e.g., updating an existing geographic object based
on the conflated information) and digitisation (e.g., creation of new geographic object based on the
conflated information). Automated conflation methods have been developed [35], but they are usually
dependent on the context and the data sources to be conflated.

In practical projects, conflation tasks are often performed by GIS professionals and researchers and
is also common practice in specific GIScience and remote sensing studies (e.g., [36]). In addition, in the
OpenStreetMap community, volunteers with more advanced skills use GIS-like tools (such as the JOSM
editor) to display geographic information in several layers and conflate them into consistent objects in
the OSM database. However, only a few studies have focused on proposing tasks for volunteers that
involve the conflation of several geographic information sources. We found only two examples in the
literature. The Geo-Wiki platform [25] is a first example, in which citizens are able to visualise data
from different land cover datasets which are conflated with geo-tagged pictures in order to determine
which land cover type is found on the ground. Anhorn, Herfort and Albuquerque [23] present an
attempt to design crowdsourcing conflation tasks using the open-sourced crowdsourcing platform
PyBossa (Figure 3). By simultaneously presenting satellite imagery from two different timestamps,
volunteers could compare them to detect changes (e.g., temporary shelters that were not used anymore).
This task is clearly related to automated change detection algorithms in the field of remote sensing
(e.g., [37]).

Conflation tasks have the highest spatial cognitive complexity in our typology, thus requiring
more advanced knowledge and skills. Indeed, since conflation is performed based on the contents
of several information sources, it normally requires wider contextual knowledge. Hence, due to this
high complexity, this is the task type for which volunteers can potentially make the highest use of their
interpretive skills and background knowledge and thus perform better than automated methods. The
conflation of crowdsourced geographic information with other sources has been also mentioned as
one of the most promising avenues for future research in this area [1].
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Particularly in the humanitarian context, on-the-ground teams usually generate information using
different devices, tools, which is recorded in different data formats. For instance, the American Red
Cross uses Field Papers, phones, large-format printed maps and GPS devices in their field-mapping
campaigns [38]. In contrast, crowdsourcing efforts in the aftermath of disasters, such as those of
the Humanitarian OpenStreetMap Team described above, are usually based exclusively on remotely
sensed imagery. Thus, including crowdsourcing tasks to conflate geographic information collected
on-the-ground with remotely sensed imagery could be highly beneficial in this context.

3. Case Study for Missing Maps South Kivu and Methodology

In order to analyse the practical use of crowdsourced geographic classification, we conduct a case
study in the field of humanitarian aid and disaster risk reduction: the Missing Maps project. The next
section presents an overview of the project and the remainder of this section outlines the methodology
used in the analysis of the case.

3.1. Case Setting and Crowdsourcing Tasks

Missing Maps (MM) is a humanitarian project founded in November 2014 by the American Red
Cross, British Red Cross, Humanitarian OpenStreetMap Team and Doctors Without Borders. The
goal of the project is “to map the most vulnerable places in the world” [39] using OpenStreetMap,
with the goal of enabling local development, facilitating humanitarian aid and reducing the risk of
disasters. Herein we focus on the subproject “Map South Kivu”, which was started 1 June 2015 with
the goal of creating base map information of the regions of South Kivu in the Democratic Republic
of Congo. Many of the official sources of geographic information for this region are out-dated or
contain insufficient detail to quantify rural settlement patterns and thus accurately measure population
concentration and accessibility [40].
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Using our typology of tasks explained in the previous section, we analysed the several tasks
undertook by volunteers in the Map South Kivu project (Table 2). The first crowdsourcing tasks of
this project are based on the crowdsourced classification of satellite imagery from Bing maps with
the pybossa tool and are related to two problems faced in this context. First, for some areas in South
Kivu, there was no aerial imagery coverage, or dense clouds hide the ground’s surface. Thus, in the
first task (1.1 in Table 2), volunteers analysed tiles from satellite imagery in the area and indicated
whether they contained useful information. The second problem was related to the fact that land
use and distribution of human settlements are heterogeneous, i.e., there are large areas covered with
dense forest, among which a few villages and settlements appear. In order to tackle this, the second
classification task (1.2 in Table 2) was built based on the areas identified in the previous task, asking
volunteers to check whether these areas depicted inhabited areas—and thus were worth pursuing
further mapping efforts.

Table 2. Crowdsourcing Tasks in the Map South Kivu Project.

