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Abstract: Landslides often cause economic losses, property damage, and loss of lives. Monitoring
landslides using high spatial and temporal resolution imagery and the ability to quickly identify
landslide regions are the basis for emergency disaster management. This study presents a
comprehensive system that uses unmanned aerial vehicles (UAVs) and Semi-Global dense Matching
(SGM) techniques to identify and extract landslide scarp data. The selected study area is located
along a major highway in a mountainous region in Jordan, and contains creeping landslides induced
by heavy rainfall. Field observations across the slope body and a deformation analysis along the
highway and existing gabions indicate that the slope is active and that scarp features across the
slope will continue to open and develop new tension crack features, leading to the downward
movement of rocks. The identification of landslide scarps in this study was performed via a dense
3D point cloud of topographic information generated from high-resolution images captured using
a low-cost UAV and a target-based camera calibration procedure for a low-cost large-field-of-view
camera. An automated approach was used to accurately detect and extract the landslide head
scarps based on geomorphological factors: the ratio of normalized Eigenvalues (i.e., λ1/λ2 ě λ3)
derived using principal component analysis, topographic surface roughness index values, and
local-neighborhood slope measurements from the 3D image-based point cloud. Validation of the
results was performed using root mean square error analysis and a confusion (error) matrix between
manually digitized landslide scarps and the automated approaches. The experimental results using
the fully automated 3D point-based analysis algorithms show that these approaches can effectively
distinguish landslide scarps. The proposed algorithms can accurately identify and extract landslide
scarps with centimeter-scale accuracy. In addition, the combination of UAV-based imagery, 3D
scene reconstruction, and landslide scarp recognition/extraction algorithms can provide flexible and
effective tool for monitoring landslide scarps and is acceptable for landslide mapping purposes.

Keywords: landslides scarps; geomorphology; slope; surface roughness; Semi-Global dense matching
(SGM); unmanned aerial vehicles (UAVs)
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1. Introduction

High urbanization rates and unplanned settlements expose the residents of urban areas to natural
hazards-related risks. Earthquakes, floods, and landslides are among the major threats to urban
areas [1,2]. During the 1990s, nearly nine percent of the world’s natural disasters were landslides,
which are difficult to predict [3–5]. Landslides are a natural geological phenomenon that is widely
recognized as an important process in the transport of sediment. They occur on a wide variety of
spatial and temporal scales in many mountainous areas [6–12], and identifying the smallest detectable
area is important because small landslides are very likely to broaden under heavy rainfall conditions.
The accurate detection and quick identification of small landslides are crucial for adopting appropriate
mitigation measures and efficient decision-making strategies [13–15]. In recent years, an increasing
number of studies have been conducted worldwide regarding geohazard susceptibility mapping and
risk assessment. Traditional landslide mapping methods are typically based on interpretations of aerial
photography and field survey inspections, which are used to better understand the characteristics
of landslides [11,16]. The photographic, or image interpretation, approach can be adapted and
implemented manually, automatically, or semi-automatically [17,18]. Depending on the scale and
spatial resolution of the image, the details of the extracted geomorphologic features can be significantly
affected. Singhroy [19] asserted that an aerial image scale of 1:25,000 is considered the largest
scale at which one can properly interpret slope instability phenomena from aerial photographs.
Mantovani et al. [20] suggested that the best image scale is 1:15,000 because the disrupted topography
of a landslide scarp can be clearly identified at this scale. To achieve a landslide map with high
accuracy and reliability, manual interpretation requires a well-trained geologist to delineate landslides
in a stereoscopic environment. This process is time- and labor-intensive [17,18]. Alternatively, ground
surveys with GPS and a total station are also time-consuming and have sparse spatial coverage,
which results in the omission of fine-scale terrain structures in the resulting digital surface models
(DSMs) [21]. Aside from being inaccessible and time-consuming, ground surveys and fieldwork are
also subjective and prone to human and instrumental errors. Traditional strategies are unlikely to
provide a satisfactory solution, especially for small-area investigations where mass movement rates
are slower [16,22]. For these reasons, researchers have adopted remote sensing techniques in their
research methodology [8,9,20,23–26].

