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Abstract: Google Earth provides a freely available, global mosaic of high-resolution imagery from
different sensors that has become popular in environmental and ecological studies. However,
such imagery lacks the near-infrared band often used in studying vegetation, thus its potential
for estimating vegetation properties remains unclear. In this study, we assess the potential of Google
Earth imagery to describe and predict vegetation attributes. Further, we compare it to the potential
of SPOT imagery, which has additional spectral information. We measured basal area, vegetation
height, crown cover, density of individuals, and species richness in 60 plots in the oak forests of
a complex volcanic landscape in central Mexico. We modelled each vegetation attribute as a function
of surface metrics derived from Google Earth and SPOT images, and selected the best-supported
linear models from each source. Total species richness was the best-described and predicted variable:
the best Google Earth-based model explained nearly as much variation in species richness as its
SPOT counterpart (R2 = 0.44 and 0.51, respectively). However, Google Earth metrics emerged as poor
predictors of all remaining vegetation attributes, whilst SPOT metrics showed potential for predicting
vegetation height. We conclude that Google Earth imagery can be used to estimate species richness in
complex landscapes. As it is freely available, Google Earth can broaden the use of remote sensing
by researchers and managers in low-income tropical countries where most biodiversity hotspots
are found.

Keywords: image surface metrics; Google Earth; SPOT; species richness estimation; vegetation
attributes estimation; biodiversity estimation; oak forest

1. Introduction

Remote sensing is a useful tool in environmental and ecological research. This technology
allows ecologists to gather information about the natural world more rapidly and cost effectively
than traditional field methods, and aid in the analyses and integration of processes across spatial
and temporal scales [1]. Remote sensing is useful when studying vegetation to assess ecosystem
functioning and health [2], regulate human use of vegetation [3,4], and prioritise areas for conservation
and restoration [5,6].

Although Landsat imagery is still the most frequently used source in remote sensing studies [7],
some vegetation patterns cannot be captured at its resolution (30 m pixel) [8]. Other sensors such
as SPOT (Satellite Pour l’Observation de la Terre), Quickbird, GeoEye-1 and RapidEye produce
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higher resolution images, but they can be prohibitively expensive for many researchers and managers,
particularly in low-income countries. Although financial considerations are important when choosing
an image source, the capabilities of different sources need rigorous assessment.

Since its launch in 2005, Google Earth © (GE) has become an application with an enormous
impact on research and environmental management, even amongst non-experts in remote sensing.
GE provides a collage of free images, many of which have extremely high resolution (up to 15 cm) [9].
GE has mostly been used for visual interpretation of natural- and human-related phenomena, but
digital image analysis has seldom been applied to GE images ([10], but see [11]) This is partly due
to the lack of the near-infrared (NIR) band in GE images (i.e., they only have the red, green, and
blue bands: RGB), without which one cannot calculate widely used vegetation indices such as the
Normalized Difference Vegetation Index (NDVI) [12].

Previously, efforts concentrated on predicting vegetation attributes using the raw spectral
information in satellite images [13]. More recently, the spatial arrangement of spectral information
(i.e., image texture) has also been used [14]. The basic tenet of this approach is that such spatial
structure holds a strong correspondence with the heterogeneity of the vegetation [15]. Studies based
on image texture have reported high predictability of some vegetation attributes, such as community
basal area and tree density (e.g., [16,17]).

Here we assess the potential of spectral and textural information extracted from GE imagery
to predict oak forest attributes in a complex volcanic landscape, and compare it to the potential of
SPOT imagery. Despite its limited spectral information, we expected the data of high-resolution GE
imagery to be a good predictor of vegetation attributes in heterogeneous environments. Considering
the substantial reduction in costs and the global availability of GE images, it was important to assess
its real predictive potential objectively.

