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Abstract: Coral reef habitat structural complexity influences key ecological processes, ecosystem
biodiversity, and resilience. Measuring structural complexity underwater is not trivial and researchers
have been searching for accurate and cost-effective methods that can be applied across spatial
extents for over 50 years. This study integrated a set of existing multi-view, image-processing
algorithms, to accurately compute metrics of structural complexity (e.g., ratio of surface to planar
area) underwater solely from images. This framework resulted in accurate, high-speed 3D habitat
reconstructions at scales ranging from small corals to reef-scapes (10s km2). Structural complexity
was accurately quantified from both contemporary and historical image datasets across three spatial
scales: (i) branching coral colony (Acropora spp.); (ii) reef area (400 m2); and (iii) reef transect (2 km).
At small scales, our method delivered models with <1 mm error over 90% of the surface area, while
the accuracy at transect scale was 85.3%˘ 6% (CI). Advantages are: no need for an a priori requirement
for image size or resolution, no invasive techniques, cost-effectiveness, and utilization of existing
imagery taken from off-the-shelf cameras (both monocular or stereo). This remote sensing method can
be integrated to reef monitoring and improve our knowledge of key aspects of coral reef dynamics,
from reef accretion to habitat provisioning and productivity, by measuring and up-scaling estimates
of structural complexity.

Keywords: surface rugosity; off-the-shelf; computer vision; photogrammetry; structure from motion;
coral reefs; topographic maps; habitat structural complexity; surface area; volume
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1. Introduction

Structural complexity is a key habitat feature that influences ecological processes by providing a
suite of primary and secondary resources to organisms, such as shelter from predators and availability
of food [1–4]. In terrestrial ecosystems, structural complexity has been related with species diversity
and abundance [5,6]. However, while evidence of the importance of the role habitat structural
complexity plays in driving key processes in underwater ecosystems exists, the intricacies of the
relationships between complexity and important ecological processes are not well understood,
due to limitations in the application of current methods to quantify 3D features in underwater
environments [7,8]. Thus, our current knowledge of underwater ecosystems and their trajectory is
impaired by the lack of understanding of how structural complexity directly and indirectly influences
important ecological processes [9]. It is important to incorporate high-resolution and comprehensive
measures of structural complexity into assessments that aim to monitor, characterize, and assess
marine ecosystems [6].

To date, benthic percent cover, the two-dimensional proportion of coral surface area viewed from
above, has been the primary method for monitoring underwater ecosystems [10]. Three-dimensional
habitat structural complexity is a key driver of ecosystem diversity, function, and resilience in many
ecosystems [11], yet the field of marine ecology lacks the tools to effectively quantify 3D features from
underwater environments. Techniques to assess the structural complexity of marine organisms have
existed since 1958 [12–14]. Currently, the most common method used to quantify habitat structural
complexity in marine ecological studies is the “chain-and-tape” method, where the ratio between
the linear distance and the contour of the benthos under the chain is calculated as a measure of
structural complexity [14,15]. Alternatively, researchers employ a range of techniques to estimate
habitat structural complexity, and related metrics, such as surface area and volume [14,16].

On the opposite side of the spectrum, the emergence of satellite remote-sensing techniques
has addressed the need for large-scale (10s–1000s m2) and continuous measurements of structural
complexity [17–19]. Alternatively, swath acoustics can generate digital elevation models with horizontal
resolutions of a few square meters [20,21], from which various metrics of habitat complexity, such as
slope or surface rugosity (the ration between surface area and planar area), can be quantified across
thousands of square meters [22]. Although useful for many applications, these methods are incapable
of characterizing underwater structures at high-resolutions (cm-scale) [23,24].

Measuring reef structural complexity, using proxy metrics such as linear rugosity, has greatly
contributed to our knowledge of reef functioning (i.e., reef accretion and erosion processes) [3,25,26].
However, advancing our understanding of how structural complexity influences reef dynamics still
requires improving our efficiency and ability to quantify multiple metrics of 3D structural complexity
in a repeatable way, across spatial extents and maintaining sub-meter resolution [27,28]. Emerging
close-range photogrammetric techniques allow the quantification of surface rugosity, among other
structural complexity metrics, across a range of spatial extents, and at millimetre to centimetre-level
resolution [29–33]. Much of the work in the aforementioned articles builds on a substantial body of
work in 3D reconstruction, Optical Flow, and Structure from Motion (SfM) in the terrestrial domain;
see [34–37], among others. Close-range photogrammetry entails 3D reconstructions of a given object
or scene from a series of overlapping images, taken from multiple perspectives, enabling precise and
accurate quantification of structural complexity metrics [38]. Underwater cameras provide a useful
solution, and by capturing high-resolution imagery of the benthos, they rapidly obtain a permanent
record of habitat condition over ecologically relevant spatial scales [39].

Unsurprisingly, the use of cameras to measure structural complexity is a rapidly evolving field [40].
Initially, multiple cameras were used to gather high-quality image data and generate 3D reconstructions
of underwater scenes, from which multiple metrics of habitat complexity can be quantified [38,41].
Stereo-imagery workflows tend to be better streamlined than monocular ones, but there is a significant
cost associated with the purchase and operation of such equipment [39,40]. While stereo-cameras
enable data collection at the desired resolution and spatial scales, they preclude the quantification of
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structural complexity to the periods preceding their development, limiting their use to contemporary
and future studies [39,42]. As most existing video/photo surveys to date have used monocular cameras,
it is clear that there is a great need for a method to produce accurate 3D representations of underwater
habitats using data collected by off-the-shelf, monocular cameras [18,19,42]. Such methods would
enable the analysis and use of historical data, providing a unique opportunity to understand the role of
structural complexity in underwater ecosystems and their temporal trajectory. Thus, this study focuses
on monocular-derived photogrammetry from an uncalibrated camera, and does not refer to studies
involving multiple cameras or other instruments to build 3D reconstructions of underwater scenes.

