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Abstract: The proliferation of impervious surfaces results in a series of environmental issues, such as
the decrease of vegetated areas and the aggravation of the urban heat island effects. The mapping of
impervious surface and its spatial distributions is of significance for the ecological study of urban
environment. Currently, the integration of optical and synthetic aperture radar (SAR) data has
shown advantages in accurately characterizing impervious surface. However, the fusion mainly
occurs at the pixel and feature levels which are subject to influences of data noises and feature
selections, respectively. In this paper, an innovative and effective method was developed to extract
urban impervious surface by synergistically utilizing optical and SAR images at the decision level.
The objective of this paper was to obtain an accurate urban impervious surface map based on the
random forest classifier and the evidence theory and to provide a detailed uncertainty analysis
accompanying the fused impervious surface maps. In this study, both the GaoFen (GF-1) and
Sentinel-1A imagery were first used as independent data sources for mapping urban impervious
surfaces. Then additional spectral features and texture features were extracted and integrated with
the original GF-1 and Sentinel-1A images in generating impervious surfaces. Finally, based on
the Dempster-Shafer (D-S) theory, impervious surfaces were produced by fusing the previously
estimated impervious surfaces from different datasets at the decision level. Results showed that
impervious surfaces estimated from the combined use of original images and features yielded a
higher accuracy than those from the original optical or SAR data. Further validations suggested
that optical data was better than SAR data in separating impervious surfaces from non-impervious
surfaces. The fused impervious surfaces at the decision level had a higher overall accuracy than
those produced independently by optical or SAR data. It was also highlighted that the fusion of GF-1
and Sentinel-1A images reduced the amount of confusions among the low reflectance of impervious
surface and water, as well as for low reflectance of bare land. An overall accuracy of 95.33% was
achieved for extracting urban impervious surfaces by fused datasets. The spatial distributions of
uncertainties provided by the evidence theory displayed a confidence level of at least 75% for the
impervious surfaces derived from the fused datasets.

Keywords: decision-level fusion; impervious surface; random forest and Dempster-Shafer theory;
GF-1 and Sentinel-1A data
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1. Introduction

The rapid growth of urban agglomerations is accompanied by a continuous increase of impervious
surface which is of significance to study a range of environmental issues at local, regional, and global
scales. Impervious surfaces, such as building rooftops, concrete, and pavement, refer to anthropogenic
features through which water cannot penetrate into soils [1,2]. It has been used as an indicator of
the degree of urbanization as well as for ecological environment assessment [2,3]. The increase of
impervious surface will reduce green areas, pollute water bodies, and aggravate urban heat island
effects [4–6]. The potential of impervious surface coverage information has been gradually recognized
by the scientific community to assess negative effects of land consumption on the quality of urban
environment [3]. Studies of impervious surface began in the field of urban hydrology in 1970s
when the characterization of impervious surface relied on field surveys and local statistics [7]. Since
then, remote sensing images have been gradually used to estimate the impervious surfaces due to
the low cost and the synoptic coverage of the study area [2,8]. At present, satellite remote sensing
data at medium/coarse spatial resolution, such as Landsat TM/ETM(Thematic Mapper/Enhanced
Thematic Mapper), MODIS (Moderate-Resolution imaging Spectroradiometer), Hyperion, AVHRR
(Advanced Very High Resolution Radiometer), and DMSP/OLS(Defense Meteorological Satellite
Program-Operational Linescan System), have been mainly used to quantify impervious surfaces [9–11].
In the past decade, a lot of attempts were devoted to characterizing impervious surfaces at the
sub-pixel scale given the mixed pixels captured by the satellite images. With the concept of the V-I-S
(vegetation-impervious surface-soil) model proposed by Ridd [12], the spectral mixture analysis (SMA)
technique has been widely used for mapping the impervious surface fractions [13–18]. Meanwhile,
other methods were devised for characterizing impervious surfaces, such as the index analysis [19–21],
the regression model [22–25], and the knowledge-based expert system [14,26,27]. The advent of high
spatial resolution remotely sensed images since the 1990s, e.g., IKONOS (launched 1999) and Quick
Bird (2001), also enables the incorporation of structure and texture features for quantifying impervious
surfaces [28,29]. Currently, extracting urban impervious surface from high spatial resolution satellite
images mainly depends on the artificial neural networks (ANN) [30] and object-based techniques [31].

Despite numerous mapping techniques, most of them were designed specifically for optical
images. The diversified urban land covers, i.e., different land covers with similar spectral signatures,
render the optical images insufficient to accurately estimate impervious surfaces. For instance, it has
been reported that water and shades tend to be confused with dark impervious surfaces [26,32].
Therefore, data fusion or integration of multi-source remote sensing data was introduced to take
advantage of the strengths of distinct images for improving mapping accuracy [2]. Previous studies
indicated that integration of optical and synthetic aperture radar (SAR ) data could significantly
improve the image classification accuracy and reduce the confusion between urban impervious surface
and other land cover types [33–38]. SAR data, sensitive to the geometric characteristics of urban land
surfaces, can provide complementary structure and texture information and has been identified as one
important data source with optical images in characterizing impervious surfaces.

Currently, fusion between optical and SAR data for mapping impervious surfaces is mainly
performed at the pixel and feature levels. However, the pixel-level fusion is not suitable for SAR
images because of speckle noise [39]. Furthermore, the feature-level fusion is subject to influences of
feature selections which may introduce uncertainties into the characterization of impervious surfaces.
The decision-level fusion in this study refers to integration of classification results that come from
different data sources (optical or SAR data) for making a final land cover type decision on a pixel.
Based on the Dempster-Shafer (D-S) evidence theory [40,41], the decision-level fusion has proven to
be a potentially suitable method for land cover classification yet rarely been investigated. The fusion
of classification results from different data sources has shown superiority for image classification
over traditional Bayesian approaches [42–46]. The D-S evidence theory treats impervious surfaces
estimated from different data sources as independent evidence and introduces uncertainty levels for
the fused impervious surface datasets. Thus, the objective of this paper was to obtain an accurate urban



Remote Sens. 2016, 8, 945 3 of 21

impervious surface map by integrating the GF-1 and Sentinel-1A data at the decision-level based on
the D-S theory and to provide detailed analyses of the uncertainty levels for the estimated impervious
surfaces. Land cover types were first classified individually from the GF-1 (GaoFen-1 satellite) and
Sentinel-1A imagery using the random forest (RF) technique and then fused together based on the
D-S combination rules. Then the land cover types were further categorized as non-impervious surface
(NIS) and impervious surface (IS). The accuracy assessment was performed by comparing estimated
impervious surfaces against the reference data collected from the Google Earth imagery.