A number of studies have explored the feasibility of an automated approach using satellite
or airborne imagery and object-based image analysis [27–30]. The performance of this approach is
limited due to the method’s inability to distinguish the Earth’s surface changes. In addition, improper
processing strategies impact the adjacent pixels, resulting in low efficiency, and require machine
learning theories, such as image classification and segmentation. This process requires large and
remarkably different learning samples or a priori knowledge. It is also difficult to detect the causes of
changes in information, which can lead to incorrect identification. Li et al. [31] used multi-resolution
segmentation and object features from a digital terrain model and high-resolution satellite images.
They encountered problematic results due to the presence of landslide and non-landslide pixels present
along the landslide borders, which can directly affect classification accuracy.

Others have attempted to use a combination of satellite imagery and digital elevation models
(DEMs). Barlow et al. [32] combined Landsat enhanced thematic mapper plus (ETM+) imagery and the
use of DEM-derived geomorphometric data to detect and classify fresh translational landslide scarps
within an area of the Cascade Mountains in British Columbia, Canada. They attempted to overcome
the problem of unreliable detection of most types of landslides by segmenting the images and using
the geomorphometric data. This method had a 75% overall accuracy in the detection of landslides that
were over 1 ha2. The abovementioned methods are less effective than Light Detection and Ranging
(LiDAR) at detecting large landslides that have experienced significant historical activity [33]. The use
of LiDAR technology for landslide identification has become increasingly popular in digital terrain
modelling [12,34–40]. LiDAR is a valuable tool in geology [41], geomorphology [12], and hazard
reduction efforts. Only a few studies have attempted to develop computer-assisted methods for
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extracting landslides from single or multiple pulse LiDAR data via pixel-based analysis [4,12,42].
Schulz [33,43] used a LiDAR DEM to identify the topography of the Puget Sound region of Seattle,
USA. They found LiDAR data to be useful in identifying complex large-scale landslides and for locating
potential landslides in the area. Schulz [33] used a LiDAR DEM with a 2 m resolution to produce
slope and aspect-shading maps with azimuth angles of 45˝, 135˝, and 315˝ to identify landslides.
Miner et al. [44] used a LiDAR DEM to interpret old landslides and identify potential landslides in the
Victoria Otway Ranges near the Johanna area of Australia and successfully extracted vegetation from
real ground elevation and shaded maps with different aspect directions to verify the landslide detection.
Airborne LiDAR data and imagery are safe, accurate, and able to achieve a valuable top-view. However,
the extremely high cost associated with the use of aircraft and its time-consuming nature makes this
strategy an impractical solution, especially for investigations of small areas. Leshchinsky et al. [45]
used LiDAR DEMs and head scarps to perform a semi-automated landslide inventory comparing three
different study areas. They noted an increase in computational cost associated with post-processing
data, which became especially prominent when one or more of the following parameters increased:
study area size, input parameters, and resolution of the datasets.

To overcome the previous drawbacks of airborne LiDAR, the development of other active
remote sensing techniques, such as terrestrial laser scanning (TLS), are making it possible to collect
dense 3D point cloud for sites of interest. TLS has attracted interest for use in landslide studies,
including (1) landslide detection and characterization [46,47]; (2) hazard assessment and susceptibility
mapping [41]; and (3) modelling and monitoring [40,48–52]. A comprehensive review of laser
scanning technology and its applications in landslide investigations can be found in the work of
Jaboyedoff et al. [53].