In relation to coral reef ecosystems, close-range photogrammetry was first used by Bythell et al.
in 2001 [43] to obtain structural complexity metrics from coral colonies of simple morphologies.
The popularity of photogrammetry has increased as the algorithms behind it improved and a
few studies have evaluated the accuracy of its application to underwater organisms, from simple
morphologies [16] to more complex ones [29,31,44,45]. Yet, it took over a decade to enable the
application of photogrammetry to medium and large underwater scenes using, exclusively, images
captured using monocular off-the-shelf cameras [32,33].

In this study, we developed a suite of integrated algorithms that incorporate existing methods for
measuring structural complexity underwater to allow their application to monocular data obtained
from off-the-shelf underwater cameras. While this is not the first time that Structure from Motion
(SfM) has been applied underwater [16,31–33,43], this framework integrates existing methods in an
unprecedented way. Our approach involves a set of multi-view, image-processing algorithms, which
provide rapid and accurate 3D reconstruction from images captured with a monocular video or still
camera. It is an innovative method for accurately quantifying structural complexity (and related
metrics) of underwater habitats across multiple spatial extents at cm-resolution. This framework
satisfies the following criteria, which define the need for measuring structural complexity from
historical data captured using only off-the-shelf cameras in various underwater habitats. There are
existing methods that accomplish one or more of the outlined requirements [31–33]; however, this is
the first study to present evidence and demonstrate how this approach satisfies all of the requirements
over multiple spatial scales. Thus, successfully demonstrating how historical data (i.e., benthic video
transects) can be used to build 3D terrain reconstructions and its suitability for coral reef monitoring
(i.e., cost effective):

(i) It works for images recorded in moderately turbid waters with non-uniform lighting.
(ii) It does not assume scene rigidity; moving features are automatically detected and extracted from

the scene. If the moving object appears in more than a few frames, the reconstructed scene will
contain occluded regions.

(iii) It allows large datasets and the investigation of structural complexity at multiple extents and
resolutions (mm2 to km2).

(iv) It allows in situ data acquisition in a non-intrusive way, including historical datasets.
(v) It enables deployment from multiple imaging-platforms.

(vi) It can obtain measurement accuracies <1 mm, given that at least one landmark of known size is
present to extract scale information. Note that as the reconstruction is performed over a larger
area its resolution will decrease.

Here, we describe this framework and demonstrate its ability to accurately measure structural
complexity across three spatial extents, using coral reefs as an example. Note that while we provide
examples of three extents here, it is possible to calculate structural complexity estimates across multiple
extents and resolutions from these 3D models. We use data collected exclusively from monocular
video/photo sequences to generate highly accurate 3D models of a single coral colony, a medium reef
area and 2 km long reef transect, from which measurements of structural complexity (surface rugosity,
volume rugosity, volume, and surface area) are obtained.
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2. Materials and Methods

We combined existing algorithms to generate a 3D dense topographic reconstruction of
underwater areas at three spatial extents: (1) a branching coral colony taking multiple monocular still
images; (2) a 400 m2 reef area imaged with monocular video sequences by a diver; and (3) 2 km long
(4–30 m wide) reef transects imaged with video sequences by a diver using an underwater propulsion
vehicle (see Gonzalez-Rivero et al. 2014 [46] for details). Regardless of the extent the same procedure
is applied (Figure 1). There is no intrinsic method for computing the absolute scale within the scene
from monocular data; this was resolved by using known landmarks, which were measured in situ.
Reference markers were not used because we wanted to assess the suitability of this framework to
historical data sets, where reference markers or ground control points (GCP) are not normally present,
but where manually-measured in situ landmarks are common. The following sections describe each
step of the processing method and provide the details of the algorithms involved, which apply to all
scales unless otherwise specified.
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Figure 1. Processing modules and data flow for underwater 3D model reconstruction and
validation process.

2.1. Data Acquisition

2.1.1. Calibrated Data: Coral Colony

A total of 84 underwater still images of a branching Acropora spp. coral were captured in a
swimming pool using a Canon PowerShot G2 camera enclosed in a custom IkeLite housing, with a
resolution of 2272 ˆ 1704 pixels, and images were captured at an altitude of 1–1.5 m. At this resolution,
a pixel spans roughly 174 µm of the surface of the coral (the colony was ~35 ˆ 25 ˆ 15 cm in size).
Calibration of key parameters, such as focal length is not required for this framework as they are
computed concurrently with the 3D reconstruction. The camera was initially calibrated by imaging
a standard planar calibration grid, with 70 ˆ 70 mm squares, underwater from 21 viewpoints over
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a hemisphere with an approximate altitude of 0.8 m (Figure 2). A modified version of the Matlab
Calibration Toolbox [47] was used to compute the intrinsic and distortion parameters automatically [48]
for details see [29] and SM5.Remote Sens. 2016, 8, 113 5 of 21 
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2.1.2. Uncalibrated Data: Reef Area and Reef Transect

An area on the forereef of Glovers Reef (87˝481 W, 16˝501 N), located 52 km offshore of Belize in
Central America, was filmed and mapped by divers during 2009. The perimeter of approximately
400 m2 of forereef was marked using a thin rope (5 mm in diameter), and subdivided into 4 m2 quadrats
by marking the corners of each quadrat. The reef area was filmed using a high-definition Sanyo Xacti
HD1010 video camera (1280 ˆ 720 at 30 Hz and 30 frames per second, field of view 38–380 mm range)
in an Epoque housing held at an altitude ranging between 1 and 2 m following the contour of the reef
(depth of 10–12 m).

Quadrats were imaged consecutively in video-transects (20 m ˆ 2 m each) following a
lawnmower-pattern, with at least 20% overlap between each consecutive transect. This process was
repeated to reconstruct the entire reef area of 400 m2. Multiple overlapping images were obtained from
the video data. The SfM algorithm computed the location of the camera relative to the reconstructed
scene by assuming that the corals being imaged were not moving. Hence, the location of the camera
relative to the scene did not affect the reconstruction [49,50].

