Citizen Bio-Optical Observations from Coast- and Ocean and Their Compatibility with Ocean Colour Satellite Measurements
Abstract
:1. Introduction
- (1)
- (2)
- The KdUINO, which is an underwater buoy-based light chain to measure the attenuation of light throughout the water column [28],
- (3)
- The TrandiCam (TRANsparency unDerwater Index based on Citizen cAMera pictures) to assess underwater visibility as a measure of water transparency through underwater photographs [29],
- (4)
- And the SmartFluo as a novel smartphone based fluorometer to measure algal biomass by proxy Chlorophyll a (Chl a) [30].
- Affordable tools with combined mobile-device applications (apps) for coastal and ocean optical monitoring that are appealing to different user and developer groups
- Compliance of the measured parameters to datasets from in situ and remote coastal and ocean observations
- Contextualisation and standardisation of data collected by low-cost tools and mobile devices, to show a best practice example for data treatment and infrastructure towards long-term storage and open accessibility of data.
2. Showcase and Results for Coast and Ocean Optical Monitoring in the Citclops Project
2.1. Technologies, Effort, and User Groups
2.1.1. Data Collection with Smartphone App: EyeOnWater-Colour
2.1.2. Data Collection with Tools: Secchi Disk, Revised Forel-Ule Scale, and TrandiCam
2.1.3. Data Collection with DIY Tools: KdUINO and SmartFluo
2.2. Quality Control and Compatability to Common Coast and Ocean Remote Sensing Parameters
2.3. Use of Standard Vocabulary
2.4. Data Infrastructure, Visualisation, and Access
- Collection of raw data with low-cost tools, including the automatic addition of metadata with apps by use of the standard vocabularies of SeaDataNet. Data are then sent to the project server: RGB image of water surface and metadata file with user selection of water colour.
- Quality control of the measurements and metadata: if possible with the user’s entry and other sources: Colour is calculated from the RGB image and can be compared to user selection. Other sources may include remote sensing data.
- Storage of data on central web server. EyeOnWater data are stored at the EyeOnWater server hosted by MARIS.
- Long-term storage and accessibility of the data: Data are stored in a harmonized format that allows upload to international data centres, such as SeaDataNet and EMODnet. EyeOnWater-Colour data are stored in GEOSS.
3. Discussion
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
BODC | British Oceanographic Data Centre |
Chl a | Chlorophyll a |
CDI | Common Data Index: Metadata index for data files used in SeaDataNet |
CDOM | Coloured Dissolved Organic MatterCitclops: citizens’ observatories for coast and ocean optical monitoring |
DOI | Digital Object Identifier |
EMODnet | European marine observation and data network |
ESA | European Space Agency |
GEOSS | Global Earth Observation System of Systems |
GPS | Global Positioning System |
IOP | Inherent Optical Property |
LED | light emitting diode |
MERIS | MEdium Resolution Imaging Spectrometer |
MIKADO | SeaDataNet software for generating metadata |
MODIS | Moderate Resolution Imaging Spectroradiometer |
MyOSD | My Ocean Sampling Day |
NASA | National Aeronautics and Space Administration |
NERC | Natural Environment Research Council |
NVS | NERC Vocabulary Server |
OLCI | Ocean and Land Colour Instrument |
PAR | Photosynthetically Available Radiation |
PHP | Server-side scripting language designed for web |
RGB | Red-Green-Blue |
SPM | Suspended Particulate Matter |
SeaWiFS | Sea-viewing Wide Field-of-view Sensor |
TrandiCam | TRANsparency unDerwater Index based on Citizen cAMera pictures |
WACODI | WAter COlor from Digital Images development |