This technology is not without limitations. These limitations include orientation biases that occur
when the TLS line of sight is nearly parallel to the orientation of the discontinuity, occlusions that
occur when parts of a rock face cannot be sampled because it is obscured by protruding surfaces, and
truncation that occurs when the exposure of the discontinuity is less than the available resolution
of the TLS point cloud. The TLS results can have occluded areas that leave gaps in the data due to
shadows, truncated data, and orientation biases from sensor positioning. TLS does not eliminate the
need for visiting the landslide site because these devices have a limited range, and a larger ranges
(i.e., the greater distances between the scanner and the object) lead to lower accuracies.

The precision of the measurements, the amount of time, and money required to conduct these
measurements are important considerations when creating a landslide inventory [54]. It is not necessary
to reach sub-centimeter precision when monitoring shallow landslides because the effort is directed
towards evaluating the entire landslide body [55]. The need for high-accuracy measurements cannot
be satisfied by traditional mapping methods due to the limitations in financial and technical resources.
High-resolution topographic data are necessary for the morphological analysis of landslides [4].
Identifying the smallest detectable area possible is important because a small landslide has a high
probability of broadening as a result of heavy rainfall. Recent advances in low-cost digital imaging,
navigation systems, and software development have made it possible to accurately reconstruct 3D
surfaces without using costly mapping-grade data acquisition systems. Furthermore, advancements in
mobile mapping systems, such as unmanned aerial vehicles (UAVs), have made accurate 3D surface
reconstruction more feasible whenever and wherever it is required. When small target areas need to
be examined, a UAV is a better and more cost-effective choice than other platforms because UAVs are
highly portable and are dynamic acquisition platforms. UAVs combine the advantages of vertical aerial
photogrammetry and the high resolution of ground-based images. UAVs have the ability to fly at low
altitudes and slow speeds and to reach areas that are not accessible from the ground or with manned
aircrafts [56]. Moreover, these systems can be stored and deployed at a minimal expense [56–58]. These
characteristics make UAVs an optimal platform for affordable rapid responses in mapping applications;
consequently there is great interest in utilizing them in natural hazard applications.
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Recently, 3D object reconstruction using UAV systems have become a popular area of research.
This technology is currently used in a wide variety of applications that span across many fields
such as, soil erosion [59,60], landslides or rocky surfaces inventory [56,61], landslide detection [62],
landslide dynamics and monitoring [57,63–67], and natural disaster monitoring and evaluation [68,69].
A comprehensive review of remote sensing applications based on UAVs equipped with specific
sensor-based technologies has been accomplished to varying degrees across a range of applications. A
detailed summary, specifically focused on the progress made in environmental science applications, is
provided in Pajares [56] and Colomina et al. [58].

The purpose of this research is to present a comprehensive system that uses a low-cost UAV,
Semi-Global dense Matching (SGM) techniques, and automated approaches to detect and extract the
geomorphological features of landslide scarps. This system reduces the many limitations that decrease
the accuracy, completeness, and reliability of the previously described methods, thereby increasing the
effectiveness of the landslide mapping.

2. Study Area

2.1. Location of the Study Area

This study was conducted in a 266 mˆ 185 m area situated along the main highway from Amman
to Irbid in the Salhoub/Al-Juaidieh area of north-central Jordan. The study area is in a mountainous
region that receives an average annual precipitation of 200 mm and contains creep landslides induced
by heavy rainfall, [70]. The map in Figure 1 illustrates the location and extent of the study area, which
is 21 km northwest of Amman and located at the following coordinates: 32.11430˝N–35.85689˝E. The
terrain elevation varies from 650 m to 720 m above sea level and has a slope inclination of between 10˝

and 70˝. The study area is dominated by two significant landslide features, which are known as the
Al-Juaidieh slides. Abderahman [71] determined that the Al-Juaidieh landslide was a reactivation of an
old landslide. Various field observations across the slope body and deformation along the highway and
existing gabions indicate that the slope is still active and scarp features across the slope will continue to
open and develop new tension crack features; leading to further drift of rocks downward. Substantial
first failure activity in the area dates back to August 1992 during the construction of the Irbid-Amman
highway. This landslide affected approximately 250 m of the highway, destroyed two houses, caused
the evacuation of 10 others, and delayed the opening of the highway for several months [71].
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2.2. Geologic Setting of the Study Area