Kilometer-length transects were collected using a customised diver propulsion vehicle (SVII)
where two Go-Pro Hero 2 cameras in a stereo-housing (Go-Pro Housing modified by Eye-of-mine with
a flat view port) are attached facing downwards (see [46] for details). Video data in high-definition, at
a rate of 25 frames per second, were captured at a constant speed of 1 knot and at 1.5–2 m altitude
from the substrate, following the 10 m depth contour line of the reef. To alleviate the curve distortion
introduced by the focal properties of the wide-angle lenses, the cameras were configured to “narrow”
Field of View (FOV), which brings the FOV from 170 to 90 degrees. Using these settings, the intrinsic
and extrinsic parameters of the camera configuration were obtained using a customized calibration
toolbox in MatLab [48]. Finally, the 3D reconstruction applied the corresponding calibration parameters.
It is important to point out that the calibration was only used for setting the camera configuration,
rather than for calibrating the actual reconstruction of every dataset.

Using this framework, 2 km-linear transects have been captured per dive (45 min) in major
bioregions around the world: Eastern Atlantic, Great Barrier Reef, Coral Sea, Coral Triangle, Indian,
and Pacific Oceans [46]. Cameras are synchronized in time with a tethered GPS unit on a diver float,
which allow geo-referencing the images collected as the SVII move along the reef [46].
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2.2. Image Processing

The initial automatic calibration procedure consisted of feature extraction and tracking over a
short video-sequence, followed by simultaneous camera positioning and intrinsic parameter estimation.
The intrinsic parameters obtained in the first phase were used to compute camera poses and dense 3D
point clouds of the entire scene [51]. Finally, an implicit surface reconstruction algorithm was used to
fuse the 3D points.

2.3. Reconstruction Overview

2.3.1. Structure-from-Motion (SfM)

To compute camera poses and 3D sparse points we modified the SfM system from [52] for
application to monocular cameras. This first step calculated a set of accurate camera poses associated
to each video frame along with sparse 3D points representing the observed scene.

2.3.2. Depth of Field-of-View

The second step established (on a per-frame-basis) the depth of field-of-view of the scene
associated with all the pixels in each frame [53–55]. Once the depth of a pixel location was determined,
we back-projected a pixel into the scene as a 3D point on the surface of an object [51]. This algorithm
generates highly accurate sets of dense 3D points for each frame, e.g., >80% of pixels have less than
30 mm error for ranges >5 m; for details see [29]. This framework estimated depth of field-of-view with
an iterative algorithm called the Semi-Local Method (Algorithms 1 and 2 in [51] ) where) (i) a plane
sweep finds an initial depth estimate for each pixel [56]; (ii) depth is refined by assuming that depths
for neighboring pixels should be similar [57]; and (iii) depths are checked for consistency across
neighboring images.

2.3.3. Implicit Surface Reconstruction

Parametric 3D reconstruction methods have been proven problematic to maintain the correct
topography of 3D models [58,59]. Thus, step three employed an implicit 3D reconstruction method to
ensure accuracy of the resultant reconstruction, which fused 3D data (depth estimates) into a volume
of finite size that encapsulates the total extent of the object/scene [53–55,60]. Then, we processed the
volume and approximated a solution for the surface that best fits the observed data. To achieve this, this
framework computed a set of oriented 3D points to be inputted into the implicit surface reconstruction.
Then, we performed a RANSAC-type [61] plane-fitting procedure on the depth estimates, resulting in
a set of oriented 3D points for each image. The point set was then fused into a 3D polygonal model
using a Poisson reconstruction method [62]. This 3D polygonal model is the final representation from
which we compute relevant structural complexity metrics.

2.4. Model Reconstruction and Validation

2.4.1. Branching Coral Colony 3D Model

To obtain an accurate reference 3D model of the coral for validation, we imaged the coral
skeleton multiple times with a Cyberware Model 3030/sRGB laser-stripe scanner outside of the
water. The resolution of each scan was 350 µm. The laser scanner rotates completely around the
object in a continuous hemispheric trajectory to provide a 3D model. Due to occlusions, a total of two
scans were acquired with the coral in different poses for each of the scans. Each 3D laser model was
aligned using Iterative Closest Point [63], and then merged together to form the single reference model
(Figure 3A). Merging the multiple scans increases the effective resolution due to the increased density
of point measurements.

To obtain the test 3D model of the coral a total of 84 images were acquired underwater, low
quality (e.g., blurry) images were removed resulting in 60 images that were used to compute the
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reconstruction (Figure 2a,b). The piece of coral was flipped over halfway through the data collection
process to minimize occlusions and make the underwater 3D model more comparable to the validation
3D model, thus our accuracy applies to the entire surface area of the coral. In situ, it may prove difficult
to image a coral colony from all angles, however the quoted accuracy still applies to all surfaces seen
in the collected data. The inability to rotate the coral will potentially result in occlusions, but will not
affect the accuracy of the proposed method. The test and the reference models were subsequently
aligned using Iterative Closest Point [50] to evaluate the accuracy of the underwater 3D reconstruction.
The alignment parameters consisted of a rotation, translation, and uniform scale. In other words, the
alignment process enabled by the integrated algorithm framework is able to detect common features
and correlate them with other views of the same area. The entire contribution of this work is the
possibility to take images from multiple views and align or fuse them together to create accurate and
dense 3D reconstructions.
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Figure 3. (A) Laser-scan reference model of the branching coral acquired with a Cyberware laser-stripe
scanner; and (B) final 3D reconstruction of the coral.

2.4.2. Reef Area and Reef Transect 3D Model

Reef Area Validation Data

Divers mapped and characterized the benthos of the reef area. For each quadrat all structures
with a diameter ě 10 cm were mapped and measured to the nearest centimeter. Three measurements
were taken from each structure: (1) maximum diameter (x); (2) perpendicular diameter (y; both axes
perpendicular to the growth axis); and (3) maximum height (z; parallel to the growth axis).