WMS/WFS | Web Map Service/Web Feature Service |
XML | Extensible Markup Language |
References
- Zielinski, O.; Busch, J.A.; Cembella, A.D.; Daly, K.L.; Engelbrektsson, J.; Hannides, A.K.; Schmidt, H. Detecting marine hazardous substances and organisms: Sensors for pollutants, toxins, and pathogens. Ocean Sci. 2009, 5, 329–349. [Google Scholar] [CrossRef] [Green Version]
- Busch, J.A.; Cembella, A.D.; Zielinski, O. Bio-optical approaches for the operational assessment of harmful algal blooms. In Subsea Optics and Imaging; Watson, J., Zielinski, O., Eds.; Woodhead Publishing: Cambridge, UK, 2013; Volume 46, pp. 171–212. [Google Scholar]
- Assmy, P.; Smetacek, V. Algal blooms. In Encyclopedia of Microbiology; Schaechter, M., Ed.; Elsevier: Oxford, UK, 2009; pp. 27–41. [Google Scholar]
- Tulloch, A.I.T.; Possingham, H.P.; Joseph, L.N.; Szabo, J.; Martin, T.G. Realising the full potential of citizen science monitoring programs. Biol. Conserv. 2013, 165, 128–138. [Google Scholar] [CrossRef]
- Mueller, J.L.; Morel, A.; Frouin, R.; Davis, C.O.; Arnone, R.; Carder, K.L.; Lee, Z.; Stewart, R.G.; Hooker, S.B.; Mobley, C.D.; et al. Radiometric Measurements and Data Analysis Protocols; NASA/TM-2003-211621/Rev4; Mueller, J.L., Fargion, G.S., McClain, C.R., Eds.; NASA Goddard Space Flight Center: Greenbelt, MD, USA, 2003; Volume 3. [Google Scholar]
- Sentinel 3 OLCI Document Library. Available online: https://sentinel.esa.int/web/sentinel/user-guides/sentinel-3-olci/document-library/ (accessed on 29 July 2016).
- Wernand, M.R.; van der Woerd, H.J.; Gieskes, W.W.C. Trends in ocean colour and chlorophyll concentration from 1889 to 2000, worldwide. PLoS ONE 2013, 8, e63766. [Google Scholar] [CrossRef] [PubMed]
- Van der Woerd, H.J.; Wernand, M.R. True colour classification of natural waters with medium-spectral resolution satellites: SeaWiFS, MODIS, MERIS and OLCI. Sensors 2015, 15, 25663–25680. [Google Scholar] [CrossRef] [PubMed]
- Stock, A. Satellite mapping of Baltic Sea Secchi depth with multiple regression models. Int. J. Appl. Earth Observ. Geoinform. 2015, 40, 55–64. [Google Scholar] [CrossRef]
- Doron, M.; Babin, M.; Hembise, O.; Mangin, A.; Garnesson, P. Ocean transparency from space: Validation of algorithms estimating Secchi depth using MERIS, MODIS and SeaWiFS data. Remote Sens. Environ. 2011, 115, 2986–3001. [Google Scholar] [CrossRef]
- Lorenzen, C.J. A method for the continuous measurement of in vivo chlorophyll concentration. Deep Sea Res. 1966, 13, 223–227. [Google Scholar] [CrossRef]
- Secchi Disk—The Global Seafarer Study of the Phytoplankton. Available online: http://www.secchidisk.org (accessed on 28 July 2016).
- Canfield, D.E.; Brown, C.D.; Bachmann, R.W.; Hoyer, M.V. Volunteer lake monitoring: Testing the reliability of data collected by the Florida lakewatch program. Lake Reserv. Manag. 2002, 18, 1–9. [Google Scholar] [CrossRef]
- Lottig, N.R.; Wagner, T.; Norton Henry, E.; Spence Cheruvelil, K.; Webster, K.E.; Downing, J.A.; Stow, C.A. Long-term citizen-collected data reveal geographical patterns and temporal trends in lake water clarity. PLoS ONE 2014, 9, e95769. [Google Scholar] [CrossRef] [PubMed]
- Brewin, R.J.W.; de Mora, L.; Jackson, T.; Brewin, T.G.; Shutler, J. On the potential of surfers to monitor environmental indicators in the coastal zone. PLoS ONE 2015, 10, e0127706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schnetzer, J.; Kopf, A.; Bietz, M.J.; Buttigieg, P.L.; Fernandez-Guerra, A.; Ristov, A.P.; Glöckner, F.O.; Kottmann, R. Myosd 2014: Evaluating oceanographic measurements contributed by citizen scientists in support of ocean sampling day. J. Microbiol. Biol. Educ. 2016, 17, 163–171. [Google Scholar] [CrossRef] [PubMed]
- Myshake. Available online: http://myshake.berkeley.edu (accessed on 28 July 2016).