The land-cover types include landslide areas, roads, bare soil, and a few manmade buildings. The
vegetation cover on the landslide is predominantly grass with occasional isolated bushes. The geology
of the study area consists mainly of the Ajlun Group, which is subdivided into the five formations [72]
shown in Figure 2. From bottom to top, these formations are the Na’ur, Fuheis, Hummar, Shu’ayb,
and Wadi Es-Sir. The Na’ur limestone formation forms the majority of the outcrops in the study area,
which starts with a few meters of a very hard limestone overlain by a medium-hard to somewhat
medium-marly limestone, soft marl, very hard dolomitic limestone, soft marl, and intermixed gravel
and boulders of limestone and marl at the surface [71]. The Hummar formation forms outcrops
of a few meters of marly limestone followed by successive layers of medium-thick bedded grey to
whitish crystalline limestone, dolomitic limestone, and dolomite that changes near the top to marly
limestone [73]. The thickness of this formation is approximately 65 m within the Wadi Shu’ayb,
Suweileh, and Hummar areas [74]. The Fuheis formation consists of soft marl and marly limestone
interbedded with thin to medium-bedded shally to nodular limestone. As can be seen in Figure 3, the
geological cross section taken along (A-A1 (in the study includes a marlstone layer the bottom and
a dolomite layer, limestone layer, and caliche layer at the top [75]. Saket [76] concluded that most
of Jordan’s landslides take place within the Lower Cretaceous Kurnub Sandstone, and the Upper
Cretaceous Fuheis and Na’ur formations. These formations are characterized by the presence of marls
and clays that act as weak interlayers, rendering the slope vulnerable to instability and sliding.
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Figure 3. Schematic geologic cross section of the landslide ([71,77]).

From a structural point of view, the outcropping rocks in the study area show well-developed
joints and cracks. Their widths of these cracks range from a few centimeters to multiple meters,
indicating that discontinuity sliding could take place. Furthermore, all the landslides within the area
are above the highway ridge and the mass movement along these landslides is rotational in a westerly
to northwesterly direction.

3. Methodology

Figure 4 illustrates the proposed framework of the implemented methodology in this research
work. This research aims to analyze and examine the automated approaches for landslide scarp
detection and extraction. This is achieved first through mission planning and data collection using a
UAV equipped with an off-the-shelf large-field-of-view (LFOV) camera. The camera calibration and
stability analysis performed for this step can be expressed through the analysis approach proposed
by Habib et al. [78,79]. After calibration 3D surface reconstruction was completed using the SGM
approach to generate dense image-based point cloud [80,81]. The next step in achieving the research
goal is to develop automated approaches for detecting and extracting the geomorphological features of
landslide scarps using a ratio of Eigenvalues based on principal component analysis (PCA), examining
topographic surface roughness index, and measuring the variability in slope in the local neighborhood
of dense 3D image-based point cloud. As proposed by Varnes [82] (see Figure 5), the detection of
landslides is based on the identification of the following geomorphological features: (1) a crown
with tension cracks; (2) a main scarp, which tends to be the easiest feature to recognize because it is
semi-circular (long and narrow) with a steep slope and convex planform and has a main direction
perpendicular to the flow direction; (3) a minor scarp; (4) related slide blocks; and (5) a toe bulge or
accumulation area, which is higher than the surrounding area due to the accumulation of debris.