Corals were assumed to have an elliptical cylinder shape, and simple geometric forms were
assumed to estimate the surface area and volume of each colony from morphometric parameters
measured in situ (z, x, and y). Equation (1) was used to calculate the structural complexity of each
quadrat (SCquadrat), as a proportion of the total volume of all structures in a quadrat and the total
volume of that quadrat, assuming the same maximum height across all quadrats.
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SCquadrat “

ř

πabhcolony

4lquadrat wquadrat hquadrat
(1)

where a is the radius of the maximum diameter of an ellipse representing the top of a coral colony
(x/2) and b is the radius of the perpendicular diameter to the maximum diameter of the same ellipse
(y/2); hcolony is the maximum height (z) of the same colony; lquadrat and wquadrat denote the length
and width of each quadrat, respectively, and htransect denotes the maximum height of all quadrats.
A highly-complex quadrat would have a value close to 1, while a quadrat with very low complexity
would have a value close to zero. The volume and surface area were calculated for each quadrat by
combining the spatial distribution and size data using the equations in SM1.

Reef Area Underwater 3D Model Reconstruction

As the camera parameters (focal length, principle points, distortion, etc.) were unknown for this
dataset, calibration results were determined during processing using known landmarks in the scene.
The reconstruction of each transect may be rendered at different relative scales because our framework
is based on monocular data. Thus, each transect was individually reconstructed and scaled to the same
global scale using in situ measurements.

To validate the underwater 3D model of the reef area we measured x, y, and z of each feature in
the 3D model and applied Equation (1) to calculate structural complexity. The initial reconstructions
did not lie in the same coordinate system as in situ measurements; thus, metric dimensions were used
to align reconstructions to the same coordinate system. A robust plane-fitting algorithm was applied
to determine the normal direction of sea floor in a traditional coordinate system in the Euclidean space.
This framework excluded moving objects (fish, gorgonians, etc.) from the final reconstruction when an
object was not seen in at least three frames (number is user specified), based on the iterative process
presented in McKinnon Smith and Upcroft [51]. Sometimes this process generates sparsely-rendered
regions in the reconstruction; gathering additional video data in regions with significant moving
features would resolve this issue.

The maximum height for each quadrat was computed by Equation (2):

hmax piq “

#

h1
max piq , h1

max piq ą h2
max piq

h2
max piq , h1

max piq ă h2
max piq

(2)

where, hmax(i) is the maximum height in the i-th quadrat, h1
max(i) and h2

max(i) denote the
maximum height for the i-th quadrat on the left half-transect and the right half-transect, respectively.
The structural complexity of the first transect is defined as the volume integral over each quadrat as in
Equation (3):

SCquadrat piq “
ż

hi px, yq dx dy (3)

where i is the index of the quadrats in the first transect, hi(x, y) is the height distribution of each
quadrat. While dx and dy denote the size of the grid by which each quadrat is approximated.

Reef Area Underwater 3D Model Validation

We used two metrics to validate the underwater 3D model of the reef area: (1) maximum height
(measured in situ); and (2) structural complexity. We directly compared height measured in situ with
height measured from the virtual underwater 3D model. Similarly, we used a two-tailed pairwise
t-test, to compare the structural complexity calculated from the morphometric parameters measured
in situ against the structural complexity calculated from morphometric parameters measured in the
underwater 3D model. The accuracy of the underwater 3D model was evaluated by the relative
absolute error (RAE) as in equation (4) [64]. The RAE calculates a proportion of the difference between
measurements; e.g., zero reflects that the values are exactly the same, while 0.5 reflects a 50% difference
between values. In this study, we arbitrarily chose 25% as a threshold to determine a large error.



Remote Sens. 2016, 8, 113 9 of 21

RAE “
|XE ´ XG |

XG
(4)

where XE is the structural complexity calculated from the underwater 3D model, and XG from the in
situ measurements. Finally, we compared the structural complexity calculated from the morphometric
parameters measured in situ against the structural complexity calculated directly from the underwater
3D model.

Reef Transect Underwater 3D Model Reconstruction

The frames from video collected along the 2 km-transects were extracted and divided into
200-frame sections to reconstruct 3D models for every 10 m reef transect sections, approximately,
along the transect. This procedure allow for accounting cumulative projective drift and hence model
distortion [65] by resetting the reconstruction parameters every 200 frames. While two cameras were
used in stereo for capturing video data, here the reconstruction of the 3D model was done using
the left camera and only using one frame of the right camera, per every 10 m section, to aid scaling
the model. Camera parameters (focal length, principle points, distortion, etc.) were calibrated using
track-from-motion algorithms of a reference card (sensu [64]). Parameters were optimized to a single
set for all reconstructions. Using these parameters, the protocol described above is applied to each
subset of frames to produce 3D model reconstructions along the entire 2 km transect.

Reef Transect Underwater 3D Model Validation

Structural complexity, from transect models, was calculated as the surface rugosity index (SR),
defined by the ratio of convoluted surface area of a terrain (A), and the area of its orthogonal
projection of a 2D plane (Ap) Equation (5), for every tracked point in the point-cloud generated
by the reconstruction (sensu [38]). Each point on the model (xy) served as a centroid of a 4-m2 quadrat,
delineating portion of the model where surface rugosity was calculated. This way, surface rugosity
was estimated as a continuum along each transect:

SRxy “
A

Ap
(5)

For the purpose of validation, linear rugosity was also estimated in the field using the chain-tape
method [15,25], where a chain (10 m length and 1 cm link-size) was laid over the reef, following the
reef contour in a line. Linear rugosity was then calculated as the ratio of the length of chain in a
straight line (10 m) by the linear length of chain when following the reef contour. The estimation of
surface rugosity from the 3D models, described above, follows the same principle, but considering
two dimensions, rather than a linear assessment.