2. Data and the Study Area

2.1. The Study Area

The study area covers the metropolitan region of Wuhan in the eastern Jianghan Plain (Figure 1).
It has a tropical monsoon (humid) climate with abundant rainfall and four distinctive seasons.
The annual mean temperature is 15.8 ◦C∼17.5 ◦C and the annual mean precipitation is approximately
1150 mm∼1450 mm. In the summer, the maximum air temperature in Wuhan can reach as high as
42 ◦C due to the terrain conditions (low and flat in the middle and hilly in the south) with the Yangtze
and Han Rivers winding through the city. The main land cover types in the study area are vegetation,
water bodies, bare lands, roads, residential areas and crops.
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2.2. Data Sources and Preprocessing

Both the GF-1 multispectral and the Sentinel-1A data were used in the study. Two GF-1 images
with the spatial resolution of 16 m, acquired on 14 April 2015, were downloaded from the geospatial
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data cloud [47]. The images were mosaicked and subset to the study area. The images were
atmospherically calibrated to the surface reflectance using the FLAASH atmospheric correction module
and geometrically corrected (the RPC Orthorectification workflow) using the 30 m DEM within the
ENVI 5.2 software (Exelis Visual Information Solutions, Boulder, CO, USA).

The corresponding Sentinel-1A images acquired on 17 February 2015 were downloaded from
the Sentinels Scientific Data Hub [48]. Both images were HH (horizontal transmit and horizontal
receive) and HV (horizontal transmit and vertical receive) polarized in the IW (interferometric wide
swath) mode and were generated in the high-resolution Level-1 ground range detected (GRD) format.
The high-resolution GRD product has the ground range and azimuth resolution of 5 m and 20 m,
respectively. Some standard SAR preprocessing procedures, including slice assembly, radiometric
calibration, multi-look, and terrain correction, were applied to the Sentinel-1A data using the
SNAP software (Sentinel Application Platform, funded by ESA’s (European Space Agency) Scientific
Exploitation of Operational Missions (SEOM), developed by Brockmann Consult, Array Systems
Computing and C-S). The resulting mean ground pixel size was 10.00 m.

Both optical and SAR images were co-registered to the same reference system of universal
transverse Mercator (UTM) projection (Zone 48N) with the datum of world geodetic system 84
(WGS84). A total of 21 control points were manually selected and the linear transformation was
used to co-register the GF-1 and Sentinel-1A data. The co-registered optical and SAR data have the
spatial resolution of 16 m. The root mean square error (RMSE) for the co-registration is less than half a
pixel (8 m).

3. Methodology

This study fused optical and SAR data at the decision level to estimate urban impervious surface
based on the random forest (RF) classifier and the evidence theory, and then analyzed the uncertainty
levels for the impervious surfaces. Four steps were performed in this section in order to integrate
optical and SAR data at the decision level. In the first step, both optical and SAR images were
preprocessed to the same spatial resolution within the same projection system. In the second step,
spectral and texture features were extracted from the GF-1 and Sentinel-1A images, respectively.
Then impervious surfaces were estimated from four different data sources with the aid of the RF
classifier. Finally, the impervious surfaces characterized by different datasets were fused based on the
D-S theory. Figure 2 presents the overall workflow of the data-fusion procedures:

Step 1: Image processing: This step is outlined in Section 2.2.
Step 2: Feature extraction (Section 3.1): The spectral features from GF-1 image, NDVI (normalized

difference vegetation index, NDVI), NDWI (normalized difference water index, NDWI) were extracted
and the texture features from Sentinel-1A data were obtained.

Step 3: The RF classification (Section 3.2): Four data sources, i.e., the GF-1 image, Sentinel-1A
image, GF-1 image and its spectral features (Section 3.1), and Sentinel-1A image and its texture features
(Section 3.1) were used independently to quantify urban impervious surfaces which were regarded as
evidence sources.

Step 4: The construction of the BPA (basic probability assignment) function and the decision
fusion: The BPA function was constructed by calculating the probability of each pixel that belongs
to each category and probability of correct classification based on the RF classification. Then the RF
classified impervious surfaces from the GF-1 and Sentinel-1A imagery were combined by the decision
rules and then the overall confidence level was provided by using the MATLAB 2014b (MATLAB and
Statistics Toolbox Release 2014b, The MathWorks, Inc., Natick, MA, USA).
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3.1. Feature Extraction

The texture feature is a set of metrics designed to quantify the perceived spatial arrangement of
color or intensities. It plays a very important role in interpreting SAR data for land cover classifications.
In this paper, the gray-level co-occurrence texture (GLCM) method was employed to extract texture
features from the Sentinel-1A data. Haralick et al. [49] defined 14 texture statistics derived from
the GLCM, i.e., the mean, correlation (Cor), variance (Var), homogeneity (Hom), contrast (Con),
dissimilarity (Diss), entropy (Ent), and angular second moment (ASM) (Table 1). Here the study
computed the texture variables using a window size of 9× 9 and employed all these variables for the
land cover classification.

The spectral features, including NDVI and NDWI, were derived from the GF-1 image. The former
index is an indicator for vegetation growth status and vegetation cover, and the latter one usually for
the extraction of water areas. The two indices were expressed as below:

NDVI = (NIR− R) / (NIR + R) (1)

NDWI = (G−NIR) / (G + NIR) (2)

where R, G, and NIR refers to the surface reflectance in the red, green, and near-infrared
bands, respectively.
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Table 1. The gray-level co-occurrence texture (GLCM) texture features.

Texture Equations Description

Mean

µi =
N−1
∑

i,j=0
(Pij)i

µj =
N−1
∑

i,j=0
(Pij)j

Mean is the average value in the local
window [50].

Correlation
N−1
∑

i,j=0

 (i−µi)(j−µj)√
(σ2

i )
(

σ2
j

)
 Correlation measures the gray level linear

dependencies in the image. σ2
i , σ2

j are the
variance values in the local window [50,51].

Variance

σ2
i =

N−1
∑

i,j=0
(Pij) (i− µi)

2

σ2
j =

N−1
∑

i,j=0
(Pij)

(
i− µj

)2
It is the variance in the local

window [51,52].

Homogeneity
N−1
∑

i,j=0

Pij

1+(i−j)2
Homogeneity is the smoothness of the

image texture [50,51].

Contrast
N−1
∑

i,j=0
Pij (i− j)2 Contrast measures the variations in the

GLCM [50,51].

Dissimilarity
N−1
∑

i,j=0
Pij |i− j| Dissimilarity is similar to the contrast

measurement [50,51].

Entropy
N−1
∑

i,j=0
Pij

(
−lnPij

) Entropy is a measure of the degree of
disorderliness in an image [50,52].

Angular Second
Moment

N−1
∑

i,j=0
Pij

2 ASM is a measure of textural
uniformity [50,52].

Note: i refers to the column number and j to the row number. Pij is the value in the cell i, j in the matrix. N is
the number of rows or columns and equals to the number of gray levels. The pixels in the local window are
indexed from zero.

3.2. Random Forest

Random forest was originally proposed based on the decision tree classification model by
Bireman [53–55]. It is well suited for classification of multi-source remote sensing data by fitting
a predefined number of classification trees. First, N samples are randomly selected from the original
training dataset by replacement. Then classification is performed by establishing k decision trees
(specified by the user) on the selected N samples. Since each decision tree provides a classification
(or vote for a class), the final output of the classifier is determined by the majority vote of the decision
trees [53–55]. Figure 3 presents the flowchart of the RF algorithm. It has been widely used in remotely
sensed image classification due to the following aspects:

A. The RF does not over-fit to the training set.
B. Compared to other classification algorithms, the RF can deal with the noise in the dataset.
C. The RF can handle data of high dimensions and does not require the feature selection. It can

process the discrete data as well as the continuous data and non-standardized datasets.