Root mean square error (RMSE) analysis and a confusion (error) matrix is performed in order to
validate and accuracy examination of the assessment in order to quantify errors as well as to assess the
quality difference between the two datasets obtained for the manually digitized landslide scarps (the
reference data) and the automated extraction scrap segments using the proposed approaches.
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3.1. Mission Planning and Data Acquisition

To apply a cost-effectively collect data and detect landslide detection in hazardous, unstable
areas a low-cost remote sensing approach can be applied using a UAV and LFOV digital camera. In
this study, a GoPro camera was chosen because the UAV’s gimbaled camera mount is specifically
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compatible with GoPro cameras. The Hero 3+ Black Edition was the highest quality camera available
at the time of purchase. This camera had several innate advantages for this study, such as a fixed
focal length and a robust design. GoPro cameras are built for use in rugged environments, which
makes them an ideal choice for a UAV platform. The accompanying UAV is the DJI Phantom 2 (see
Figure 6). The DJI Phantom 2 is designed for hobbyist use and has user-friendly controls. It also offers
several other functions, such as an autopilot, no-fly zones, and auto-return home. This UAV offers
approximately 25 min of flight duration on a single battery charge, can carry less than 1 kg of payload,
and fly up to 1 km from the controller. This design is sufficient to cover a relatively small to medium
area. According to Van Den Eeckhaut et al. [83] small landslide area are less than 0.02 km2 in size and a
medium to large landslide area size is greater than 0.02 km2. However, it lacks several features that are
necessary to obtain a photogrammetric product, such as time synchronization between the camera and
the navigation unit, control of image exposure, and the overlap and sidelap of imagery. Furthermore,
the camera has a short focal length that causes considerable barrel lens distortion.
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The mission planning (flight and data acquisition carried out in September 2014) for the study area
involved determining a detailed flight plan, including the flight direction, number of flight lines, flying
height, and knowledge of the interior orientation parameters (IOPs) of the mounted digital camera.
This configuration depends on the desired overlap, sidelap, and ground sampling distance (GSD) or
footprint. The DJI Phantom 2 is equipped with an autopilot package that allows for pre-programmed
flight paths, enabling the user to choose horizontal waypoints and the desired height of flight above the
ground. The desired overlap (in flying direction) and sidelap (between adjacent flight lines) were set
considering the array width to be parallel to the flying direction. The mission planning was designed
to achieve the optimum configuration for the area of interest, as shown in Figure 7. Figure 7a illustrates
the mission flight plan for image capture that covers the area of interest using north-south flight paths
with 80% overlap and 60% sidelap. Figure 7b shows the east-west flight paths with 50% overlap and
30% sidelap which were used to obtain minimum data redundancy and to fill in data gaps caused by
shadowed areas, occlusions, and blurry images. This step guarantees success in the automated point
matching process and application of the SGM approach. Table 1 summarizes the designed north-south
flight configuration for the area affected by the creeping landslide in the study area.
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Table 1. North-south flight path configuration for area of interest.

Flight Configuration

Average flying height (AGL)/speed 50 m/5 m/s
Autopilot Available

Camera Specs GoPro Hero3 + Black
Image format (pixels) 3000 ˆ 2250

Pixel size 1.55 µm
Focal length (nominal) 3 mm

Time lapse ~2 s
Image Block Specs

GSD (nominal) ~2.0 cm
Overlap/sidelap % 80/60

Image footprint 83 m ˆ 62 m
Distance between images 14 m

Distance between lines 39.8 m
Number of strips 6

Number of Images 370
Total Area Covered

Study area 48,981 m2 (12.73 min)

To overcome the difficulties of time synchronization, limited image exposure control, and barrel
lens distortion, the following steps are proposed. (a) An accurate analytical camera calibration
of a low-cost LFOV camera followed by stability analysis using the ROT (Rotation) procedure
was performed to evaluate the similarities and differences between the derived camera calibration
parameters [78]; (b) The camera was set to automatic exposure using the camera’s built-in timer. The
selected time lapse is a function of the image footprint and flying speed, as shown in Equation (3).
The GSD can be estimated based on the assumption that the terrain is relatively flat (see Equation (2));
(c) The exterior orientation parameters (EOPs) of the images can be indirectly recovered as part of the
image-based point cloud generation process, which will be discussed later.