Linear and surface rugosity are highly correlated [38], thus we use linear rugosity to validate the
3D model surface rugosity estimations. Therefore, using the method described above, video data was
captured over 17 sections where the chain was laid, and the accuracy of the model-derived surface
rugosity (Acc) was estimated as one minus the relative absolute difference between the chain-tape (Rc)
linear rugosity and the median values of model-derived (Rm) surface rugosity Equation (6). Accuracy is
here presented as a percentage; therefore 100 multiplied by the relative accuracy. Values approximating
zero indicate high dissimilarity between the surface rugosity and linear rugosity values; while values
close to 100 indicate high accuracy. However, it is necessary to state that, while the chain-tape method
is a standard approach in ecology to estimate coral reef rugosity, it is one of a variety of metrics to
assess structural complexity, not the accuracy of the 3D reconstruction directly:

Acc “

˜

1´

ˇ

ˇRc ´ Rm
ˇ

ˇ

Rc

¸

100% (6)
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3. Results

3.1. Branching Coral: Laser-Scanned Model vs. Underwater 3D Model

The accuracy of the 3D reconstruction generated by this framework was <1 mm over 90% of the
surface of the coral, with the largest error being 1.4 mm, further details in [29]. Images were captured
under the water using a CCD camera with a resolution of 2272 ˆ 1704 pixels at a distance of 1 m–1.5 m.
At this resolution, the Ground Sample Distance (GSD), or size of a pixel in the image, is approximately
3.144 µm per pixel on the surface of the coral which is approximately 35 mm ˆ 25 mm ˆ 15 mm in
size. The average alignment error between vertices of the two models was 0.7 mm, indicating a high
accuracy of the underwater 3D reconstruction. We were able to flip this piece of coral over to obtain
images of all surfaces; thus, our accuracy applies to the entire surface area of the coral. The error of the
depth estimates over the entire image is illustrated with a cumulative distribution function (CDF) as a
percentage of total pixels (Figure 4). Seventy-seven percent (77%) of the pixels in the reconstruction
had a depth within 0.3 mm of the ground-truth depth (Figure 4, SM2 video of the underwater 3D
model of branching coral).
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Figure 4. Cumulative Distribution Function (CDF) for depth estimates, given as a percentage of the
total pixels in the reconstruction. The CDF gives the percentage of total pixels in the image with
a variance less than or equal to a given value of σ. Here σ = 0.1 mm and 77% of the pixels in the
reconstruction have a depth that is within 3σ = 0.3 mm of the ground-truth depth.

3.2. Reef Area: In Situ Metrics vs. Underwater 3D Model Metrics

The reef area was imaged using a high-resolution (1280 ˆ 720) Sanyo Xacti HD video camera at
a 1 m–2 m altitude to the planar reef area. The sensor size and focal length of our deployed camera
are 5.76 mm ˆ 4.29 mm and 6.3 mm, respectively. Thus, each image has an approximate footprint
of 1.8 m ˆ 1 m, and the corresponding GSD is approximately 0.14 cm per pixel over the surface of
the reef area. Note that the sea floor is not even, which indicates peak areas have even smaller GSD,
while valley areas have larger GSD. The average error and confidence interval (95%) in reef height
across all quadrats was 17.23 ˘ 13.79 cm (Figure 5a), and the maximum error in any given quadrat was
31.02 cm. The average (˘SE) accuracy for colony height across all quadrats was 79% ˘ 3% (Figure 5a).
Differences in maximum height where larger than 25% in quadrats 3 and 10. If these quadrats are
removed from the analysis, the average error and confidence interval for the remaining quadrats is
15.69 ˘ 8.2 cm (Figure 5a), with a maximum error of 23.89 cm. The accuracy when excluding these
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quadrats is 82% ˘ 2%. The analysis was run twice, once with and once without the quadrats, to
demonstrate the robustness of our framework to errors.

The structural complexity calculated from the morphometric parameters measured in situ did not
differ significantly to the structural complexity calculated from morphometric parameters measured
in the underwater 3D model (Figure 5b, p-value 0.359, SD = 0.1). Quadrat 1 was only partially
reconstructed due to human error during data acquisition (the camera only started recording half-way
through the quadrat), resulting in a difference between the in situ and the 3D estimations of structural
complexity for that quadrat (Figure 5b). Consequently, we compared the 3D model estimates with the
in situ data twice, once including all quadrats, and once excluding quadrat 1. Excluding quadrat 1 did
not make a significant difference (p = 0.937, SD = 0.02); thus, this framework is robust to error.

Assuming geometric shapes underestimated the structural complexity by almost 50% (Figure 5b),
probably because assuming geometric forms potentially introduces a large error when an object’s
cross-section is not an ellipse. Our framework empirically computed the exact measurements from the
3D model, by not assuming geometric forms, this framework yielded values much closer to the true
structural complexity of the reef (Figure 6, SM3 video of the 3D model of reef area).Remote Sens. 2016, 8, 113 11 of 21 
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Figure 5. (a) Comparison between the maximum height for quadrats 1–10: in situ measurements
(black), estimations from 3D reconstructed model (grey); and (b) comparison between the structural
complexity for quadrats 1–10: in situ measurements (black), 3D reconstructed model, which assumes
simple geometric forms (grey) and the underwater 3D reconstructed model, which takes into account
the actual shape (light grey). Structural complexity was calculated as in Equation (1), where a value of
1 represents a highly complex quadrat and a value of 0 a flat quadrat.



Remote Sens. 2016, 8, 113 12 of 21

Remote Sens. 2016, 8, 113 11 of 21 

 

 

 
Figure 5. (a) Comparison between the maximum height for quadrats 1–10: in situ measurements 
(black), estimations from 3D reconstructed model (grey); and (b) comparison between the structural 
complexity for quadrats 1–10: in situ measurements (black), 3D reconstructed model, which assumes 
simple geometric forms (grey) and the underwater 3D reconstructed model, which takes into account 
the actual shape (light grey). Structural complexity was calculated as in Equation (1), where a value 
of 1 represents a highly complex quadrat and a value of 0 a flat quadrat. 