Types Tasks Input data Crowdsourcing Tool

I. Classification

1.1 assessment of information
availability in imagery satellite imagery PyBossa

1.2 assessment of inhabited areas satellite imagery, imagery
availability raster PyBossa

II. Digitisation

2.1 digitisation of roads and
residential areas

satellite imagery,
(inhabited area raster) OSM Tasking Manager

2.2 Digitisation of
building footprints

satellite imagery, residential
area features OSM Tasking Manager

III. Conflation

2.3 merging data captured in
the field OSM, Field Papers

2.4 adding village names OSM features, Field Papers,
GPS tracks -

2.5 adding attributes to buildings
and highways

OSM features, Field Papers,
GPS tracks -

The second type of tasks comprises digitisation of roads and residential areas (task 2.1 in Table 2)
and later the digitisation of building footprints (task 2.2), both based on the areas identified in the
previous classification tasks (task 1.2). These tasks were presented to volunteers in the HOT Tasking
Manager [29] and employed the common procedures for mapping and validation of the OpenStreetMap
community described above (Section 2.2), which were already explored in previous work [41,42].

The last group of crowdsourcing tasks in the project (tasks 2.3, 2.4 and 2.5 in Table 2) consists of
conflation tasks, which are generally undertaken by experienced mappers of the OSM community.
They used data from different sources, such as data collected in situ from field, GPS tracks or
other sources. They conflate these additional information sources to enrich the OSM data created
by digitisation tasks of volunteers and include further attributes that cannot be derived from
remotely sensed imagery. These attributes contain more precise information about local object names
(e.g., village names), relevant building usage (e.g., hospitals and schools), or the capacity and status of
roads. These tasks are performed manually using tools such as the JOSM editor, and currently do not
rely upon crowdsourcing supporting tools to distribute the work for volunteers.

Our proposed typology is thus able to make clear the different tasks undertook by volunteers in
the Mapping South Kivu project. The tasks build upon each other, with classification tasks building
the basis for the further mapping efforts in digitisation and conflation tasks. Hence, the accuracy
of the crowdsourced geographic information classification has a crucial role in the project. In our
case study, we, therefore, aim at analysing how well the information on the existence of roads,
buildings and settlements can be generated from satellite imagery using a crowdsourced classification
approach. Furthermore, we investigate which factors may influence the performance of crowdsourced
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classifications in this case. The next sections thus present the datasets and the methodology used in
the case study.

3.2. Methodology

Figure 4 depicts the workflow used to produce and analyse the crowdsourced classifications. This
workflow is divided into three main parts: (1) pre-processing; (2) crowdsourcing; and (3) analysis.
After a description of the datasets used, each of these parts is explained in detail.
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3.2.1. Datasets

Bing satellite imagery was the basis for the crowdsourced classification in this case. From 2010,
the Bing Maps platform allows the OpenStreetMap community to use its satellite imagery for mapping
via the Bing API. The Bing satellite imagery used in this study was captured between 21 January 2010
and 17 June 2014. Using a tool we implemented based on the Pybossa platform, volunteers could view
the imagery at various zoom levels.

Another input dataset that was integrated into our methodology contained the polygons that
defined the area of interest. In this case study, we use the extent of the HOT Tasking Manager Project
#1088 as the area of interest. Areas within the region without aerial imagery coverage or dense cloud
coverage that hides the ground’s surface (identified in the previous classification task) were excluded
from this case study.

While other studies use rather small datasets to validate crowdsourcing results, we perform our
validation using a reference dataset for a large area, the OpenStreetMap data covering the overall
task. These data were downloaded from Geofabrik [43]. The OpenStreetMap used here as a reference
was produced and validated within the Missing Maps project (tasks 2.1 and 2.2 in Table 2). These
mapping tasks focused explicitly on roads and land use features. Throughout the mapping process, the
information has been validated by experienced OSM mappers. Therefore, we assume this dataset to be
accurate regarding human settlements and roads that are the focus of the crowdsourced classification.

3.2.2. Pre-Processing

In the first step, we generated tasks using satellite imagery and the areas of interest. The area of
interest is gridded into many equal-sized rectangular polygons. Therefore, each task comprises of a
polygon geometry (squares) and geographically associated satellite imagery tiles that are obtained
from Bing Maps. The size of these polygons is defined by the width and height of the user interface
and the chosen default zoom level of the application. In this case study, the area of interest was divided
into 8291 grid polygons covering an area of 0.5 km2 each that altogether lead to a coverage area of
4145.5 km2.

During pre-processing, we also generate a reference data set that is used for the classification
evaluation. Therefore, we selected all roads, buildings and settlements from the OpenStreetMap (OSM)
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dataset. In this study, we consider roads to be those line features in the OSM database that are tagged
using the key “highway”, as this key was proposed for tagging all roads. Buildings polygons are
extracted using the key “building”. Settlements are polygon features that are described with the key
“landuse” and the value “residential” within the OSM database.