2. Materials and Methods

2.1. Study Site

We conducted the study in El Tepozteco National Park, located on the Chichinautzin volcanic
range, ca. 50 km south of Mexico City, Mexico (19◦01.10′N, 99◦05.80′W; Figure 1). It encompasses
a complex territory including the Tepozteco Mountains, which are the result of eroded lahars,
as well as a mosaic of lava fields with ages ranging from 1835 to >20,000 years old [18,19].
We studied oak forests in six geomorphological units: Tepozteco Mountains (TM), and four lava
fields, namely Chichinautzin (CH), Suchiooc (SU), Otates, which is divided into lower (LO) and upper
(UO) subunits, and Oclayuca (OC). Overall mean annual temperature is 15.6 ◦C, and mean total annual
precipitation is 2100 mm, with a rainy season between May and October [20]. Climatic conditions
vary along the park’s elevational gradient, which ranges from 1350 to 3350 m a.s.l. Oak forests extend
from 1800 to 2800 m a.s.l., and shift gradually into conifer forests above, and tropical dry forests below.
Additionally, patches of xerophytic vegetation in rocky outcrops and recent lava fields are found amid
the oak forests.

2.2. Field Data

We randomly located ten 10 × 10 m plots in each geomorphological unit (Figure 1) and sampled
them in October and November 2010 and 2011. We recorded all plant species present in each plot,
and for plants with a diameter at breast height (DBH) ≥2.5 cm (hereafter referred to as ‘canopy’),
we measured DBH, height and two orthogonal crown diameters (to estimate crown cover as the area
of an ellipse). We used these variables to calculate density of individuals, basal area, total crown cover,
and vegetation height (mean height of the three tallest trees) in each plot. Also, we calculated species
richness and Shannon’s Index [21] for the whole community and for the canopy in each plot.
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Figure 1. Google Earth image of the study site captured on January 2005, showing limits of El 
Tepozteco National Park (Mexico) and location of oak forest sampling plots in six geomorphological 
units: Chichinautzin (CH), Suchiooc (SU), Otates, divided into a lower (LO) and upper (UO) subunit, 
and Oclayuca (OC). Extreme coordinates of this scene are 18.977°–19.099°N, 99.024°–99.201°W. 
Actual geomorphological units are larger than the polygons shown here, as these only depict the 
extent of oak forest in these units. 

2.3. Image Processing  

We calculated spectral and textural metrics for GE and SPOT 5 images, which were then used to 
model vegetation attributes. The GE image used in this study was a pansharpened Quickbird image, 
constructed by mosaicing and georeferencing screenshots captured with a fixed eye altitude of 3 km 
in Google Earth, while the SPOT image was subjected to geometric correction. We preferred the term 
GE image instead of its commercial name (Quickbird) to highlight the use of a free image server, and 
also because we did not have access to the raw Quickbird information. The main differences 
between these two image sources were: (1) the available bands (RGB in GE; RG and NIR in SPOT), 
(2) their spatial resolution (GE = 0.75 m; SPOT = 2.5 m), and (3) their acquisition date (January 2005 
for GE and March 2010 for SPOT). Although the GE image differed by five years from our field 
measurements, we decided to use it because it was the only high-resolution image covering the 
entire study area. 

We used only the red band and a vegetation index for each image to calculate the Visible 
Vegetation Index (VVI) for GE, and the NDVI for SPOT, as follows:  
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Figure 1. Google Earth image of the study site captured on January 2005, showing limits of El
Tepozteco National Park (Mexico) and location of oak forest sampling plots in six geomorphological
units: Chichinautzin (CH), Suchiooc (SU), Otates, divided into a lower (LO) and upper (UO) subunit,
and Oclayuca (OC). Extreme coordinates of this scene are 18.977◦–19.099◦N, 99.024◦–99.201◦W. Actual
geomorphological units are larger than the polygons shown here, as these only depict the extent of oak
forest in these units.

2.3. Image Processing

We calculated spectral and textural metrics for GE and SPOT 5 images, which were then used to
model vegetation attributes. The GE image used in this study was a pansharpened Quickbird image,
constructed by mosaicing and georeferencing screenshots captured with a fixed eye altitude of 3 km in
Google Earth, while the SPOT image was subjected to geometric correction. We preferred the term
GE image instead of its commercial name (Quickbird) to highlight the use of a free image server, and
also because we did not have access to the raw Quickbird information. The main differences between
these two image sources were: (1) the available bands (RGB in GE; RG and NIR in SPOT), (2) their
spatial resolution (GE = 0.75 m; SPOT = 2.5 m), and (3) their acquisition date (January 2005 for GE and
March 2010 for SPOT). Although the GE image differed by five years from our field measurements,
we decided to use it because it was the only high-resolution image covering the entire study area.