 
Figure 6. Heat-map of structural complexity of a section of a 400 m2 reef area. Both x and y axes are 
marked in meters, each quadrat is 2 × 2 m. Structural complexity was calculated as in Equation (1), 
where a value of 1 represents a flat quadrat, and a higher value a more complex quadrat. 

3.3. Reef Transect: In Situ Metrics vs. Underwater 3D Model Metrics 

With and altitude between 2 and 3 m the GSD for the Go-Pro imagery ranged between 0.02 and  
0.03 cm per pixel. Similar to the reef area, GSD applies to planar images, so peaks would have a higher 
GSD while valleys would have a lower one. Having a reference object would increase the accuracy 
of the GSD estimation for a particular region along the reconstructed 3D transect. Using surface 
rugosity as a proxy measurement of structural complexity, we measured both surface rugosity and 

Index of quadrat

M
ax

im
um

 h
ei

gh
t p

er
 q

ua
dr

at
 (c

m
)

0

50

100

150
In situ measurements
Estimation from 3D model

(a)

1         2          3         4          5         6          7          8         9         10

0.0

0.1

0.2

0.3

0.4

0.5

St
ru

ct
ur

al 
co

m
ple

xit
y p

er
 q

ua
dr

at

In situ  SC
3D model SC (elliptic cylinder)
3D model SC (prism integral)

Index of quadrat

(b)

1         2          3         4          5         6          7          8         9         10

Figure 6. Heat-map of structural complexity of a section of a 400 m2 reef area. Both x and y axes are
marked in meters, each quadrat is 2 ˆ 2 m. Structural complexity was calculated as in Equation (1),
where a value of 1 represents a flat quadrat, and a higher value a more complex quadrat.

3.3. Reef Transect: In Situ Metrics vs. Underwater 3D Model Metrics

With and altitude between 2 and 3 m the GSD for the Go-Pro imagery ranged between 0.02 and
0.03 cm per pixel. Similar to the reef area, GSD applies to planar images, so peaks would have a
higher GSD while valleys would have a lower one. Having a reference object would increase the
accuracy of the GSD estimation for a particular region along the reconstructed 3D transect. Using
surface rugosity as a proxy measurement of structural complexity, we measured both surface rugosity
and linear rugosity in 17 transect-sections (Figure 7). Comparisons between linear rugosity, measured
in situ by the chain-tape method, vs. surface rugosity, measured from the reef transect 3D model,
resulted in a geometric mean of 85.3% ˘ 6.0% (˘95% CI, Figure 8). These results suggest the used
framework is highly accurate at small spatial extents and accurate at both medium and reefscape
extents (SM4 video of the 3D model of reef transect-section).
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Figure 7. Heat-map of surface rugosity of a section of a 500 m of the reef transect. Both x and y-axes
denote distance in metres, the transect width ranged from 4 to 30 m. Surface rugosity was calculated in
2 ˆ 2 m quadrats. Structural complexity was calculated as in [30], where a value of 1 represents a flat
quadrat and the index increases with habitat structural complexity.
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Figure 8. Accuracy of surface rugosity estimations from 3D reconstructions of transects when compared
against linear rugosity measured in the field by the chain-tape method. Panel (a) is the correlation
between surface and linear rugosity, while panel (b) shows the histogram of values recorded for
17 observations, where overall accuracy detected for this method was 85.3% ˘ 6.0% (geometric
mean ˘ 95% Confidence Interval).

4. Discussion

This study combined existing methodologies for generating accurate 3D models of underwater
scenes at multiple spatial extents using data gathered with off-the-shelf monocular cameras. We present
three examples where this framework was used to quantify surface area, height profiles, volume
and surface rugosity of coral reefs, across three different spatial extents and with high-resolution.
Additionally, the validation analyses showed accuracies ranging from 79% (reefscape) to 90% (coral
colony), in agreement with previous studies assessing accuracies for photogrammetric measures of
coral colonies [28,31,43,66–68]. These results show evidence of the utility of this framework to coral
reef ecology and monitoring, in particular given the rapid degradation of coral reefs worldwide, for
example they could enable the monitoring of coral reef flattening after a bleaching event [69]. While
recent photogrammetric studies have shown similar accuracies, worthy of highlighting is the capacity
of this framework to quantify 3D metrics of habitat structural complexity from historical data, captured
by off-the-shelf monocular cameras without reference objects present in the scene. In the following
sections we discuss the accuracy and efficiency of the framework here presented, its advantages and
limitations, its applications to measure and monitor reef structural complexity, and provide specific
examples of how this framework can bridge existing knowledge gaps in understanding drivers behind
reef biodiversity, function, and resilience of coral reefs.

4.1. Methodological Accuracy and Validation

Accuracy estimates from models ranged from 79% to 90%, according to the spatial extent (from
colony to reefscape). It is important to highlight that reference markers were not used because we
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wanted to assess the suitability of this framework to historical data sets (where reference markers or
GCP are not normally present); thus, accuracy of the models were measured using different reference
metrics for each spatial extent and, therefore, the interpretation of accuracy varies for each extent.
3D reconstructions of coral colonies could be contrasted against the most accurately available data,
laser reconstruction, which has sub-millimetre precision and accuracy [51]. This confirms that 3D
reconstructions from monocular cameras can recreate the three-dimensional complexity of coral reef
colonies with a very high resemblance to laser scanners and with enough precision to monitor key
processes, such as coral growth and erosion.