Based on this information, we calculated the reference dataset. We assigned “yes” to all grid
polygons that intersect with at least one road, building or settlement in the OSM database. Conversely,
all grid polygons that do not intersect roads, buildings and settlement objects are labelled with “no”.

3.2.3. Crowdsourcing

The crowdsourcing task was developed using the PyBossa framework. For our case study,
volunteers were asked whether they can see settlements or roads in the satellite imagery. Figure 5
depicts the interface implemented. Each task was assessed by four different volunteers. The single
classification result comprises of information about the task id, task geometry and user classification
(“yes” or “no”). Additional information on username and timestamp were also captured.
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3.2.4. Analysis: Overall Performance Evaluation

For the analysis, we first compute the aggregated answer for each task. As presented in Table 3
there are several methods for doing this regarding our task design. In this study, we adopt the method
(3) “majority, tie is yes” as our aggregation criteria. Thus, we consider the aggregated answer to be
“yes” if at least the half of the volunteers choose “yes” and the aggregated answer is “no” if more than
the half of the volunteers choose “no”.

Table 3. Classification aggregation methods.

Method Criteria Aggregated Result

(1) positive consensus
all “yes” “yes”

≥1 × “no” “no”

(2) majority, tie is “no”
“yes” > “no” “yes”

“no” ≥ “yes” “no”

(3) majority, tie is “yes”
“yes” ≥ “no” “yes”

“no” > “yes” “no”

(4) negative consensus
≥1 × “yes” “yes”

all “no” “no”
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In the sequence, the aggregated classification results are grouped into correct ones (true positives
and true negatives) and incorrect ones (false positives and false negatives) in comparison with the
reference dataset (Table 4). “True positives” (tp) are features where the aggregated classification
result and the reference dataset agree on the existence of roads, buildings or settlements, whilst
“true negatives” (tn) are features where both datasets agree that there are no roads, buildings and/or
settlements. Features present in the reference dataset but not in the aggregated classification result are
regarded as “false negatives” (fn); “false positives” (fp) are features that are indicated as such in the
aggregated classification result, but not in the reference dataset.

Table 4. Confusion table of classification result and reference dataset.

Reference Dataset

“yes” “no”

crowdsourced classification “yes” correct: true positive (tp) wrong: false positive (fp)
“no” wrong: false negative (fn) correct: true negative (tn)

Based on the aggregated results, the performance of the crowdsourced classification is analysed
using the following usual metrics in information retrieval, as given by Equations (1)–(4).

• Accuracy:
tp + tn

tp + tn + f p + f n
(1)

• Sensitivity:
tp

tp + f n
(2)

• Precision:
tp

tp + f p
(3)

• F1 Score:
2tp

2tp + f p + f n
(4)

Furthermore, we calculated the agreement level among volunteers as the proportion of agreeing
pairs of classifications out of all the possible pairs of assignments, following Fleiss [44]. This is
calculated using Equation (5), where n is the number of ratings per subject (i.e., a tile in our case), k is
the number of categories into which assignments are made (two in our case), and nij is the number of
raters which assigned the i-th subject to the j-th category.

Pi =
1

n ∗ (n− 1)
∗

k

∑
J=1

n2
ij − nij (5)

3.2.5. Analysis of Geographic Factors Influencing Crowdsourced Classification Performance

In order to quantify the factors that influence the performance of crowdsourced classification,
we first analysed the number of incorrect classifications per task, which can be seen as a measure
of the level of difficulty of a task. Afterwards, we investigated the influence of different geographic
features on the classification performance (Table 5), beginning by the length of roads and the area of
settlements. We calculated the length of roads and area of settlements based on the corresponding
OSM objects of the reference dataset contained in each square of our analysed case.
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Table 5. Overview of the analysed factors.

Factor Variable Unit

road length R [km]
settlement area S [m2]

waterway existence W “yes” (1), “no” (0)
agreement level A <0.5 (low), 0.5 < 1.0 (high), 1.0 (consensus)
Object existence O “yes” (1), “no” (0)

The analysis is guided by the hypothesis that it is easier to classify those features correct that are
larger or longer. Correct classifications or easier tasks should, therefore, correspond to longer roads
and larger settlements within a square. We compare the spatial distribution of wrong classifications,
roads and settlements and statistical distributions of road length and settlement area for correctly and
incorrectly classified tests using violin plots (which combine a box plot with a density chart). In order
to test statistical significance, we conduct Wilcoxon–Mann–Whitney test to analyse whether the results
show significance for the aggregated classification results.