In this study, two-thirds of the training samples were used to train the RF classifier and the
remaining samples to evaluate the classification accuracy, known as the out-of-bag (OOB) error.
The number of decision trees (Ntree) were set at the default value of 500 and the feature importance
score were automatically calculated and was used to evaluate the contribution of each feature to the
classification results (Figure 4). Then the land cover types were extracted individually using the RF
algorithm from four data sources, including the GF-1 image, Sentinel-1A, GF-1 image and its spectral
features, and Sentinel-1A image and its texture features.
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3.3. The Dempster–Shafer (D-S) Theory

The fusion of urban impervious surfaces from different datasets was performed at the decision
level based on the D-S theory [40,41]. The Dempster-Shafer (D-S) evidence theory is introduced by
Dempster and then perfected by Shafer, which is a mathematical framework in which non-additive
probability models enable us to model imprecision in beliefs. The evidence theory treats impervious
surfaces estimated from different data sources as independent evidence and introduces uncertainty
estimations in characterizing impervious surfaces.

3.3.1. The Construction of the Basic Probability Assignment (BPA) and Uncertainty Interval

In this section, the procedures for the construction of the BPA function (also known as the mass
function) and the calculation of the uncertainty level are described. The construction of the BPA
function is a prerequisite for the fusion of impervious surfaces from different datasets at the decision
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level. Let Θ be the fixed set of mutually exclusive elements (also called as the frame of discernment or
the hypothesis space). In this study, Θ corresponds to the land cover types including high and low
albedo impervious surfaces (IS_H/IS_L), water (W), vegetation (VE), high and low reflectance of bare
land (BL_H/BL_L). Θ = {IS_H, IS_L, W, VE, BL_H, and BL_L} (Figure 5).
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The BPA function has to fulfill Conditions (3) and the Conditions (4)

m(∅) = 0 (3)

andm : 2Θ → [0, 1]

∑A⊆2Θ m(A) = 1 (4)

where ∅ is the empty set meaning a null proposition, A is described as a focal element of all the land
cover types when m(A) > 0, and m(A) represents the degree of support for the land cover type A.
In Condition (4), the value for the degree of support ranges from 0 to 1 and must sum to 1 over all
possible land cover types from the hypothesis space Θ = {IS_H, IS_L, W, VE, BL_H, and BL_L}.

For optical or SAR data, the evidential probability for each class can be calculated by the
RF classification and assigned to each pixel. Then the BPA function is constructed using the
two parameters.

mi(A) = pv ∗ pi (5)

where pv is the vote probability of each land cover type for each pixel, and pi is the probability of
correct classification.

The belief function Bel (Equation (6)) and the plausibility function Pl (Equation (7)) were defined
to express the lower and upper probability (the uncertainty level interval) for a specified land cover
type (Figure 6).

Bel : 2Θ → [0, 1]

Bel(A) = ∑Ai≤A M(Ai) (6)

Pl : 2Θ → [0, 1]

Pl(A) = 1− Bel(−Ai) (7)

They have the following properties:

Bel(A) ≤ Pl(A)

Pl(A) = 1− Bel(A) (8)

where A is complementary to A: A∪ A = Θ and A∩ A = ∅.
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3.3.2. Dempster’s Combinational Rule

After calculating the BPA function (mass function) for each class, the two datasets (impervious
surfaces identified individually from optical and SAR data) were converted to evidence and then
were fused according to Dempster’s combinational rules. If ∀A⊆Θ, m1 and m2 are the mass functions
in Θ, then Dempster’s combination is calculated from the two sets of masses m1 and m2 in the
following manner:

m(∅) = 0, A = ∅ (9)

m(A) = m1 ⊕m2 = K−1 ∑A1
⋂

A2=A m1(A1)m2(A2), A 6= ∅ (10)

K = 1−∑A1
⋂

A2=Φ m1(A1)m2(A2) = ∑A1
⋂

A2 6=Φ m1(A1)m2(A2) (11)

where K ∈ [0, 1] is a measure of the amount of conflict between the two mass sets, a large value
of K means large conflicts among different data sources and results in poor classification results by
combining those data sources. The maximum value of the Bel function is used to determine the class
(Ci) that a pixel belongs to. The criterion is described as the following expression:

Ci = max (Bel(Ai)) (12)

Table 2 shows the mass function values of the six land cover types for a pixel that was classified
as low reflectance of bare land (BL_L) by using the SAR data. In Table 2, the value represented the
probability that a pixel was classified as a land cover type. For example, the probability that the pixel
was classified as W by using optical data was 0.91 with an uncertainty level of 0.09 (as indicated by the
M (Θ)), and the probability that the pixel was classified as W by using SAR data was only 0.29 with an
uncertainty level of 0.22. After the fusion procedures, the probability that this pixel would be classified
as W was 0.89 but with an uncertainty level of 0.04.

Table 2. The mass function values of the six classes and the combination results.

Source
Classes IS_H IS_L W VE BL_H BL_L M(Θ)

Optical (m1(Ai)) 0 0 0.91 0 0 0 0.09
SAR (m2(Ai)) 0.02 0 0.29 0.02 0.03 0.42 0.22

m1(A1) ⊕ m2(A2) 0 0 0.89 0 0 0.07 0.04

Combination Results A ∈W

Note: IS_H/IS_L—high and low albedo impervious surfaces, W—Water, VE—vegetation, BL_H/BL_L—high
and low reflectance of bare land. Values for the six land cover types represents the probability that a pixel was
classified to a land cover type. M (Θ) represents the uncertainty value for the land cover type identified by the
specific data source. Values in this table were derived from a pixel that is located from the very bottom-right
corner of the image.
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3.4. Accuracy Assessment

Training and validation samples were selected by visual interpretation of the high spatial
resolution Google Earth images (acquired 21 January 2015). The training samples were selected
randomly among the six land covers and distributed evenly over the study area. A total of 816 pixels
were finally selected as training samples, i.e., 159 points from IS_H, 180 pixels from IS_L, 113 pixels
from W, 110 pixels from VE, 132 points from BL_H, and 122 pixels from BL_L. Moreover, 407 pixels
were selected as validation samples, i.e., 80 pixels from IS_H, 86 pixels from IS_L, 55 pixels from W,
56 pixels from VE, 67 pixels from BL_H, and 63 pixels from BL_L. In addition to the OOB error built
into the RF algorithm, the classification accuracy was also assessed by using the producer’s accuracy
(PA), the user’s accuracy (UA), the overall accuracy (OA) and the Kappa coefficient based on the
confusion matrix.

The confusion matrix is calculated by comparing land covers derived from the image against
ground truth land cover data. Each column of the confusion matrix represents a ground truth class,
and the values in the column correspond to the image’s labeling of the ground truth pixels.

The Kappa coefficient, a statistical measure of inter-rater reliability, is calculated as follows:

K =
N·∑r

i xii −∑ (xi+·x+i)

N2 −∑ (xi+·x+i)
(13)

where r is the number of rows in the matrix, xii is the number of observations in row i and column i,
xi+ and x+i are the marginal totals of the row i and column i, respectively, and N is the total number
of observations.

Producer’s accuracy (PA) is the probability that a pixel is correctly classified to a land cover type,
representing the errors of omission.