Given the challenges of underwater imaging (i.e., light attenuation and scattering), the increase of
morphological complexity at the reef level and the trade-off between coverage and imaging effort, our
next question was, could 3D reconstructions obtained applying this framework at large spatial extents
quantify habitat structural complexity? If so to what level of accuracy? The challenge for measuring
the accuracy of 3D models at the reef level was finding reference metrics that accurately captured
structural complexity. In the absence of having access to an alternative and method proved highly
accurate to recreate the three-dimensional structure of the reef, here we decided to use traditional
metrics as proxy values for reef complexity (e.g., rugosity, substrate height). Although highly useful
to understanding ecological processes and patterns [11,70,71], these metrics also introduce human
error and noise [38] and, therefore, this variability will be reflected on the accuracy metrics. Therefore,
the accuracy values here reported (79%–82%) for 3D reconstructions at reefscape scales reflects high
fidelity of model estimates to traditional and ecologically relevant metrics of reef complexity, while
using less detailed imaging techniques than the colony-scale exercise (e.g., downward facing video
sequences from scooters or diver collected data from lawn-mowing patterns). Hence, this accuracy
values do not reflect the accuracy of the 3D models per se, but rather the capacity of these models to
quantify structural complexity metrics of the reef, using traditional metrics as a reference.

Colony volume, surface area and height, among other first order metrics calculated directly from
3D reconstructions, may be more accurate references to evaluate the capacity of photogrammetry to
truly reconstruct the 3D structure of reef systems. Further studies, therefore, should look at evaluating
the accuracy of 3D reconstructions at capturing the metrics previously mentioned. Second-order
metrics offer the opportunity to evaluate these models and contrast them to current and traditional
approaches to assess habitat structural complexity in coral reef ecology [14]. Our results add to a
growing body of literature, which supports that SfM 3D reconstructions from underwater imagery are
a highly efficient method to measure and fast-track reef structural complexity [32,33,38]. For instance,
rugosity estimates from a linear extent of 100 m in the reef, using the chain-tape method, takes about
45 min. Using the method proposed here, where video data for 3D reconstruction can be collected
along a linear transect of about 2 km in 45 min, offer the possibility of broad-scale assessment of reef
rugosity, with an average accuracy of 85% [46].

4.2. Advantages of This Framework

The processing time of imagery collected in the field is a bottleneck for researchers and
automatic/semi-automatic processing methods are the key to overcome this hurdle [41]. The significant
advantages of the image processing applied by this framework over some existing methods are:
(1) increased accuracy with reduced processing time (but see [31–33]); (2) ability to use uncalibrated
monocular data and, thus, historical imagery; and (3) application of vision-only processing; making our
framework highly efficient and cost-effective. Any measurement of spatial features (i.e., surface area)
within an underwater 3D model reconstructed with this framework is automated, thus significantly
reducing post-processing time from multiple weeks of human time to a few hours of computation
time. For example, a video of a reef area (~400 m2) can be converted into a 3D model on a laptop in the
field during a 1 h surface interval. The benefits of accurately quantifying habitat complexity in the
field and across multiple scales outweigh the need of advanced mathematical knowledge required to
process the data and obtain these metrics.
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This framework can be applied to any imagery, including historical data without any reference
markers or GCP, the video footage used for the reef area was not originally taken with 3D reconstruction
in mind; in fact, this video footage was collected to keep a permanent visual record of the reefs by a
biologist who had no prior knowledge of photogrammetry. Thus, this framework can be applied to
historical footage to investigate temporal and spatial variability in structural complexity of underwater
organisms and habitats. This is a significant improvement of any existing method in the fields of
marine and aquatic ecology.

This framework offers multiple advantages over the existing approaches of measuring benthic
features in hard bottom underwater habitats. Measuring corals in situ is labor intensive and time
consuming, especially if the goal is to measure every coral colony at an ecologically-relevant scale (i.e.,
~400 m2). The implicit method applied by this framework is suitable for relatively small spatial extents
(400 m2) but can be stitched together for larger-extent reconstructions (i.e., transects and see [54]).
As the reconstruction is performed over a larger area its resolution will decrease, this framework
is able to reconstruct a 3D model over a 400 m2 area with a accuracy of a few centimetres and a
maximum error of 31 cm, while for the reefscape transect accuracy was 85% compared to traditional
chain-tape methods. Despite the fact that in this study we flipped the coral colony once to obtain a 3D
model capturing the entire surface area of the colony, the same approach could be applied to in situ
colonies without flipping them, and the accuracy would be the same, but occluded areas would not
be reconstructed.

4.3. Limitations and Further Improvements of This Framework

Quadrats 1, 3, and 8 were only partially reconstructed due to human error (quadrat 1) or occlusion
by large gorgonians (quadrats 3 and 8). A high density of large “swaying” objects was present in these
quadrats and. Thus. removed from the scene, resulting in the highest errors (maximum of 31 cm).
Without a clear view of the rigid bottom, we were unable to accurately represent the regions around
the gorgonians. This algorithm would work best in reefs with small “swaying objects” density (e.g.,
gorgonians, algal fronds). Alternatively, an area with a high gorgonian density could be filmed under
calm conditions, to minimize the swaying of gorgonians and maximize the imaged area of the rigid
bottom, however an algal forest would most likely not be suitably reconstructed using this framework.
Similarly, a dense bed of branching coral might have more occlusions than a sparse bed of a similar
morphology; thus, the signal to noise ratio would increase and the accuracy of measurements estimated
using 3D models decrease. These, and similar, limitations should be taken into account when applying
this framework. A drift of the algorithm introduced the error in quadrat 10. The camera path drifted
over time due to the use of an uncalibrated camera. While not required, when available, calibrated
cameras, or fusing data with other sensors, e.g., GPS, or a depth meter, improves camera poses
estimation [30] and prevents drift in camera poses, this may be an improvement worth considering in
future applications (and was applied for the reef transect). Despite these errors, in practice they did
not represent a significant drawback for the overall area reconstruction and the results presented here
greatly improve upon current methods of measuring structural complexity underwater. In short, there
are four ways in which the accuracy of this framework could improve without greatly increasing costs:
(1) improved online-calibration could minimize the drift in the camera position estimation and/or
utilizing calibrated cameras could offer a significant increase in accuracy [72]; (2) gathering more video
data of the region; (3) following good practices in data collection to minimize human error (SM5 good
practices video); and (4) applying color correction techniques to video data [16].