Thus, we conducted a qualitative analysis of common classification errors associated with
these two geographic features with the goal of identifying examples and potential sources of errors.
One of the identified factors is the presence of waterways since they can be easily mistaken for roads.
We thus investigate the association between the presence of waterways and incorrect classifications
first by contrastively comparing their spatial distributions in maps and later by testing the significance
of association using the chi-square independence test.

3.2.6. Predictive Analysis of Crowdsourced Classification Results

After the exploratory analysis, to determine how well the analysed factors of Table 5 (road length,
settlement area, waterway, and agreement) were able to predict a correct crowdsourced classification,
we fitted a logistic regression model as in Equation (6).

Logit (Pi) = a + bRi + c
√

Si + dAi + eWi + f Oi (6)

Notice that the area variable was square rooted to linearise it in relation to road length.
Furthermore, the existence of waterways functions as a categorical (“dummy”) variable that separates
the function into two simultaneous models. Analogously, the variable O was introduced as a binary
factor to control for the existence of objects in a tile.

4. Results

The results of the case study performed on crowdsourced classifications in the context of the
Mapping South Kivu projects are presented in this section in two parts. First, an overall classification
of the results is described in the next section (Section 4.1), followed by a detailed analysis of the factors
influencing the crowdsourced classification performance (Section 4.2), and then the predictive analysis
of the classification results (Section 4.3).

4.1. Overall Classification Performance

The overall classifications results are summarised in Table 6. In total, 35,560 classifications were
performed by 539 volunteers. The majority of the contributions (23,192) are “no” classifications, whilst
8368 classifications are labelled as “yes”.

As shown in Table 7, whilst the different aggregation methods show only little variations regarding
accuracy, they differ considerably regarding sensitivity and precision. As expressed by the F1 score, the
best compromise between sensitivity and precision is reached using aggregation method (3) majority,
tie is “yes”. Applying this method, we reach an accuracy of 89%, a sensitivity of 73% and a precision
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of 89%. Aggregation methods (1) and (2) show very good results regarding precision, but very low
values for sensitivity. Aggregation method (4) shows the opposite characteristics.

Table 6. Overall classification results.

Reference Dataset

“yes” “no” Total

classification result “yes” 6849 1519 8368
“no” 3826 23,366 27,192

total 10,675 (2494 tasks) 24,885 (5797 tasks)

Table 7. Classification performance metrics.

Aggregation Method Accuracy Sensitivity Precision f1

aggregated per task (n = 8291)
(1) positive consensus 0.80 0.35 0.99 0.52
(2) majority, tie is “no” 0.87 0.61 0.93 0.74
(3) majority, tie is “yes” 0.89 0.73 0.89 0.80
(4) negative consensus 0.70 0.91 0.50 0.65

On average, each user contributed 66 classifications, and the median is around 21. Figure 6
presents the degree of inequality of contributions per user. The diagram illustrates that around 75% of
the volunteers contributed only 20% of the classifications, whilst 25% of the volunteers contributed
80% of the classifications.
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Figure 7a shows the distribution of all classifications per task for all tasks, for tasks with objects
and for tasks without objects. Using the number of incorrect classifications as a proxy for the task
difficulty, we can see that about 69% of all tasks can be considered as “easy cases” (all crowdsourced
classifications were correct), 28% as “medium cases” (1 to 3 incorrect classifications) and only 4% as
“difficult cases” (four or more classifications were incorrect). About 12% of all tasks with objects are
“difficult cases”, whilst this is the case only in less than 0.5% of all tasks without objects. Thus, tasks
that contain geographic objects are more difficult than tasks without objects and thus more incorrectly
classified by volunteers. This is clearly confirmed by the condition plot of Figure 7b. A considerable
amount of volunteers appears to have missed roads or settlements, thus incorrectly classifying tasks
that have such features. However, tasks without objects (e.g., forests) are mostly classified correctly,
suggesting that volunteers tend to not mistake other image elements for buildings or roads.
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Moreover, the level of agreement in the classification of the volunteers and the possible influence 
on the performance of the classification was investigated. Table 8 presents the results of the 
comparison for the different levels of agreement (“consensus”, “high”, and “low”) and the respective 
statistical measures. In tasks for which all volunteers came to the same classification result 
(consensus), the performance achieved was clearly superior according to all metrics. The same 
pattern can be seen comparing tasks with high level of agreement with tasks with a low level of 
agreement. In Figure 9, the violin plot clearly shows that the distributions of tasks incorrectly 
classified tend to have lower levels of agreement in comparison with tasks that were correctly classified. 