User’s accuracy (UA) is the proportion of pixels that are correctly classified within the image,
representing the errors of commission. The overall accuracy is calculated as the ratio between the
number of correctly classified pixels and the total number of pixels used for accuracy assessment.

4. Results

4.1. Land Cover Classification from the GF-1/Sentinel-1A Image/DS-Fusion

4.1.1. Land Cover Classification from the GF-1/Sentinel-1A Image

Table 3a shows the accuracy assessment for land cover types identified from the GF-1 image.
The producer’s accuracies were 83.75%, 89.09%, and 100% (Figure 7a) and the user’s accuracies of
IS_H, W, and VE were all 100% (Figure 8a), respectively. The classification of BL_H also yielded high
producer’s and user’s accuracies. However, confusions were mainly observed between IS_L and BL_L
and W (Table 3a), indicating the difficulty of optical data in separating land covers of similar spectral
signatures. The overall accuracy of 86.49% with a Kappa coefficient of 0.84 suggested that urban
impervious surfaces extracted from the GF-1 image were acceptable.

Table 3b shows the accuracy assessment for land covers identified from the Sentinel-1A image.
Both the producer’s and user’s accuracies were significantly reduced by using SAR instead of optical
data (Figures 7a,b and 8a,b). The omission and commission errors increased dramatically for land
cover types of IS_H and IS_L identified from the Sentinel-1A image than from the GF-1 image.
The user’s accuracies of the IS_H and IS_L were only 34.85% and 47.19%, respectively, while the
producer’s accuracies were only 28.75% and 48.84%, respectively (Figures 7b and 8b). In addition,
classification accuracies of vegetation and bare soils were extremely low when using the Sentinel-1A
imagery. However, it should be noted that SAR data was successful in classifying water. The overall
classification accuracy and Kappa coefficient were 37.10% and 0.24, respectively.



Remote Sens. 2016, 8, 945 11 of 21

Table 3. The confusion matrix and accuracy assessment for land cover classification by using the GF-1
image/Sentinel-1A image/fusing the GF-1 and Sentinel-1A image.

Classes IS_H IS_L W VE BL_H BL_L

(a) GF-1

IS_H 67 0 0 0 0 0
IS_L 9 75 6 0 4 17
W 0 0 49 0 0 0
VE 0 0 0 56 0 0

BL_H 4 0 0 0 59 0
BL_L 0 11 0 0 4 46

OA 86.49% KAPPA 0.84

(b) Sentinel-1A

IS_H 23 9 3 7 12 12
IS_L 23 42 0 7 15 2
W 3 1 41 1 1 4
VE 14 15 1 16 7 10

BL_H 9 12 8 8 13 19
BL_L 8 7 2 17 19 16

OA 37.10% KAPPA 0.24

(c) DS-fusion

IS_H 70 2 0 0 3 3
IS_L 7 81 0 0 5 10
W 0 0 55 0 0 0
VE 1 0 0 56 0 0

BL_H 2 0 0 0 54 0
BL_L 0 3 0 0 5 50

OA 89.93% KAPPA 0.88
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Figure 7. The producer’s accuracy of land cover types extracted from different data sources.
(a) The producer’s accuracy of land cover types extracted from GF-1 image; (b) The producer’s
accuracy of land cover types extracted from Sentinel-1A image; (c) The producer’s accuracy of land
cover types extracted from fusing the GF-1 and Sentinel-1A image.
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Figure 8. The user’s accuracy of land cover types extracted from different data sources. (a) The user’s
accuracy of land cover types extracted from GF-1 image; (b) The user’s accuracy of land cover types
extracted from Sentinel-1A image; (c) The user’s accuracy of land cover types extracted from fusing the
GF-1 and Sentinel-1A image.

4.1.2. Fusion of Land Covers Derived from the GF-1 Image and the Sentinel-1A Image

The fused land cover types were finally generated by combining the land cover types classified
independently by the GF-1 image and the Sentinel-1A image according to the D-S combination rules.
Table 3c shows the confusion matrix and accuracy assessment for the land cover classification. After the
decision-level fusion, the user’s accuracy of IS_H and VE were 89.74% and 98.25% and the producer’s
accuracies of IS_H and VE were 87.50% and 1. The producer’s and user’s accuracies of W in Table 3c
remain the same as in Table 3a. The integration of SAR data with optical data increased the user’s
accuracy of BL_H to 96.43% while reducing the producer’s accuracy to 80.60% (Figures 7a,c and 8a,c).
Compared to the classification result by using optical data, the fused classification result reduced
the commission errors from 32.40% to 21.36% for IS_L and from 24.60% to 13.79% for BL_L while
decreasing the omission errors from 12.80% to 5.81% for IS_L and from 26.98% to 20.60% for BL_L
(Figures 7a,c and 8a,c). Clearly, Table 3c shows that the fusion of optical and SAR data reduced
confusion between dark impervious surfaces and water and bare soils. The overall classification
accuracy and the Kappa coefficient after the D-S fusion reached 89.93% and 0.88, respectively, higher
than the 86.49% and 0.836 achieved by using the GF-1 data (Table 3a,c).

4.2. Land Cover Classification from the GF-1 Image/Sentinel-1A Image with Features/D-S Fusion

4.2.1. Land Cover Classification from the GF-1 Image/Sentinel-1A Image with Features

In this case, the spectral features NDVI and NDWI derived from the GF-1 image were used to
characterize urban impervious surfaces. Table 4a shows the confusion matrix and accuracy assessment
for the six land covers. Compared with the single GF-1 image, the addition of spectral features
improved the user’s accuracies from 67.60% to 72.12% for IS_L, from 93.65% to 100% for BL_H, but
decreased from 100% to 98.61% for IS_H, from 75.40% to 74.19% for BL_L. The producer’s accuracies
increased from 83.75% to 88.75% for IS_H, from 89.09% to 100% for W, and reduced from 88.06% to
86.60% for BL_H (Figures 7a, 8a, 9a and 10a). The combined use of spectral features and the original
image reduced confusions between IS_H and BL_H, IS_L and W. It was observed that W and VE can
be fully identified with the help of NDWI and NDVI (Table 4a). The overall classification accuracy and
the Kappa coefficient were 88.70% and 0.86, respectively.

In addition to the Sentinel-1A image, additional texture features were calculated from the HH
and HV bands and then used for mapping urban impervious surfaces. Table 4b shows that the
incorporation of texture features enhanced the classification accuracy for the six land cover types
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compared with using the Sentinel-1A imagery only (Table 3b). The confusion between IS_L and W
was significantly reduced when adding texture features into the original Sentinel-1A data (Table 4b).
However, the overall classification accuracy (43.49%) in this case is still lower than that based on the
GF-1 image (86.49%).

Table 4. The confusion matrix and accuracy assessment for land cover classification by using the GF-1
image and its spectral features/the Sentinel-1A image and its texture features/fusing the GF-1 and
Sentinel-1A images and their features.