A provisional limitation of this framework is that intermediate programming knowledge is
needed to successfully run each step of our algorithm. Future research will invest in the development
of a user-friendly platform that allows non-experts to process images successfully. In the meantime,
there are several user-friendly software packages that allow similar SfM algorithms to be implemented
on images and obtain 3D models at medium spatial extents. For instance, tools such as PhotoScan by
Agisoft are capable of generating similar results for reef areas, up to ~20 ˆ 6 m in [33,68] or 250 ˆ 1 m
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in [32], Open-source and free tool examples are VisualSFM [73] and Meshlab [74]. Autodesk offers
a package called Recap360 and Memento that also uses SfM algorithms to reconstruct 3D models of
small-scale scenes, their free trial version only allows 50 images to be uploaded.

4.4. Ecological Applications

This framework allows the acquisition of 3D data from monocular video or images captured
underwater with, and without, reference objects. This has broad applications for studying underwater
ecosystems and assessing long-term variability over multiple spatial extents. Depending on the
accuracy and precision required for a desired application, adjustments to the processing techniques
may be implemented (e.g., number of images, resolution of mesh). Possible extensions to this study
involve the analysis of existing underwater video sequences. It is important to note that not all
existing sequences would be suitable for 3D model reconstruction nor acquire the same accuracies
as reported here, and this would have to be assessed on a case-by-case basis. Another extension
is the implementation of this framework onto images obtained by underwater vehicles to improve
automated data collection. In the latter scenario, the models can be computed on-board the vehicle,
with adaptive path-planning to fill in gaps or revisit areas of importance autonomously.

A plethora of key ecological questions, such as the spatial distribution of refugia and resources, can
be investigated by quantifying structural complexity using 3D reconstructions like the ones presented
in this study. At small extents like the coral colony example presented in this study, this framework can
be applied to quantify coral colony growth/erosion rates and shed light on key processes underlying
reef carbonate budgets in the face of ocean warming [75,76]. The larger extent examples presented
in this study (reef scape and transect) stress the opportunity to test the long settled paradigm of
reef flattening as a result of massive coral bleaching [7,77,78]. In fact, a similar approach, yet using
significantly more expensive tools, recently unveiled evidence of a significant increase in reef structural
complexity as a result of massive coral bleaching in Western Australia [69].

The relationship between coral reef structural complexity on key ecological processes, such as
herbivory and predation, as well as fisheries productivity could be quantified, monitored, and predicted
if this framework was adopted by a wide range of scientists [71,79]. Coral reefs face multiple threats,
resulting in a decrease of live coral and, consequently, a decline in habitat structural complexity [7,77].
Habitat complexity mediates trophic interactions; hence, the growth and survival of fish may be
impacted by a change in habitat structural complexity. For instance, the size and availability of prey
refugia would likely decrease with decreasing structural complexity, resulting in increased competition
amongst reef fishes [80]. Rogers et al. [71] modeled the links between prey vulnerability to predation
and reef structural complexity, and showed that a non-linear relationship exists between habitat
structural complexity and fish size structure. They conclude that a loss of complexity could result in a
three-fold reduction in fisheries productivity. This model was run on simulated complexity data and
could be significantly strengthened by the incorporation of habitat structural complexity metrics such
as the ones produced by our framework. Similarly, questions relating to resource availability, diversity,
and abundance of important reef species could be investigated by using this framework to improve
on the precision and spatial extent of habitat complexity metrics, such as those used by [3,70]. These
examples demonstrate how the presented framework could contribute to both an improvement of
coral reef monitoring and a better understanding of the drivers behind reef biodiversity, function, and
resilience [11,14,81,82].

The variability in space and time across multiple spatial extents and resolutions in coral reef
dynamics reveals the need for increasing the spatial extents at which coral reef research and monitoring
is mostly executed. Yet preserving high-resolution data has been shown to be crucial in understanding
ecosystem trajectories and capturing high heterogeneity in coral reef dynamics [83], making remote
sensing applications, such as the framework presented here, an ideal solution that should be considered.
This means that a multidisciplinary and large group of researchers need to tackle the potential
ecological applications of close-range photogrammetry. In turn, for such a framework to accurately
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quantify habitat structural complexity and be useful, it needs to be efficient, cost-effective, and
applicable by non-experts. Ideally, it should also be applicable to historical data. The framework
presented here meets all of these requirements, making it ideal for incorporation into coral reef
monitoring and research.

5. Conclusions

This study, integrated existing algorithms into a framework that allows the acquisition of 3D data
from uncalibrated monocular images captured underwater. This framework can incorporate historical
images; it works for images recorded in moderately turbid waters with non-uniform lighting; it does
not assume scene rigidity; it allows for large datasets; it works with simple in situ data collection
techniques; it enables deployment form multiple platforms; and it obtains accuracies of less than 1 mm
at small spatial extents.

Validating the accuracy of this and similar methods across large spatial extents remains elusive
and traditional methods (e.g., geometric estimation of coral colony volume or surface area, chain-tape
derived linear rugosity) are likely underestimating accuracy due to their high variability and potential
to underestimate actual values. Although traditional metrics are related to important ecological
processes [70] and ecosystem trajectories [71], they can be extremely time consuming or difficult
to replicate reliably across studies [9]. In conclusion, the framework presented here can cheaply
and efficiently provide ecological data of underwater habitats and improve existing methods. This
framework can be incorporated into existing studies and monitoring protocols to evaluate key
aspects of coral reefs such as, but not limited to, habitat structural complexity. Thus, using SfM
and photogrammetry can improve our understanding of underwater ecosystems’ health, functioning,
and resilience, and contribute to their improved monitoring, management, and conservation [11,14].

Supplementary Materials: SM1 Equations used to calculate volume and surface area per quadrat in the reef area;
SM2 Video of the 3D model of the branching coral colony; SM3 Video of the 3D model of the reef area; SM4 Video
of the 3D model of the reef transect; SM5 Video of good practices when collecting image data for applying this
framework; The underwater data sets, along with ground-truth laser scan are freely available, and can be acquired
by contacting Ben Upcroft (ben.upcroft@qut.edu.au).
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