Table 8. Overview of statistical measures for different levels of agreement. 

 Accuracy Sensitivity Precision f1 
agreement level  

(1) consensus (n = 5877) 0.95 0.76 0.99 0.86 
(2) high (n = 1689) 0.77 0.61 0.91 0.73 
(3) low (n = 725) 0.69 0.85 0.71 0.78 

Figure 7. Task difficulty: (a) tasks without object have a higher share of correct classifications; and (b) a
conditional density plot that confirms that tasks with higher number of misclassifications are more
probable to contain objects.

In order to further explore this distinction between tasks with and without objects, Figure 8
shows the distribution of tasks concerning different user agreement levels. Tasks with objects have an
above-average proportion of cases where there was a low agreement in the classifications of volunteers.
In contrast, tasks without object tend to have more consensual cases. Assuming that disagreement is
also connected to tasks that are more difficult to analyse, it seems these are happening more frequently
in tasks that contain objects.

Remote Sens. 2016, 8, 859 13 of 22 

 

 
(a) (b)

Figure 7. Task difficulty: (a) tasks without object have a higher share of correct classifications; and (b) 
a conditional density plot that confirms that tasks with higher number of misclassifications are more 
probable to contain objects. 

 
(a) (b)

Figure 8. Distribution of user agreement in tasks: (a) tasks without object have a higher share of 
consensual classifications; and (b) a conditional density plot that confirms that classifications with 
higher agreement are more probable to contain no objects.  

Moreover, the level of agreement in the classification of the volunteers and the possible influence 
on the performance of the classification was investigated. Table 8 presents the results of the 
comparison for the different levels of agreement (“consensus”, “high”, and “low”) and the respective 
statistical measures. In tasks for which all volunteers came to the same classification result 
(consensus), the performance achieved was clearly superior according to all metrics. The same 
pattern can be seen comparing tasks with high level of agreement with tasks with a low level of 
agreement. In Figure 9, the violin plot clearly shows that the distributions of tasks incorrectly 
classified tend to have lower levels of agreement in comparison with tasks that were correctly classified. 

Table 8. Overview of statistical measures for different levels of agreement. 

 Accuracy Sensitivity Precision f1 
agreement level  

(1) consensus (n = 5877) 0.95 0.76 0.99 0.86 
(2) high (n = 1689) 0.77 0.61 0.91 0.73 
(3) low (n = 725) 0.69 0.85 0.71 0.78 

Figure 8. Distribution of user agreement in tasks: (a) tasks without object have a higher share of
consensual classifications; and (b) a conditional density plot that confirms that classifications with
higher agreement are more probable to contain no objects.

Moreover, the level of agreement in the classification of the volunteers and the possible influence
on the performance of the classification was investigated. Table 8 presents the results of the comparison
for the different levels of agreement (“consensus”, “high”, and “low”) and the respective statistical
measures. In tasks for which all volunteers came to the same classification result (consensus), the
performance achieved was clearly superior according to all metrics. The same pattern can be seen
comparing tasks with high level of agreement with tasks with a low level of agreement. In Figure 9,
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the violin plot clearly shows that the distributions of tasks incorrectly classified tend to have lower
levels of agreement in comparison with tasks that were correctly classified.

Table 8. Overview of statistical measures for different levels of agreement.

Accuracy Sensitivity Precision f1

agreement level
(1) consensus (n = 5877) 0.95 0.76 0.99 0.86

(2) high (n = 1689) 0.77 0.61 0.91 0.73
(3) low (n = 725) 0.69 0.85 0.71 0.78Remote Sens. 2016, 8, 859 14 of 22 
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The results of this overall analysis show that the volunteers achieved a reasonable performance in
general. However, there are big differences between tasks with and without objects and varying levels
of task difficulty, as indicated both by the number of incorrect classifications and by the agreement level
between volunteers. We thus further investigate geographic factors that may influence the performance
of crowdsourced classifications in the next section.

4.2. Geographic Factors that Influence Crowdsourced Classification Performance

In this section, we analyse the influence of geographic factors on classification performance. The
analysis is divided into two parts. First, the impact of road length and settlement area on the number
of false negatives per task are investigated. In the second part, we focus on the influence of waterways
on the number of false positives per task.