Classes IS_H IS_L W VE BL_H BL_L

(a) GF-1 and features

IS_H 71 0 0 0 0 1
IS_L 9 75 0 0 4 16
W 0 0 55 0 0 0
VE 0 0 0 56 0 0

BL_H 0 0 0 0 58 0
BL_L 0 11 0 0 5 46

OA 88.70% KAPPA 0.86

(b) Sentinel-1A and features

IS_H 20 4 2 4 9 8
IS_L 34 58 0 10 19 1
W 6 0 53 0 0 5
VE 9 15 0 17 6 8

BL_H 7 9 0 17 20 32
BL_L 4 0 0 8 13 9

OA 43.49% KAPPA 0.32

(c) DS-fusion and features

IS_H 71 0 0 0 0 1
IS_L 9 86 0 0 4 14
W 0 0 55 0 0 0
VE 0 0 0 56 0 0

BL_H 0 0 0 0 60 0
BL_L 0 0 0 0 3 48

OA 92.38% KAPPA 0.91
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Figure 9. The producer’s accuracy of land cover types extracted from different data sources. (a) The 
producer’s accuracy of land cover types extracted from GF-1 image and features; (b) The producer’s 
accuracy of land cover types extracted from Sentinel-1A image and features; (c) The producer’s 
accuracy of land cover types extracted from fusing the GF-1 and Sentinel-1A images with features. 

Figure 9. The producer’s accuracy of land cover types extracted from different data sources. (a) The
producer’s accuracy of land cover types extracted from GF-1 image and features; (b) The producer’s
accuracy of land cover types extracted from Sentinel-1A image and features; (c) The producer’s accuracy
of land cover types extracted from fusing the GF-1 and Sentinel-1A images with features.
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Figure 10. The user’s accuracy of land cover types extracted from different data sources. (a) The user’s
accuracy of land cover types extracted from GF-1 image and features; (b) The user’s accuracy of land
cover types extracted from Sentinel-1A image and features; (c) The user’s accuracy of land cover types
extracted from fusing the GF-1 and Sentinel-1A images with features.

4.2.2. Fusion of Land Covers Derived from the GF-1 and Sentinel-1A Images with Features

The land cover types derived from the integration of the GF-1 image and its spectral features and
the Sentinel-1 A image and its texture feature had higher producer’s and user’s accuracies compared
to those characterized independently by the GF-1 image and its spectral features or the Sentinel-1A
image and its texture features. Compared to the fusion of the GF-1 image and the Sentinel-1A image,
the integration of the GF-1 image and the Sentinel-1A image and their features decreased the user’s
accuracy from 78.64% to 76.11% for IS_L and increased the producer’s accuracy from 94.19% to 100%
for IS_L (Figures 7c, 8c, 9c and 10c). In addition, the user’s accuracy increased from 89.74% to 98.61%
for IS_H, from 98.25% to 100% for VE, from 96.43% to 100% for BL_H, and from 86.21% to 94.12% for
BL_L. The producer’s accuracy increased from 87.50% to 88.75% for IS_H, and from 80.60% to 89.55%
for BL_H, but decreased from 79.40% to 76.19% for BL_L (Figures 7c, 8c, 9c and 10c). Table 4c also
shows fewer confusions between IS_L and W compared to Table 3c. Overall, the classification accuracy
of the fused land covers, when the spectral and texture features were introduced, was 92.38% with a
Kappa coefficient of 0.91.

5. Discussion

5.1. The Classification Accuracy for Impervious Surfaces and Uncertainty Analysis

5.1.1. The Classification Accuracy for Impervious Surfaces

The identified six land cover types were further categorized as non-impervious surface (NIS)
and impervious surface. The IS_H and IS_L were combined as the IS and the rest of land covers as
the NIS. The impervious surface maps derived from different data sources were shown in Figure 11.
Table 5 shows that the overall classification accuracy of urban impervious surfaces extracted from
the GF-1 image was 89.68% with a Kappa coefficient of 0.79, higher than those quantified from the
Sentinel-1A image. The addition of spectral and texture features improved the classification accuracies
of impervious surfaces extracted from the Sentinel-1A and GF-1 images. The combined use of the GF-1
image and its spectral features increased the overall accuracy by 2.46%, and the Kappa coefficient by
0.05 compared to using the GF-1 image only for generating impervious surfaces. The combined use of
the Sentinel-1A image and its texture features improved the overall accuracy by 5.90% compared to
using the Sentinel-1A image only for characterizing impervious surfaces. By incorporating the feature
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information, the decision-level fusion improved the overall classification accuracy to 95.33% with a
Kappa coefficient of 0.91.Remote Sens. 2016, 8, 945  15 of 21 
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Figure 11. Impervious surface extracted from different data sources. (a) Impervious surface (IS) from
the GF-1 image; (b) IS from the Sentinel-1A image; (c) IS from the combined use of GF-1 image and its
spectral features; (d) IS from the combined use the Sentinel-1A and its textural features; (e) IS from the
fusion of the original optical and SAR images; (f) IS from the fusion of the original optical and SAR
images and their features.



Remote Sens. 2016, 8, 945 16 of 21

Table 5. The confusion matrix and accuracy assessment of IS and NIS derived from different
data sources.

GF-1 Sentinel-1A DS-Fusion GF-1 and
Features

Sentinel-1A
and Features

DS Fusion
and Features

Classes IS NIS IS NIS IS NIS IS NIS IS NIS IS NIS
IS 151 27 97 58 160 21 155 21 116 53 166 19

NIS 15 214 69 183 6 220 11 220 50 188 0 222
Kappa 0.79 0.35 0.87 0.84 0.48 0.91
OA 89.68% 68.80% 93.37% 92.14% 74.70% 95.33%

5.1.2. Uncertainty Analysis

Figure 12 shows the spatial distributions of the uncertainty values for the impervious surfaces
derived by fusing the GF-1 and Sentinel-1A images (a) and by fusing the GF-1 and Sentinel-1A images
and their features (b). Results indicated that the uncertainty values for the fused impervious surfaces
ranged from 0 to 0.25 as shown in Table 6. The land cover maps estimated by integrating the GF-1
and Sentinel-1A images as well as by the GF-1 and Sentinel-1A images and their features, had a
mean uncertainty value of 0.11, though with the standard deviation of 0.088 and 0.093, respectively.
We further calculated the number of pixels that fell into different uncertainty value ranges (0–0.10;
0.10–0.20; 0.20–0.25) as shown in Table 7. Nearly all water pixels were in the first range (0–0.10)
(Figure 12). This could be attributed to the ability of SAR data to successfully identify the water.
Overall, the fusion of the GF-1 and Sentinel-1A images with their features increased the number
of pixels that fell into the first range compared to the fusion of the GF-1 and Sentinel-1A images
(Table 7). It indicated that the additional feature information reduced misclassifications between IS
and W. However, confusions between IS_L and BL_L still existed, thus leading to the higher number
of observed pixels in the third range (0.20–0.25) for the impervious surfaces derived by integrating the
GF-1 and Sentinel-1A images with their features.

Table 6. The uncertainty statistics for impervious surfaces derived by fusing the GF-1 and Sentinel-1A
images/the GF-1 and Sentinel-1A images and their features.

Minimum Maximum Mean Standard Deviation

Fusing the GF-1 and
Sentinel-1A images 0 0.25 0.11 0.088

Fusing the GF-1 and Sentinel-1A
images and their features 0 0.25 0.11 0.093

Table 7. The number of pixels falling into the different uncertainty value ranges for impervious surfaces
derived by fusing different data sources.