We used only the red band and a vegetation index for each image to calculate the Visible Vegetation
Index (VVI) for GE, and the NDVI for SPOT, as follows:

VVI =

[(
1 −

∣∣∣∣ R− R0

R + C + R0

∣∣∣∣) (
1 −

∣∣∣∣ G−G0

G + C + G0

∣∣∣∣) (
1 −

∣∣∣∣ B− B0

B + C + B0

∣∣∣∣)]1/w
(1)

NDVI =
NIR− R
NIR + R

(2)
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where NIR, R, G, and B are the near-infrared, the red, the green, and the blue band, respectively,
R0 = 40, G0 = 60, B0 = 10, C = 10, and w = 1 [22,23]. Equation 1 is a modification of the original formula
following the recommendations of its proponents. These indices were calculated manually in ENVI 5
(Exelis Visual Information Solutions, Boulder, CO, USA).

We calculated 13 surface metrics for each band or vegetation index. Eight were co-occurrence
or texture metrics calculated following the grey level co-occurrence method (GLCM; Supplementary
Material 1) [24], using an offset of one pixel and a transformation of pixel values to 64 grey levels
to minimise computation time. To obtain a rotation-invariant texture measure, all the co-occurrence
metrics were calculated in four directions (0◦, 45◦, 90◦, 135◦) and then averaged. The remaining
five occurrence metrics, also known as spectral metrics, were calculated using raw pixel values
(see Supplementary Material 1). We calculated all metrics using the moving window approach [24].
To ensure a good match between window size and sampling plot size, we used a square window of
15 pixels for GE and 5 pixels for SPOT.

2.4. Statistical Analysis

We constructed linear and quadratic models of surface metrics as predictors of vegetation
attributes. Higher-order models were not explored because of limited degrees of freedom (n = 60).
Thus, we fitted eight types of models:

y = β0 + β1x1, (3)

y = β0 + β1x1 + β2x2, (4)

y = β0 + β1x1 + β2x2 + β3x1x2, (5)

y = β0 + β1x1 + β2x2 + β3x3, (6)

y = β0 + β1x1 + β2x1
2, (7)

y = β0 + β1x1 + β2x1
2 + β3x2, (8)

y = β0 + β1x1 + β2x1
2 + β3x2 + β4x2

2, (9)

y = β0 + β1x1 + β2x1
2 + β3x2 + β4x1x2, (10)

where y is a log-transformed vegetation variable, and x1, x2 and x3 are surface metrics. The normal
distribution of the error was verified in all models. All possible combinations of metrics were evaluated.

We calculated the coefficient of determination (R2) as a goodness-of-fit measure for each model.
R2 has the advantage of having a fixed range (0 to 1, with 1 being a perfect fit), making it easy to
interpret. However, R2 is not useful for model comparison, as it does not penalise for model complexity.
Therefore, our model selection process was based on the Akaike Information Criterion; due to our
small sample sizes we used the corrected version (AICc). Two models were considered to be equally
supported when ∆AICc < 2 [25].

Given the large number of fitted models and the small sample size of our database, we expected
some large R2-values to result purely by chance. To explore this possibility, we randomly sorted the
data of each variable, fitted the models, and calculated their associated R2. Iteration of this procedure
1000 times allowed us to estimate the distribution of the R2-values under a random scenario, and thus
calculate P-values associated with the observed R2 values.

We used a leave-two-out cross-validation to evaluate the ability of the different combination of
surface metrics to predict vegetation attributes in the models. In this procedure, we split the dataset
into a calibration subset (with 58 data points) and a validation subset (two data points), fitted the model
to the former, and predicted the vegetation attribute for the latter. Following Gallardo-Cruz et al. [17],
we used the leave-d-out cross-validation R2:

R2
CV = 1 − nc−1d−1 Σc Σd (yobs − ypred)2/Σn(yobs − yavg)2, (11)
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where n is the number of plots, c is the number of possible splits of the data set, yobs are the observed
vegetation-attribute data points, ypred are the values predicted by the model using the d surface data
points, and yavg is the average over the n vegetation-attribute data points. R2

CV ranges from −∞ to
1, with 1 being a perfect fit, and negative values representing over-fitted models that make worse
predictions than chance.