- Ispex-eu 2105. Available online: http://ispex-eu.org/de (accessed on 28 July 2016).
- Kuo, Y.-S.; Verma, S.; Schmid, T.; Dutta, P. Hijacking power and bandwidth from the mobile phone’s audio interface. In Proceedings of the First ACM Symposium on Computing for Development, London, UK, 17–18 December 2010.
- Baden, T.; Chagas, A.M.; Gage, G.; Marzullo, T.; Prieto-Godino, L.L.; Euler, T. Open labware: 3-D printing your own lab equipment. PLoS Biol. 2015, 13, e1002086. [Google Scholar] [CrossRef] [PubMed]
- Kelley, C.D.; Krolick, A.; Brunner, L.; Burklund, A.; Kahn, D.; Ball, W.P.; Weber-Shirk, M. An affordble open-source turbidimeter. Sensors 2014, 14, 7142–7155. [Google Scholar] [CrossRef] [PubMed]
- Leeuw, T.; Boss, E.S.; Wright, D.L. In situ measurements of phytoplankton fluorescence using low-cost electronics. Sensors 2013, 13, 7827–7883. [Google Scholar] [CrossRef] [PubMed]
- Schade, S.; Tsiinaraki, C. Survey Report: Data Management in Citizen Science Projects; Publication Office of the European Union: Luxembourg, 2016. [Google Scholar] [CrossRef]
- CiTCLOPS (Citizens’ Observatory for Coast and Ocean Optical Monitoring). Available online: www.citclops.eu (accessed on 29 July 2016).
- Eyeonwater.Org Colour. Available online: www.eyeonwater.org/color (accessed on 28 July 2016).
- Novoa, S.; Wernand, M.R.; van der Woerd, H.J. Wacodi: A generic algorithm to derive the intrinsic color of natural waters from digital images. Limnol. Oceanogr. Methods 2015, 13, 697–711. [Google Scholar] [CrossRef]
- Novoa, S.; Wernand, M.R.; van der Woerd, H.J. The forel-ule scale revisited spectrally: Preparation protocol, transmission measurements and chromaticity. J. Eur. Opt. Soc. Rapid Publ. 2013, 8, 13057. [Google Scholar] [CrossRef] [Green Version]
- Bardaji, R.; Sánchez, A.-M.; Simon, C.; Wernand, M.; Piera, J. Estimating the underwater diffuse attenuation coefficient with a low-cost instrument: The KdUINO DIY buoy. Sensors 2016, 16, 373. [Google Scholar] [CrossRef] [PubMed]
- Simon, C.; Bardaji, R.; Piera, J. Underwater Imaging and Citizen Science to Estimate Water Transparency; Blue Potonics 4; European Optical Society: Joensuu, Finland, 2015. [Google Scholar]
- Friedrichs, A.; Busch, J.A.; van der Woerd, H.J.; Zielinski, O. Measuring chlorophyll a fluorescence in water by means of smart phones. Limnol. Oceanogr. Methods 2016. submitted. [Google Scholar]
- Data Visualisation and Download—Cititzens’ Observatory for Coast and Ocean Optical Monitoring. Available online: http://www.citclops.eu/search/welcome.php (accessed on 28 July 2016).
- KdUINOV2 Map of KdUINO Data. Available online: https://bit.ly/kduino (accessed on 25 July 2016).