Figure 10a provides an overview of the spatial distribution of all tasks with objects and the
corresponding number of incorrect classifications per task, which is used here as a proxy for task
difficulty. Green areas indicate regions that were classified correctly, in accordance with the reference
data. Dark red and black areas mark tasks with a high level of difficulty, the “hard cases”. Figure 10b
maps the distribution of the road length in each task. Dark red and black tasks indicate shorter roads
(which are supposedly more difficult to detect), whilst lighter colours indicate longer and more visible
roads. The same scheme is applied in the settlement area map of Figure 10c. A visual inspection of
the maps may suggest that easy tasks tend to be associated with longer roads and larger settlements
(green regions). This is especially apparent for the settled areas along the eastern border of the area
of interest.
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Especially small buildings that show a low contrast compared to their surrounding were often not 
identified by volunteers. In areas covered by dense forest, small settlements appear as bright spots in 
the imagery. Nevertheless, these spots are often misinterpreted as clearings in the forest. Since these 
settlements usually contain only a few buildings it is not possible to use the spatial collocation as an 
additional criterion (Figure 12a). This problem becomes even more apparent for roads (Figure 12b). 
Apart from the given conditions on the ground, the quality of satellite imagery provided in a task can 
also constitute an influencing factor for task difficulty. Partial cloud coverage as presented in Figure 12c 
or poor imagery quality can easily cause volunteers to miss features. These limitations apply to all 
crowdsourced tasks that rely on satellite imagery. The last factor we observed in the case study is 

Figure 10. Spatial distribution of number of false negatives, road length and settlement area: (a) number
of false negatives/task; (b) road length; and (c) settlement area.

The violin plots of Figure 11 seem to confirm slightly different distributions for tasks classified
correctly or incorrectly by volunteers as regards to road length (Figure 11a), and settlement area
(Figure 11b). Tasks classified correctly in the aggregated results tend to show higher values for road
length and settlement area in comparison with incorrectly classified tasks. Furthermore, an application
of the Wilcoxon–Mann–Whitney test supports the alternative hypothesis that the distributions of road
length and settlement area for correctly classified tasks in comparison with incorrectly classified ones
(length: W = 3,605,300, p < 0.0005; area: W = 4,407,000, p < 0.0005). This suggests that the most difficult
tasks for volunteers tend to contain smaller roads and smaller settlements.
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The results seem to indicate that different task difficulties are associated with different
characteristics of geographic features such as road length and settlement area. We thus performed
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a qualitative analysis of common errors related to these groups. As follows, we present detailed
information for the “difficult cases” and general information on the “medium” and “easy” cases.

In our dataset, 279 tasks containing objects could not be correctly classified by a single user. This
was mostly due to “difficult cases” that contain very small features that are more likely to be missed.
Especially small buildings that show a low contrast compared to their surrounding were often not
identified by volunteers. In areas covered by dense forest, small settlements appear as bright spots in
the imagery. Nevertheless, these spots are often misinterpreted as clearings in the forest. Since these
settlements usually contain only a few buildings it is not possible to use the spatial collocation as an
additional criterion (Figure 12a). This problem becomes even more apparent for roads (Figure 12b).
Apart from the given conditions on the ground, the quality of satellite imagery provided in a task
can also constitute an influencing factor for task difficulty. Partial cloud coverage as presented in
Figure 12c or poor imagery quality can easily cause volunteers to miss features. These limitations
apply to all crowdsourced tasks that rely on satellite imagery. The last factor we observed in the case
study is related to the design of the crowdsourcing task. The presented micro-tasking classification
approach causes the overall task to be split into smaller subtasks. As a result, settlements and roads
might be cut into smaller parts or only partially displayed (Figure 12d). This can cause buildings
or roads to be difficult to identify as the overall context is not visible in the single task given to the
volunteer. Moreover, features that appear at the edge of the task geometry can be more easily missed.
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In our qualitative analysis, another geographic feature emerged as possibly associated with
incorrect classifications: the existence of waterways, which can easily be mistaken for roads. In order to
further investigate this association, Figure 13 shows the spatial distribution of all false positive features
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regarding their number of incorrect classifications and the spatial distribution of tasks containing
waterways. The visual interpretation indicates a possible relation between the presence of waterways
and misclassification. An investigation using Pearson’s chi-square independence test has confirmed
that the hypothesis of independence between the existence of waterways and an incorrect classification
result can be rejected (χ2(1) = 170.74, p < 0.0005).Remote Sens. 2016, 8, 859 17 of 22 
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In the pursuit of qualitatively examining this issue, Figure 14 shows two examples of false positive
tasks in which waterways were apparently misidentified as roads. Besides this, some bright spots in
waterways have been mistaken by roofs of buildings due to cascades or water foam. Altogether, there
are only a few tasks related to waterways in which the number of incorrect classifications per task
is greater than three. This indicates that, despite the strong association, in general, the existence of
waterways may constitute only a small factor for incorrect classifications.
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4.3. Predictive Analysis of Crowdsourced Classification Results