Pixel Size “
Sensor width pmmq
Image width ppxq

(1)

GSD “
Pixel Size . Elevation above ground pHq

Focal length p f q
(2)
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Time lapse “
Sensor width .

H
f

. p1´ overlapq

Flying speed
(3)

where time lapse is the time between two successive exposures, sensor width is the number of pixels, f
is the camera focal length, H is the flying height, overlap is a user-defined value that represents the
overlap percentage between two successive images, and flying speed is a user-defined value.

3.2. Automated Surface Reconstruction

To generate a dense 3D image-based point cloud both Structure from Motion (SfM) and SGM
techniques are utilized. The proposed SfM approach is first performed for the automated recovery of
image EOPs. Then, SGM [80,81] is adapted for the dense image matching using the derived image
orientation from the SfM approach from the scanned scene using the captured images. An overview of
the proposed procedure is shown in Figure 8.
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Figure 8. Proposed dense 3D reconstruction procedure.

This procedure was initiated by determining the camera’s EOPs at each imaging station via
the SfM approach developed by He and Habib [84]. This procedure is based on a two-step linear
solution for the initial recovery of the image EOPs First, point feature correspondences are identified,
followed by calculation of the relative orientation parameters relating stereo-images from derived
conjugate points. A local reference coordinate frame is established in the second stage. Then, the EOPs
of the remaining images are sequentially recovered through an incremental augmentation process.
In this approach, tie points are identified using the scale-invariant feature transform (SIFT) feature
detection algorithm in individual images as described by Lowe [85]. The acquired images are then
normalized based on epipolar geometry while considering the camera IOPs and estimated EOPs, to
minimize the search space for corresponding features in overlapping imagery. The algorithm used to
determine the epipolar geometry and to define the normalized image plane is described in detail by
Cho et al. [86]. This algorithm effectively removes the y-parallax in each stereo-pair of images. The
images are projected onto a normalized image plane in which the rows of pixels in one image lie on
the same row as in the normalized stereo-pair image.

An SGM procedure is then utilized to find the pixel-wise correspondence between the
stereo-paired images. The algorithm used here starts by minimizing a cost function along eight
different directions (two horizontally, two vertically, and four diagonally) from a pixel to determine an
initial disparity value. The cost function is the sum of all the costs of the disparity along a given path.
The path (direction) that has the least cost for a given pixel is used to determine the final disparity
value, which is used to relate the pixels in one image to the conjugate pixels in the stereo-pair image.

The next step is a tracking procedure that identifies the matched pixels in all images. In this step,
individual pixels are tracked across multiple images using the disparity values from the previous step.
Starting with a stereo-pair of images, which are adjacent, and their relative orientation, which is known
(determined with the EOPs), a corresponding disparity image can be computed. This image can be
used to determine matching pixels in other images. Once a pixel is tracked through the disparity
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images until a valid disparity value cannot be found, the tracking algorithm for that pixel stops and
the coordinates are transformed back into the ground coordinate system for use in the next step.

Finally, a dense 3D point cloud is generated based on the spatial intersection of light rays from
all matched pixels. Using the EOPs, IOPs, and pixel coordinates of the corresponding pixels, the
collinearity equations can be used to compute the object coordinates of each point. This procedure is
conducted as a least squares estimation process, which is updated until the coordinates of the point do
not change between iterations. There is a possibility that a pixel may be incorrectly tracked among
images (known as a blunder) or that the intersection contains very poor geometry (low precision),
and these situations should be avoided. To avoid low precision, the ground coordinates that are not
sufficiently precise are eliminated. Blunders can be eliminated by projecting the ground coordinates
back onto an image plane and computing the residuals, which should be within one pixel of the
original coordinates. In addition, the ground coordinates are not computed if fewer than three pixels
contribute to the intersection because this will not create a reliable solution. The resulting point cloud
uses an arbitrary ground coordinate system with an arbitrary scale. The next step is to transform
the point cloud from the arbitrary coordinate system into a meaningful one using surveyed ground
control points.