- European Space Agency (ESA). GSC Sentinel-3 PDGS Products Definition; GMES-S3GS-EOPG-TN-12-0004; ESA: Paris, France, 2015; p. 98. [Google Scholar]
- Lee, Z.-P.; Darecki, M.; Carder, K.L.; Davis, C.O.; Stramski, D.; Rhea, W.J. Diffuse attenuation coefficient of downwelling irradiance: An evaluation of remote sensing methods. J. Geophys. Res. 2005, 110, C02017. [Google Scholar] [CrossRef]
- Van der Woerd, H.J.; Pasterkamp, R. Hydropt: A fast and flexible method to retrieve chlorophyll-a from multispectral satellite observations of optically complex coastal waters. Remote Sens. Environ. 2008, 112, 1795–1807. [Google Scholar] [CrossRef]
- Kurekin, A.A.; Miller, P.I.; van der Woerd, H.J. Satellite discrimination of Karenia mikimotoi and Phaeocystis harmful algal blooms in European coastal waters: Merged classification of ocean colour data. Harmful Algae 2014, 31, 163–176. [Google Scholar] [CrossRef]
- Busch, J.A.; Price, I.; Jeansou, E.; Zielinski, O.; van der Woerd, H.J. Citizens and satellites: Assessment of phytoplankton dynamics in a nw Mediterranean aquaculture zone. Int. J. Appl. Earth Observ. Geoinform. 2016, 47, 40–49. [Google Scholar] [CrossRef]
- Wernand, M.R. On the history of the Secchi disc. J. Eur. Opt. Soc. Rapid Publ. 2010, 5. [Google Scholar] [CrossRef]
- Verschuur, G.L. Transparency measurements in Garner Lake, Tennessee: The relationship between Secchi depth and solar altitude and a suggestion for normalization of Secchi depth data. J. Lake Reserv. Manag. 1997, 13, 142–153. [Google Scholar] [CrossRef]
- Mobley, C.D. Light and Water: Radiative Transfer in Natural Waters; Academic Press: San Diego, CA, USA, 1994. [Google Scholar]
- Zaneveld, R.J.V.; Pegau, W.S. Robust underwater visibility parameter. Opt. Express 2003, 11, 2997–3009. [Google Scholar] [CrossRef] [PubMed]
- Behrenfeld, M.J.; Westberry, T.K.; Boss, E.S.; O’Malley, R.T.; Siegel, D.A.; Wiggert, J.D.; Franz, B.A.; McClain, C.R.; Feldman, G.C.; Doney, S.C.; et al. Satellite-detected fluorescence reveals global physiology of ocean phytoplankton. Biogeosciences 2009, 6, 779–794. [Google Scholar] [CrossRef]
- Peperzak, L.; van der Woerd, H.J.; Timmermans, K.R. Disparities between in situ and optically derived carbon biomass and growth rates of the prymnesiophyte phaeocystis globosa. Biogeosciences 2015, 12, 1659–1670. [Google Scholar] [CrossRef]
- Seadatanet p02—Seadatanet Parameter Discovery Vocabulary. Available online: http://seadatanet.maris2.nl/v_bodc_vocab_v2/search.asp?lib=P02 (accessed on 8 July 2016).
- Seadatanet p01—Bodc Parameter Usage Vocabulary. Available online: http://seadatanet.maris2.nl/v_bodc_vocab_v2/search.asp?lib=P01 (accessed on 8 July 2016).
- Seadatanet p05—International Standards Organisation ISO19115 Topic Categories. Available online: http://seadatanet.maris2.nl/v_bodc_vocab_v2/search.asp?lib=P05 (accessed on 8 July 2016).
- SeaDataNet. Seadatanet Data Quality Control Procedures. 2010. Available online: http://www.seadatanet.org/content/download/18414/119624/file/SeaDataNet_QC_procedures_V2_%28May_2010%29.pdf (accessed on 8 July 2016).
- Geoss Resource Details—Citclops Eyeonwater Colour Observations. Available online: http://geossregistries.info/geosspub/resource_details_ns.jsp?compId=urn:geoss:csr:resource:urn:uuid:5dc54869-d8a1-0ee8-d7e6-993a305a310c (accessed on 29 July 2016).