The last step of our analysis consisted of fitting a logistic regression model with the identified
factors (see Table 9 and Equation (6) in Section 4.3). The logistic regression model used all
individual classifications performed by volunteers (n = 35,560) and was statistically significant with
χ2(5) = 9443.632, p < 0.0005. The model explained 40.8% (Nagelkerke pseudo R2) of the variance in
the classification performance and correctly classified 84.9% of the cases. In the Receiver Operating
Characteristic (ROC) curve, the model achieved an AUC (Area Under Curve) of 89.7%. As expected,
increases in the road length and settlement area contained in a tile were associated with a slight
(albeit significant) increased likelihood of correct classification. More pronounced was the effect
of agreement level: tasks with highest agreement (i.e., consensus) were 41 times more probable to
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be correctly classified than tasks with the lowest agreement within crowdsourced classifications.
In contrast, tasks that did not contain objects were only slightly more likely to be correctly classified,
whilst the influence of waterways was not found significant for the regression.

Table 9. Logistic regression analysis for the model Logit (Pi) = a + bRi + c
√

Si + dAi + eWi + f Oi,
where the variables correspond to the factors listed in Table 5 (i.e., road length, settlement area,
waterways, agreement level and the existence of objects) and Pi is the probability that the task is
correctly classified.

Coefficients Standard Error Significance Odds Ratio

Road length 0.001 0.000 0.0 *** 1.001
Settlement Area (square rooted) 0.018 0.001 0.0 *** 1.018

Agreement level 3.719 0.072 0.0 *** 41.227
Waterway (existence) −0.087 0.045 0.053 0.916

Object (existence) −2.433 0.048 0.0 *** 0.088

*** = means a p-value < 0.0005.

5. Discussion

The results of our case study show that the crowdsourced classification of satellite imagery can
produce geographic information about human settlements with a high level of quality, achieving
an accuracy of 89%, sensitivity of 73% and precision of 89%. These results are comparable to the
performance of automated approaches to detect buildings from very high resolution remote sensing
data, such as that proposed by Vakalopolou et al. [45], who achieved an average sensitivity of 80% and
an average precision of 90%. Nevertheless, features smaller than approximately 250 m2 could not be
detected using automated methods. Within our dataset such small features represent about 14% of all
features. Furthermore, automated methods depend on large training data sets to be able to reach good
results. The crowdsourcing approaches analysed in this paper can be used in the future to complement
automated approaches both by generating initial training datasets and for tackling specific cases in
which automated approaches do not perform well.

Whilst other studies [7,46] have already shown the influence of image resolution on the accuracy of
crowdsourced classification, this study has shown that additional factors such as the size of geographic
features are significantly associated with the likelihood of a correct classification by the volunteers.
In this manner, our analysis is able to pinpoint “difficult cases” that require particular consideration
and treatment, since they are not random but rather occur in a systematic way and can thus be
systematically addressed. For instance, errors related to geographic features may be reduced by
introducing targeted training for volunteers. If the structures of settlements and roads of an area are
known in advance, this information can help volunteers to detect and identify the needed features
more easily and thus prevent mistakes.

Furthermore, the measure we chose for assessing the agreement level of volunteers (Equation (5))
was shown to be a very good predictor of task difficulty and thus of the reliability of the resulting
crowdsourced classification. With consensual volunteer responses being 41 times more likely to be
correct. This is an important result, since the agreement level can be calculated exclusively on the basis
of the agreement between pairs of volunteer responses (without resort to external reference data or
expert validation). Therefore, the agreement level metric of Equation (5) seems to be a good candidate
for use in future crowdsourcing projects as a quality index for the data produced by the volunteers.
Moreover, this metric seems to work better than disagreement with majority: using an aggregation by
simple majority, the correct classification for “difficult cases”, which can only be detected by few users,
will be outvoted [20]. However, a systematic comparison with this and other alternative metrics for
task difficulty should be performed in a variety of contexts to allow generalisation.

The analyses of the classification results also demonstrate a significant influence of the task design.
Crowdsourcing tasks are usually designed by splitting up large areas into many small subtasks, i.e., a
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typical “divide et impera” approach. However, this fragmentation can lead to wrong classifications,
since the volunteer loses thereby the overall context that is sometimes needed to correctly identify
features (e.g., smaller roads that connect to a larger road network). Moreover, the splitting up of the
tasks can cause features to be located towards the edges of the individual tasks and therefore become
difficult to distinguish. To address these issues, one option is to make the areas in the immediate
vicinity of the task edges visible and allow volunteers zooming out to consider the surrounding area.