3. Results

Total species richness was the vegetation attribute best described and predicted by the image
surface data. It was the only attribute for which both GE and SPOT models had higher R2 values than
expected by chance (Table 1). The best models explained about half of the variation in community
species richness for both GE and SPOT images (R2 = 0.44 and 0.51, respectively; Table 2). In contrast,
canopy species richness and vegetation structure were described poorly, and R2 values were lower than
expected by chance. Exceptions to this were mean vegetation height, which was successfully described
by SPOT-based models, and density, which was adequately described by one GE-based model.

Table 1. P-values of the R2’s associated with the best model (selected through AICc) for each vegetation
variable, image, and model type (following equation numbers in text). Bold typeface, P < 0.05; italics,
P < 0.1. BA, basal area; COV, vegetation cover; DEN, density of individuals; HEm, mean vegetation
height; HEv, variance in vegetation height; Scan, canopy species richness (i.e., individuals with
DBH ≥2.5 cm); Stot, total species richness; Hcan, Shannon diversity of the canopy; Htot, Shannon
diversity of the whole community.

Model Type BA COV DEN HEm HEv Scan Stot Hcan Htot

Google Earth
3 0.580 0.343 0.039 0.587 0.628 0.939 0.519 0.508 0.135
7 0.888 0.743 0.088 0.865 0.958 0.664 0.002 0.611 0.407
7 0.481 0.431 0.170 0.250 0.285 0.715 0.018 0.799 0.093
5 0.557 0.725 0.065 1.000 0.711 0.811 0.002 0.391 0.109
9 0.807 0.809 0.067 0.752 0.793 0.156 0.004 0.717 0.232
8 0.695 0.729 0.186 0.624 0.659 0.916 0.007 0.604 0.197

10 0.778 0.837 0.136 0.955 0.703 0.532 0.004 0.352 0.154
6 0.374 0.306 0.195 0.304 0.388 0.813 0.019 0.694 0.196

SPOT
3 0.486 0.108 0.585 0.002 0.034 0.943 0.001 0.844 0.001
7 0.711 0.162 0.092 0.002 0.189 0.795 0.002 0.988 0.002
4 0.521 0.106 0.567 0.002 0.180 0.784 0.001 0.776 0.004
5 0.853 0.294 0.334 0.004 0.530 0.679 0.001 0.982 0.001
9 0.298 0.378 0.593 0.009 0.239 0.925 0.011 0.952 0.039
8 0.661 0.218 0.332 0.003 0.530 0.915 0.001 0.918 0.001

10 0.793 0.520 0.424 0.010 0.410 0.772 0.002 0.959 0.001
6 0.518 0.119 0.424 0.004 0.238 0.764 0.002 0.743 0.002

All the best models selected by AICc included either one or two surface metrics as predictors
(Table 2). Including a third predictor never resulted in better models. While the best models to predict
total species richness based on SPOT images included only red-band surface metrics, models based on
GE images used both red and VVI metrics.
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Table 2. Best models constructed for each vegetation attribute. Only those metrics for which at least
one model had a P-value < 0.05 associated to its random R2 distribution are shown. Of those, models
with a ∆AICc < 2 are shown. In Model type, y is the log-transformed vegetation variable and x1 and x2

are the surface metrics described in their respective columns. The + and − signs indicate positive and
negative β coefficients, respectively. See Supplementary Material 1 for the mathematical formulation of
surface metrics.