Uncertainty Value Range Fusing the GF-1 and
Sentinel-1A Images

Fusing the GF-1 and Sentinel-1A
Images and Their Features

The Number of Pixels

0.00–0.10 2,888,513 2,944,986
0.10–0.20 2,546,273 2,297,449
0.20–0.25 1,098,349 1,290,700
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5.2. Future Work

In this study, impervious surfaces were extracted by synergistically utilizing optical and SAR data
based on both the RF classifier and D-S theory. Results showed that the higher classification accuracy
of IS was achieved by fusing GF-1 and Sentinel-1A images and their features.



Remote Sens. 2016, 8, 945 18 of 21

Initially, six land cover types were classified based on the RF algorithm by using GF-1/Sentinel-1A
images, GF-1 image and its spectral features/Sentinel-1A image and its texture features. The accuracy
assessment suggested that urban impervious surfaces extracted from the GF-1 image/GF-1 image
and its spectral features were acceptable. Because of the spectral similarity, there were still confusions
between IS_L and BL_L and waterbodies. Thus, spectral features NDVI and NDWI were introduced.
Although the confusions between IS_L and BL_L and water were reduced, they still existed. Possible
reasons could be that only two spectral features were considered in this study. Indices, such as NDISI
(normalized difference impervious surface index) [19], BCI (biophysical composition index) [56], BASI
(built-up areas saliency index) [57] should also be included for further improvements. In addition, the
number of decision trees and the number of variables sampled at each split are the main parameters
that affect the classification performance of the RF algorithm. Thus future work can be directed towards
the optimization of those parameters within the RF.

Although impervious surface derived from the fused datasets had a high classification accuracy,
confusions between IS_L and W and bare soils were not completely removed. Thus, the uncertainty
analysis was also provided to show the reliability of the classification results. In this study, water
could be easily identified with the uncertainty value less than 0.11, whereas for most of the IS
pixels the uncertainty level was greater than 0.11 but less than 0.25. It is worth noting that the
poor classification results from the Sentinel-1A data can significantly influence the combination results.
Further refinements can be done by taking weights among different sources of evidence within the
D-S framework. Finally, the effectiveness of the proposed decision-fusion level approach should be
further assessed in the future by taking into consideration more case studies.

6. Conclusions

The major contribution of this study was to characterize impervious surfaces by fusing the GF-1
and Sentinel-1A data at the decision level. The advantage of the decision-level fusion was the removal
of the influences of data noises and feature selections on the land cover classifications. First, four data
sources, including the GF-1 image, the Sentinel-1A image, the GF-1 image and its spectral features, and
the Sentinel-1A image and its texture features, were independently utilized through the random forest
(RF) algorithm for characterizing impervious surfaces. Then, impervious surfaces were generated by
fusing previously estimated impervious surfaces extracted individually from different data sources
via the Dempster-Shafer (D-S) combination rules. The accuracy assessment illustrated that urban
impervious surfaces extracted from optical data had a higher classification accuracy (89.68%) than
those from synthetic aperture radar (SAR) data (68.80%). The integration of feature information with
optical (or SAR data) enhanced the overall classification accuracy by 2.64% (or 5.90%). The fusion
of impervious surfaces extracted from the GF-1 and the Sentinel-1A images improved the overall
classification accuracy to 93.37% or to 95.33% when addition spectral and texture features were
included. It was concluded that the decision-level fusion mainly reduced the confusions between the
low reflectance of impervious surfaces and water and the low reflectance of the bare land.

Acknowledgments: This work was supported by the Fundamental Research Funds for the Central Universities
(2042016kf0179 and 2042016kf1019), Guangzhou science and technology project (201604020070), and special
funds project on public welfare industry research of surveying and mapping geographic information (201512027),
National Administration of Surveying, Mapping and Geoinformation (2015NGCM), Wuhan Chen Guang Project
(2016070204010114), the National Natural Science Foundation of China( 61172174).

Author Contributions: In this paper, Zhenfeng Shao and Huyan Fu conceived and designed the experiments;
Huyan Fu performed the experiments; Zhenfeng Shao and Huyan Fu analyzed the data; Zhenfeng Shao and
Huyan Fu wrote the paper and Peng Fu and Li Yin revised this paper.

Conflicts of Interest: The authors declare no conflict of interest.



Remote Sens. 2016, 8, 945 19 of 21

References

1. Slonecker, E.T.; Jennings, D.B.; Garofalo, D. Remote sensing of impervious surfaces: A review.
Remote Sens. Rev. 2001, 20, 227–255. [CrossRef]

2. Weng, Q. Remote sensing of impervious surfaces in the urban areas: Requirements, methods, and trends.
Remote Sens. Environ. 2012, 117, 34–49. [CrossRef]

3. Arnold, C.L.; Gibbons, C.J. Impervious Surface Coverage: The Emergence of a Key Environmental Indicator.
J. Am. Plan. Assoc. 1996, 62, 243–258. [CrossRef]

4. Li, J.; Song, C.; Cao, L.; Zhu, F.; Meng, X.; Wu, J. Impacts of landscape structure on surface urban heat islands:
A case study of Shanghai, China. Remote Sens. Environ. 2011, 115, 3249–3263. [CrossRef]

5. Hurd, J.D.; Civco, D.L. Temporal Characterization of impervious surfaces for the State of Connecticut.
In Proceedings of the ASPRS Annual Conference, Denver, CO, USA, 23–28 May 2004.

6. Yang, L.; Huang, C.; Homer, C.G.; Wylie, B.K.; Coan, M.J.; Corporation, R.; Survey, G.; Data, E.; Falls, S.;
Usgs, L.Y.; et al. An approach for mapping large-area impervious surfaces: Synergistic use of Landsat 7
ETM+ and high spatial resolution imagery. Can. J. Remote Sens. 2003, 29, 230–240. [CrossRef]

7. Brabec, E.; Schulte, S.; Richards, P.L. Impervious Surfaces and Water Quality: A Review of Current Literature
and Its Implications for Watershed Planning. J. Plan. Lit. 2002, 16, 499–514. [CrossRef]

8. Lu, D.; Li, G.; Kuang, W.; Moran, E. Methods to extract impervious surface areas from satellite images. Int. J.
Digit. Earth 2014, 7, 93–112. [CrossRef]

9. Weng, Q.; Hu, X. Medium spatial resolution satellite imagery for estimating and mapping urban impervious
surfaces using LSMA and ANN. IEEE Trans. Geosci. Remote Sens. 2008, 46, 2397–2406. [CrossRef]

10. Zhang, L.; Weng, Q. Annual dynamics of impervious surface in the Pearl River Delta, China, from 1988 to
2013, using time series Landsat imagery. ISPRS J. Photogramm. Remote Sens. 2016, 113, 86–96. [CrossRef]

11. Shao, Z.; Liu, C. The integrated use of DMSP-OLS nighttime light and MODIS data for monitoring large-scale
impervious surface dynamics: A case study in the Yangtze River Delta. Remote Sens. 2014, 6, 9359–9378.
[CrossRef]