- Schnetzer, J. On the Feasibility to Engage Heterogeneous Communities in Data Gathering, Sharing and Enrichment. Ph.D. Thesis, Jacobs University, Bremen, Germany, 2015. [Google Scholar]
- Arduino. Available online: https://www.arduino.cc (accessed on 8 July 2016).
- Thingiverse. Available online: http://www.thingiverse.com (accessed on 8 July 2016).
- Instructables—Share What You Make. Available online: http://www.instructables.com (accessed on 8 July 2016).
- Open-Labware.Net 3-D Print Your Own Lab Equipment. Available online: https://open-labware.net (accessed on 8 July 2016).
- Plos Collections—Open Source Toolkit: Hardware. Available online: http://collections.plos.org/open-source-toolkit-hardware (accessed on 8 July 2016).
- International Ocean-Colour Coordinating Group. Remote Sensing of Ocean Colour in Coastal, and Other Optically-Complex, Waters; IOCCG: Dartmouth, NS, Canada, 2000. [Google Scholar]
- The Secchi Dip-in—Volunteers Contributing to Our Understanding of Water Quality. Available online: http://www.secchidipin.org/ (accessed on 26 September 2016).
- Craglia, M.; Granell, C. Citizen Science and Smart Cities; European Commission: Luxembourg, 2014; p. 54. [Google Scholar]
- Kopf, A.; Bicak, M.; Kottmann, R.; Schnetzer, J.; Kostadinov, I.; Lehmann, K.; Fernandez-Guerra, A.; Jeanthon, C.; Rahav, E.; Ullrich, M.; et al. The ocean sampling day consortium. GigaScience 2015, 4, 27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Effort and Requirements | Procedure | User Group (Based on Technique) | Number of Measurements |
---|---|---|---|
Low: EyeOnWater-Colour app | Take a photo with the app, compare and select a colour, send data. | General public (with smartphone) | 1600 |
Medium: Secchi disk (30 cm, white) and smartphone | Get or build Secchi-disk Submerge Secchi-disk and enter value in EyeOnWater-Colour app | Engaged general public | 98 |
Medium: Forel-Ule scale, Secchi disk and smartphone | Get Forel-Ule scale and Secchi disk Compare water colour of Forel-Ule scale to half-submerged Secchi disk. Enter value in EyeOnWater-Colour app | Engaged general public | 42 |
Medium: TrandiCam: two white plastic plates with black pattern and underwater camera | Prepare white disks with black pattern Hold disks in water and take an underwater photo. Note location and depth. Upload photo. | Engaged divers, snorkelers, swimmers | 350 |
High: KdUINO: Several building elements, Knowledge on Arduino, technical skills | Order elements Build the KdUINO Install in water Return to receive data with a smartphone app. | DIY community Arduino community | 117 (locations with multiple measurements) |
High: SmartFluo: Smartphone app, several building elements, knowledge and access to 3-D printer | Order elements 3-D print housing Build SmartFluo Fill water in a cuvette and measure fluorescence with a smartphone app. Automated calculation is in development. | Maker movement (3-D printing community) | scientist testing only |
Citizen Science Tool and Product | P01 (British Oceanographic Data Centre (BODC) Parameter Usage Vocabulary) P02 (SeaDataNet Parameter Discovery Vocabulary) | Remote Sensing Reflectance (Spectral Information) Converted to Standard Oceanographic Parameter |
---|---|---|
EyeOnWater- colour app: User selected Forel-Ule true colour on RGB-image, converted to hue angle and Forel-Ule classification (by WAter COlor from Digital Images (WACODI) algorithm [26]) | P02: R410: Ocean colour and earth-leaving visible waveband spectral radiation P01: CLFORULE Colour of the water body by visual estimation and conversion to a number on the Forel-Ule scale | Wavelengths → hue angle → Forel-Ule colour [8,37] |