Vegetation Attribute Image x1 x2 Model Type ∆AICc R2 R2
CV

Total richness
SPOT

red.cc.mean red.st.entro y = β0 + β1x1 − β2x1
2 − β3x2 + β4x2

2 0 0.51 0.40
red.st.mean red.st.entro y = β0 + β1x1 − β2x1

2 − β3x2 + β4x2
2 0.289 0.50 0.40

red.st.entro red.cc.mean y = β0 − β1x1 + β2x1
2 + β3x2 1.585 0.47 0.39

GE
red.cc.asm vvi.cc.mean y = β0 + β1x1 − β2x2 − β3x1x2 0 0.44 0.34
red.cc.asm vvi.st.mean y = β0 + β1x1 − β2x2 − β3x1x2 0.365 0.44 0.33

Height mean SPOT

ndvi.st.entro red.cc.mean y = β0 − β1x1 + β2x1
2 − β3x2 − β4x2

2 0 0.42 0.31
red.st.dr ndvi.st.mean y = β0 + β1x1 + β2x2 0.493 0.37 0.31
red.st.dr ndvi.cc.mean y = β0 + β1x1 + β2x2 0.632 0.37 0.31

red.cc.mean red.cc.hom y = β0 − β1x1 − β2x1
2 − β3x2 + β4x2

2 0.661 0.41 0.25
red.cc.mean ndvi.st.entro y = β0 − β1x1 − β2x2 + β3x1x2 0.704 0.39 0.28
ndvi.st.entro ndvi.st.mean y = β0 − β1x1 + β2x1

2 + β3x2 − β4x2
2 0.914 0.41 0.32

ndvi.st.entro ndvi.cc.mean y = β0 − β1x1 + β2x1
2 + β3x2 − β4x2

2 1.142 0.41 0.32
ndvi.st.mean red.st.dr y = β0 + β1x1 − β2x1

2 + β3x2 1.147 0.39 0.31
red.cc.mean red.cc.diss y = β0 − β1x1 − β2x1

2 − β3x2 + β4x2
2 1.307 0.41 0.26

ndvi.cc.hom red.cc.mean y = β0 − β1x1 + β2x1
2 − β3x2 − β4x2

2 1.356 0.41 0.26
ndvi.cc.mean red.st.dr y = β0 + β1x1 − β2x1

2 + β3x2 1.398 0.38 0.31
ndvi.st.entro red.st.mean y = β0 − β1x1 + β2x1

2 + β3x2 + β4x2
2 1.483 0.41 0.29

red.cc.mean ndvi.cc.hom y = β0 + β1x1 + β2x2 − β3x1x2 1.517 0.38 0.26
red.st.mean red.cc.hom y = β0 + β1x1 − β2x1

2 − β3x2 + β4x2
2 1.522 0.40 0.24

ndvi.st.mean red.st.var y = β0 + β1x1 − β2x1
2 + β3x2 1.917 0.38 0.31

Shannon diversity SPOT
red.st.entro red.cc.mean y = −β0 + β1x1 − β2x1

2 − β3x2 0 0.42 0.34
red.st.entro red.cc.mean y =−β0 − β1x1 + β2x1

2 + β3x2 − β4x2
2 0.856 0.43 0.34

red.st.entro red.st.mean y = −β0 + β1x1 − β2x1
2 − β3x2 1.918 0.42 0.34

Density GE red.st.skew y = β0 + β1x1 0 0.18 0.07

Height variance SPOT
ndvi.st.mean y = β0 + β1x1 0 0.16 0.10
ndvi.cc.mean y = β0 + β1x1 0.183 0.15 0.09
red.cc.mean y = β0 − β1x1 1.918 0.13 0.07

The accuracy of model estimates of total species richness varied among geomorphological units
(Figure 2). The worst predictions were observed for the Oclayuca plots, where the best GE estimated
values were close to the average richness of plots in that unit, but failed to distinguish the variation
among them. Species richness in the Chichinautzin lava field tended to be underestimated, while it
was overestimated for the Lower Otates unit.
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4. Discussion

In our rapidly changing world, it is increasingly important to assess and monitor ecosystem
properties accurately across landscapes, particularly biodiversity. Satellite-based modelling is
a valuable tool to achieve this, but cost still limits the acquisition of high-resolution images [11].
Our results show that GE imagery can be used to describe and predict species richness in heterogeneous
environments. Although the best GE models only explained about one half of the variation of the
recorded species richness, this result is valuable given the high floristic heterogeneity of the studied
forests [26]. Moreover, the performance of GE-based models in describing richness was similar to
that of SPOT-based models, a widely used but costly counterpart. It is worth noting that an apparent
saturation in the capability of modelling low species richness (under 10 species) from texture metrics
is observed in our models (Figure 2). However, these low richness sites correspond to a single
geomorphological unit (OC, Oclayuca); therefore we cannot be certain whether the models have
limited predictive power in low richness sites, or if it is simply a local effect associated with a given
geomorphological unit.