12. Ridd, M.K. Exploring a V-I-S (vegetation-impervious surface-soil) model for urban ecosystem analysis
through remote sensing: Comparative anatomy for cities†. Int. J. Remote Sens. 1995, 16, 2165–2185. [CrossRef]

13. Wu, C.; Murray, A.T. Estimating impervious surface distribution by spectral mixture analysis. Remote Sens.
Environ. 2003, 84, 493–505. [CrossRef]

14. Lu, D.; Weng, Q. Use of impervious surface in urban land-use classification. Remote Sens. Environ. 2006, 102,
146–160. [CrossRef]

15. Deng, C.; Wu, C. The use of single-date MODIS imagery for estimating large-scale urban impervious surface
fraction with spectral mixture analysis and machine learning techniques. ISPRS J. Photogramm. Remote Sens.
2013, 86, 100–110. [CrossRef]

16. Kuang, W.; Liu, J.; Zhang, Z.; Lu, D.; Xiang, B. Spatiotemporal dynamics of impervious surface areas across
China during the early 21st century. Chin. Sci. Bull. 2012, 58, 1691–1701. [CrossRef]

17. Wu, C. Normalized spectral mixture analysis for monitoring urban composition using ETM+ imagery.
Remote Sens. Environ. 2004, 93, 480–492. [CrossRef]

18. Deng, C.; Wu, C. A spatially adaptive spectral mixture analysis for mapping subpixel urban impervious
surface distribution. Remote Sens. Environ. 2013, 133, 62–70. [CrossRef]

19. Xu, H. Analysis of Impervious Surface and its Impact on Urban Heat Environment using the Normalized
Difference Impervious Surface Index (NDISI). Photogramm. Eng. Remote Sens. 2010, 76, 557–565. [CrossRef]

20. Liu, C.; Shao, Z.; Chen, M.; Luo, H. MNDISI: A multi-source composition index for impervious surface area
estimation at the individual city scale. Remote Sens. Lett. 2013, 4, 803–812. [CrossRef]

21. Wang, Z.; Gang, C.; Li, X.; Chen, Y.; Li, J. Application of a normalized difference impervious index (NDII)
to extract urban impervious surface features based on Landsat TM images. Int. J. Remote Sens. 2015, 36,
1055–1069. [CrossRef]

22. Chabaeva, A.; Civco, D.; Prisloe, S. Development of a population density and land use based regression
model to calculate the amount of imperviousness. In Proceedings of the ASPRS Annual Conference, Denver,
CO, USA, 23–28 May 2004.

23. Elvidge, C.D.; Tuttle, B.T.; Sutton, P.C.; Baugh, K.E.; Howard, A.T.; Milesi, C.; Bhaduri, B.; Nemani, R. Global
Distribution and Density of Constructed Impervious Surfaces. Sensors 2007, 7, 1962–1979. [CrossRef]

http://dx.doi.org/10.1080/02757250109532436
http://dx.doi.org/10.1016/j.rse.2011.02.030
http://dx.doi.org/10.1080/01944369608975688
http://dx.doi.org/10.1016/j.rse.2011.07.008
http://dx.doi.org/10.5589/m02-098
http://dx.doi.org/10.1177/088541202400903563
http://dx.doi.org/10.1080/17538947.2013.866173
http://dx.doi.org/10.1109/TGRS.2008.917601
http://dx.doi.org/10.1016/j.isprsjprs.2016.01.003
http://dx.doi.org/10.3390/rs6109359
http://dx.doi.org/10.1080/01431169508954549
http://dx.doi.org/10.1016/S0034-4257(02)00136-0
http://dx.doi.org/10.1016/j.rse.2006.02.010
http://dx.doi.org/10.1016/j.isprsjprs.2013.09.010
http://dx.doi.org/10.1007/s11434-012-5568-2
http://dx.doi.org/10.1016/j.rse.2004.08.003
http://dx.doi.org/10.1016/j.rse.2013.02.005
http://dx.doi.org/10.14358/PERS.76.5.557
http://dx.doi.org/10.1080/2150704X.2013.798710
http://dx.doi.org/10.1080/01431161.2015.1007250
http://dx.doi.org/10.3390/s7091962


Remote Sens. 2016, 8, 945 20 of 21

24. Bauer, M.E.; Loffelholz, B.; Wilson, B. Estimating and mapping impervious surface area by regression
analysis of Landsat imagery. In Remote Sensing Impervious Surface; CRC Press: Boca Raton, FL, USA, 2008.

25. Lu, D.; Tian, H.; Zhou, G.; Ge, H. Regional mapping of human settlements in southeastern China with
multisensor remotely sensed data. Remote Sens. Environ. 2008, 112, 3668–3679. [CrossRef]

26. Hodgson, M.E.; Jensen, J.R.; Tullis, J.A.; Riordan, K.D.; Archer, C.M. Synergistic Use of Lidar and Color
Aerial Photography for Mapping Urban Parcel Imperviousness. Photogramm. Eng. Remote Sens. 2003, 69,
973–980. [CrossRef]

27. Powell, S.L.; Cohen, W.B.; Yang, Z.; Pierce, J.D.; Alberti, M. Quantification of impervious surface in the
Snohomish Water Resources Inventory Area of Western Washington from 1972–2006. Remote Sens. Environ.
2008, 112, 1895–1908. [CrossRef]

28. Wu, C. Quantifying high-resolution impervious surfaces using spectral mixture analysis. Int. J. Remote Sens.
2009, 30, 2915–2932. [CrossRef]

29. Lu, D.; Weng, Q. Extraction of urban impervious surfaces from an IKONOS image. Int. J. Remote Sens. 2009,
30, 1297–1311. [CrossRef]

30. Mohapatra, R.P.; Wu, C. Subpixel Imperviousness Estimation with IKONOS Imagery: An Artificial Neural
Network Approach. Remote Sens. Impervious Surf. 2008, 2000, 21–35.

31. Zhang, X.; Xiao, P.; Feng, X. Impervious surface extraction from high-resolution satellite image using
pixel- and object-based hybrid analysis. Int. J. Remote Sens. 2013, 34, 4449–4465. [CrossRef]

32. Weng, Q.; Hu, X.; Liu, H. Estimating impervious surfaces using linear spectral mixture analysis with
multitemporal ASTER images. Int. J. Remote Sens. 2009, 30, 4807–4830. [CrossRef]

33. Im, J.; Lu, Z.; Rhee, J.; Quackenbush, L.J. Impervious surface quantification using a synthesis of artificial
immune networks and decision/regression trees from multi-sensor data. Remote Sens. Environ. 2012, 117,
102–113. [CrossRef]

34. Jiang, L.; Liao, M.; Lin, H.; Yang, L. Synergistic use of optical and InSAR data for urban impervious surface
mapping: A case study in Hong Kong. Int. J. Remote Sens. 2009, 30, 2781–2796. [CrossRef]

35. Leinenkugel, P.; Esch, T.; Kuenzer, C. Settlement detection and impervious surface estimation in the Mekong
Delta using optical and SAR remote sensing data. Remote Sens. Environ. 2011, 115, 3007–3019. [CrossRef]

36. Yang, L.M.; Jiang, L.M.; Lin, H.; Liao, M.S. Quantifying Sub-pixel Urban Impervious Surface through Fusion
of Optical and InSAR Imagery. Gisci. Remote Sens. 2009, 46, 161–171. [CrossRef]