Secchi disk & Forel-Ule plastic scale: White Secchi disk is submerged in water and depth is noted when no longer visible. At half Secchi depth, water colour on white disk is compared to colour comparator scale (Forel-Ule) | Water transparency P02: SECC: Secchi disk depth P01: SECCSDNX: Visibility in the water body by Secchi disk P01: CLFORULE | Wavelengths → Empirical and semi-analytical algorithms → Secchi depth (compare [9,10]) |
KdUINO Light availability at different depths on three channels (RGB), converted to light attenuation throughout the water column | Water transparency (approximate diffuse attenuation coefficient (Kd)) P01: ATTNTZ01: Attenuation (unspecified wavelength) per unit length of the water body by 30 cm path length transparency meter | Wavelength ratio → Kd Wavelength ratio → Chl → Kd Wavelength ratio → absorption & scattering → Kd [34] Secchi depth (vertical transparency) (compare [10]) |
TrandiCam RGB image of two white plates with black pattern, converted to distance of plates and horizontal transparency of water on three channels (RGB) | Water transparency P01: SECCSDNX | Secchi depth (vertical transparency) (compare [10]) |
SmartFluo RGB image of red Chl a fluorescence, converted to Chl a concentration (µg·L−1) by RGB2Fluo algorithm. | P02: CMFL: Variable fluorescence parameters | Wavelengths → Chl a fluorescence by various algorithms (compare [2]). |
Metadata | Example for EyeOnWater-Colour App |
---|---|
Dataset_name | 3954 |
Date_time (ISO8601: YYYY-MM-DDThh:mm:ss) | 2016-06-21T14:55:25 |
Datum_coordinate_system | WGS84 |
Measuring_area_type | Point |
Location_lat_lon (Latitude/Longitude—decimal degrees, Mercator projection | 53.3117212, 5.1701031 |
Parameters measured (P01, P02) | CLFORULE |
Abstract (short description of measurement) | FU measurement via smartphone using Eyeonwater app |
Platform_type (L061) | 71:Human |
Device type (L05) | 311: Cameras |
Station name (device model) | ALE-L2 |
Data Format (L241) | PNG |
Contextual data for each measurement | viewing angle of measurement |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Busch, J.A.; Bardaji, R.; Ceccaroni, L.; Friedrichs, A.; Piera, J.; Simon, C.; Thijsse, P.; Wernand, M.; Van der Woerd, H.J.; Zielinski, O. Citizen Bio-Optical Observations from Coast- and Ocean and Their Compatibility with Ocean Colour Satellite Measurements. Remote Sens. 2016, 8, 879. https://doi.org/10.3390/rs8110879
Busch JA, Bardaji R, Ceccaroni L, Friedrichs A, Piera J, Simon C, Thijsse P, Wernand M, Van der Woerd HJ, Zielinski O. Citizen Bio-Optical Observations from Coast- and Ocean and Their Compatibility with Ocean Colour Satellite Measurements. Remote Sensing. 2016; 8(11):879. https://doi.org/10.3390/rs8110879
Chicago/Turabian StyleBusch, Julia A., Raul Bardaji, Luigi Ceccaroni, Anna Friedrichs, Jaume Piera, Carine Simon, Peter Thijsse, Marcel Wernand, Hendrik J. Van der Woerd, and Oliver Zielinski. 2016. "Citizen Bio-Optical Observations from Coast- and Ocean and Their Compatibility with Ocean Colour Satellite Measurements" Remote Sensing 8, no. 11: 879. https://doi.org/10.3390/rs8110879
APA StyleBusch, J. A., Bardaji, R., Ceccaroni, L., Friedrichs, A., Piera, J., Simon, C., Thijsse, P., Wernand, M., Van der Woerd, H. J., & Zielinski, O. (2016). Citizen Bio-Optical Observations from Coast- and Ocean and Their Compatibility with Ocean Colour Satellite Measurements. Remote Sensing, 8(11), 879. https://doi.org/10.3390/rs8110879