A potential limitation of the workflow proposed in this paper is related to the reference
dataset, which was derived using information from OpenStreetMap. As previous quality analyses
of OpenStreetMap show (e.g., [47–49]), the completeness of OpenStreetMap data is heterogeneous,
with some areas very well mapped, whilst other areas lacking basic objects. This suggests that
OpenStreetMap may not be able to offer a complete reference data set for some areas. This could pose a
threat to the validity of the performance results derived from our evaluation approach, for incomplete
OpenStreetMap data would lead to an underestimation of false negatives. However, in our particular
case study, the effects of this threat are minimised, since the Missing Maps project included specific
tasks for digitisation of roads, residential areas and building footprints (see Section 3.1). These tasks
were mapped and validated by experienced volunteers and thus can be expected to have achieved a
high level of completeness. Nevertheless, the suitability of OpenStreetMap to provide reference data
in future studies must be considered individually for the intended study areas.

Furthermore, the number and skills of contributing volunteers is a key factor to ensure the
scalability of the crowdsourcing approach. Our case study replicates the findings of several other
crowdsourced projects, in which a few highly motivated volunteers are responsible for accomplishing
most of the crowdsourced tasks. Therefore, attracting more volunteers and encouraging them to
spend more time solving the crowdsourcing tasks are crucial factors to be addressed by any future
crowdsourced project. These limitations can be tackled by designing improved interaction mechanisms,
such as the MapSwipe App [50], which was recently developed by Doctors without Borders/Médicin
Sans Frontiers (MSF) within the Missing Maps Project and is built upon on the approach presented in
this paper. This app addresses a larger volunteer base (currently counting with about 9000 volunteers)
by making interaction convenient to volunteers, who may classify images from their mobile phones
even when they are offline, and relies upon gamification mechanisms (e.g., badges and rankings) to
foster motivation.

6. Conclusions

Future “smart” geo-crowdsourcing approaches should build upon the lessons learned in this paper
to include and integrate strategies to differentiate between different types and levels of task difficulty
that can be undertaken by volunteers in geographic information crowdsourcing. As proposed in this
paper, classification is only the first and most basic step in the wider potential field of crowdsourcing
approaches based on remotely sensed imagery. Based on our proposed typology, we can envisage
more comprehensive crowdsourcing projects that implement a cyclical process with different task
types. For instance, a project could start with classification tasks to identify important tiles in the
imagery and then automatically use the data generated to create digitisation tasks. The results of
crowdsourced digitisation could be, in turn, passed on to volunteers on the ground, who could
enrich the digitised information with local knowledge by means of conflation tasks. This cyclical
process is being partially used in practical initiatives such as the Missing Maps project reported here,
but further automated support and smarter approaches to creating and assigning tasks are still needed,
in particular for conflation tasks.

The crowdsourcing approaches analysed here thus bears the potential to generate geographic
information for both larger and smaller human settlements, including even small, heterogeneous and
inconsistent features that cannot be automatically detected and are often unavailable in official land
use maps. Thus, geographic information crowdsourcing based on remotely sensed imagery could
improve land use maps and provide high-resolution local data at the building/infrastructure level.
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This detailed information is an important requirement for risk assessment aimed at implementing
disaster risk reduction strategies (e.g., early warning systems), but it is not generally available and
is very costly to obtain, especially in developing countries [51]. Furthermore, such crowdsourcing
approaches could also be used to support urban planning, by monitoring urbanisation processes
and helping to estimate population concentrations in high spatial and temporal scales. Moreover,
this approach can be of particular interest for humanitarian aid organisations to monitor informal or
dynamic settlements, e.g., temporary camps of refugees or internally displaced persons, which are
very volatile and not covered by other information sources [52].

Whilst the current study focused on a classification task and the influence of some geographic
features on the performance of volunteers, future work could cover additional factors. In this paper,
we did not collect or integrate further information regarding the individual skills and experience of
volunteers, but this kind of information may have a significant influence on the classification results.
In future projects, this information could be gathered by asking the volunteers to fill a survey or
letting them go through a training data set before starting with the real tasks. Another aspect that
was not covered in this study is the influence of quality of the satellite imagery provided, which can
vary in different regions, applications and use cases. Therefore, this factor should be investigated in
future studies.
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