To our surprise, all models failed to describe canopy richness adequately (Table 1), which may be
due to the considerably poorer and more homogeneous canopy richness in these oak forests across the
landscape, relative to the high richness of the accompanying (i.e., non-canopy) species. One possible
explanation is that, due to the relatively small size of our sampling plots (10 × 10 m) compared to the
crown of some of the largest trees, in some cases the heterogeneity of pixels within a plot could be
more closely associated with the variability within a single tree crown than with the variability among
crowns of different tree species.

The most common textural metrics in the best species richness models were cc.mean and cc.asm,
both of which are related to the local spectral heterogeneity of pixels in an image. Previously, cc.mean
was identified as one of the most capable surface metrics to detect changes in vegetation attributes [17].
The potential of GE images to predict species richness is supported by the fact that the best SPOT
models for species richness did not include NIR or NDVI metrics, which suggests that the NIR band is
less useful in image-based estimations of species richness, at least in this forest type.

Admittedly, other aspects regarding image acquisition can affect the calculation of GLCM metrics
such as pixel size, topography and illumination. Pixel size will determine the scale at which the GLCM
texture will summarise patterns of heterogeneity [27]. In this study, the effect of different pixel sizes on
the capabilities of GLCM to model forest attributes was not tested. Testing the effect of scale or pixel
resolution on the capabilities of texture metrics remains an important task for future texture studies.
The effect of topography and acquisition configuration may not affect our results greatly because most
of our plots are located in well-illuminated areas and beyond steep areas [28].

All vegetation structure attributes, except vegetation height, were poorly modelled. Interestingly,
for estimations of vegetation height, we obtained the sharpest difference in performance between GE
and SPOT: while models based on GE images performed poorly, models for SPOT images performed
well. The inability of the models based on GE imagery to predict vegetation height adequately is
disappointing given the importance of this attribute for biomass estimation [29]. Other important
structural attributes such as basal area and vegetation cover have been correctly estimated from surface
metrics in other satellite imagery [11,17]. The underlying mechanistic relationships between vegetation
attributes and remotely-sensed surface metrics are still blurry, which partially explains the inconsistent
results obtained through different methodological approaches and remote sensors [16,30]. However,
Gallardo-Cruz et al. [17] showed that for a vegetation attribute to be correctly modelled, it should be
highly heterogeneous. In this study, mean vegetation height and species richness differed significantly
among geomorphological units; however, while basal area was equally variable among these units,
its variation was not significant [31].
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5. Conclusions

In a time when global change and biodiversity loss are major threats to ecosystem structure and
function, estimating species richness from remote sensing information is of the utmost importance.
Among the enormous variety of available high-resolution images, freely available ones have not been
tested as widely as their commercial counterparts. In this study, we showed that the limited spectral
resolution and lack of metadata of free GE images, in comparison with a commercial one (SPOT) are of
minor consequence for its potential to predict plant species richness in heterogeneous landscapes from
surface metrics. In addition, GE images can be more user-friendly than commercial counterparts and,
in most cases, require no special skills to view or download. Harnessing the predictive potential of GE
imagery emerges as an important tool for detecting and managing biodiversity hotspots, especially in
tropical regions where researchers and managers have less access to expensive high-resolution imagery.

Supplementary Materials: The following are available online at www.mdpi.com/2072-4292/8/10/865/s1, S1,
Image metrics calculated for each red band or vegetation index of the SPOT and Google Earth images. S2, R code
describing the modelling procedure followed in this study. S3, Data set used in the study.
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