37. Zhang, H.; Zhang, Y.; Lin, H. A comparison study of impervious surfaces estimation using optical and SAR
remote sensing images. Int. J. Appl. Earth Obs. Geoinform. 2012, 18, 148–156. [CrossRef]

38. Zhang, Y.; Zhang, H.; Lin, H. Improving the impervious surface estimation with combined use of optical
and SAR remote sensing images. Remote Sens. Environ. 2014, 141, 155–167. [CrossRef]

39. Zhang, J.; Yang, J.; Zhao, Z.; Li, H.; Zhang, Y. Block-regression based fusion of optical and SAR imagery for
feature enhancement. Int. J. Remote Sens. 2010, 31, 2325–2345. [CrossRef]

40. Dempster, A.P. Upper and lower probabilities induced by multivalue mapping. Ann. Math. Stat. 1967, 38,
325–339. [CrossRef]

41. Shafer, G. A Mathematical Theory of Evidence; Princeton University Press: Princeton, NJ, USA, 1976.
42. Lein, J.K. Applying evidential reasoning methods to agricultural land cover classification. Int. J. Remote Sens.

2003, 24, 4161–4180. [CrossRef]
43. Cayuela, L.; Golicher, D.; Salas Rey, J.; Rey Benayas, J.M. Classification of a complex landscape using

Dempster-Shafer theory of evidence. Int. J. Remote Sens. 2006, 27, 1951–1971. [CrossRef]
44. Chust, G.; Ducrot, D.; Pretus, J.L. Land cover discrimination potential of radar multitemporal series and

optical multispectral images in a Mediterranean cultural landscape. Int. J. Remote Sens. 2004, 25, 3513–3528.
[CrossRef]

45. Ran, Y.; Li, X.; Lu, L.; Li, Z. Large-scale land cover mapping with the integration of multi-source information
based on teh Dempster-Shafer theory. Int. J. Geogr. Inf. Sci. 2012, 26, 169–191. [CrossRef]

46. Lu, L.; Xie, W.; Zhang, J.; Huang, G.; Li, Q.; Zhao, Z. Woodland extraction from high-resolution CASMSAR
data based on dempster-shafer evidence theory fusion. Remote Sens. 2015, 7, 4068–4091. [CrossRef]

47. GF-1 Images. Geospatial Data Cloud. Available online: http://www.gscloud.cn/ (accessed on
6 October 2015).

48. Sentinel-1A Images. Sentinels Scientific Data Hub. Available online: https://scihub.copernicus.eu/ (accessed
on 11 October 2015).

http://dx.doi.org/10.1016/j.rse.2008.05.009
http://dx.doi.org/10.14358/PERS.69.9.973
http://dx.doi.org/10.1016/j.rse.2007.09.010
http://dx.doi.org/10.1080/01431160802558634
http://dx.doi.org/10.1080/01431160802508985
http://dx.doi.org/10.1080/01431161.2013.779044
http://dx.doi.org/10.1080/01431160802665926
http://dx.doi.org/10.1016/j.rse.2011.06.024
http://dx.doi.org/10.1080/01431160802555838
http://dx.doi.org/10.1016/j.rse.2011.06.004
http://dx.doi.org/10.2747/1548-1603.46.2.161
http://dx.doi.org/10.1016/j.jag.2011.12.015
http://dx.doi.org/10.1016/j.rse.2013.10.028
http://dx.doi.org/10.1080/01431160902980324
http://dx.doi.org/10.1214/aoms/1177698950
http://dx.doi.org/10.1080/0143116031000095916
http://dx.doi.org/10.1080/01431160500181788
http://dx.doi.org/10.1080/0143116032000160480
http://dx.doi.org/10.1080/13658816.2011.577745
http://dx.doi.org/10.3390/rs70404068
http://www.gscloud.cn/
https://scihub.copernicus.eu/


Remote Sens. 2016, 8, 945 21 of 21

49. Haralick, R.M.; Shanmugam, K.; Dinstein, I. Textural features for image classification. IEEE Trans. Syst.
Man Cybern. 1973, 3, 610–621. [CrossRef]

50. Ouma, Y.O.; Tateishi, R. Optimization of Second-Order Grey-Level Texture in High-Resolution Imagery for
Statistical Estimation of Above-Ground Biomass. J. Environ. Inform. 2006, 8, 70–85. [CrossRef]

51. Dye, M.; Mutanga, O.; Ismail, R. Combining spectral and textural remote sensing variables using random
forests: Predicting the age of Pinus patulaforests in KwaZulu-Natal, South Africa. J. Spat. Sci. J. Spat. Sci.
2012, 57, 193–211. [CrossRef]

52. Wang, H.; Zhao, Y.; Pu, R.; Zhang, Z. Mapping Robinia pseudoacacia forest health conditions by using
combined spectral, spatial, and textural information extracted from IKONOS imagery and random forest
classifier. Remote Sens. 2015, 7, 9020–9044. [CrossRef]

53. Breiman, L. Bagging Predictors. Mach. Learn. 1996, 24, 123–140. [CrossRef]
54. Breiman, L.E.O. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
55. Ho, T.K. The random subspace method for constructing decision forests. IEEE Trans. Pattern Anal. Mach. Intell.

1998, 20, 832–844.
56. Deng, C.; Wu, C. BCI: A biophysical composition index for remote sensing of urban environments.

Remote Sens. Environ. 2012, 127, 247–259. [CrossRef]
57. Shao, Z.; Tian, Y.; Shen, X. BASI: A new index to extract built-up areas from high-resolution remote sensing

images by visual attention model. Remote Sens. Lett. 2014, 5, 305–314. [CrossRef]

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TSMC.1973.4309314
http://dx.doi.org/10.3808/jei.200600078
http://dx.doi.org/10.1080/14498596.2012.733620
http://dx.doi.org/10.3390/rs70709020
http://dx.doi.org/10.1007/BF00058655
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1016/j.rse.2012.09.009
http://dx.doi.org/10.1080/2150704X.2014.889861
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Data and the Study Area 
	The Study Area 
	Data Sources and Preprocessing 

	Methodology 
	Feature Extraction 
	Random Forest 
	The Dempster–Shafer (D-S) Theory 
	The Construction of the Basic Probability Assignment (BPA) and Uncertainty Interval 
	Dempster’s Combinational Rule 

	Accuracy Assessment 

	Results 
	Land Cover Classification from the GF-1/Sentinel-1A Image/DS-Fusion 
	Land Cover Classification from the GF-1/Sentinel-1A Image 
	Fusion of Land Covers Derived from the GF-1 Image and the Sentinel-1A Image 

	Land Cover Classification from the GF-1 Image/Sentinel-1A Image with Features/D-S Fusion 
	Land Cover Classification from the GF-1 Image/Sentinel-1A Image with Features 
	Fusion of Land Covers Derived from the GF-1 and Sentinel-1A Images with Features 


	Discussion 
	The Classification Accuracy for Impervious Surfaces and Uncertainty Analysis 
	The Classification Accuracy for Impervious Surfaces 
	Uncertainty Analysis 

	Future Work 

	Conclusions 