3.3. Automated Landslide Scarp Features Detection and Extraction

The rapid development of high-resolution DEM data has provided more detailed topographic
information. Higher resolution topographic data result in the more accurate detection of landslide
scarps, thereby assisting in the monitoring and assessment of landslides as well as the development
of mitigation plans. In addition, an in-depth understanding of topographic variations within
hazardous landslide terrains is vital for companies developing construction plans for new or existing
projects. Identifying landslide-specific spatial features from single surface models is important
because not all the changes can be detected through a temporal analysis of landslide-susceptible
areas. Previous landslides are the key predictors of the distribution of future landslides [87]. The
following methodological subsections focus on detecting and extracting landslide scarps from a single
surface using an image-based point cloud that is generated using the SGM approach. High-resolution
topographic data was used to extract data on landslide scarps by examining local topographic
variability through an analysis of the Eigenvalue ratio, slope, and surface roughness.

3.3.1. Eigenvalue Ratios

Eigenvalue ratios represent the degree of three-dimensional roughness or the crease edge of
land surfaces [88–90]. Point clouds that result from the SGM approach are comprised of massive
amounts of 3D coordinates. The well-known KD-tree data structure [91] was used in this study to
handle the point cloud. The KD-tree is a tool that organizes the point cloud and allows for different
query processes in the 3D space during the Eigenvalue estimating procedure. The KD-tree is used
to search for neighbors within a specified search radius from the query point. A simple method for
establishing this local neighborhood is to select the closest points to the query point according to a fixed
Euclidian distance [92]. In this study, a 0.5 m radius was selected because of the size of the relevant
geomorphic features. Selecting a smaller radius would have resulted in an increase in recognition of
non-scarp landscape features, such as shrub vegetation, tree stumps or boulders. The Eigenvalue ratio
methodology begins by utilizing PCA to determine the geometric properties of the local neighborhood
of image-based points. To check whether a certain point (query point) belongs to a rough surface or
a crease edge, the following steps are taken. First, a local neighborhood pPnq is defined to enclose
the (n) neighbors nearest to the query point. Then, a covariance matrix (Coν) is formed based on the
dispersion of the points (Pn) from their centroid pPc), as given by Equation (4). An Eigenvalue analysis
is then performed to decompose the covariance matrix into two matrices (Equation (5)). The first
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matrix (W) is comprised of thee eigenvectors p
Ñ
e 1,

Ñ
e 2,

Ñ
e 3q, and the other matrix (Λ) provides their

corresponding Eigenvalues (λ1, λ2, λ3).

Cov3ˆ3 “
1
n

n
ÿ

i“1

¨

˚

˝

»

—

–

PiX
PiY
PiZ

fi

ffi

fl

´

»

—

–

PcX

PcY

PcZ

fi

ffi

fl

˛

‹

‚

¨

˚

˝

»

—

–

PiX
PiY
PiZ

fi

ffi

fl

´

»

—

–

PcX

PcY

PcZ

fi

ffi

fl

˛

‹

‚

T

(4)

where

Pc “
1
n

n
ÿ

i“1

»

—

–

PiX
PiY
PiZ

fi

ffi

fl

Cov3ˆ3 “ W Λ WT “
”

Ñ
e 1

Ñ
e 2

Ñ
e 3

ı

»

—

–

λ1 0 0
0 λ2 0
0 0 λ3

fi

ffi

fl

»

—

—

–

Ñ
e 1

T

Ñ
e 2

T

Ñ
e 3

T

fi

ffi

ffi

fl

(5)

The Eigenvectors/Eigenvalues are quite advantageous in determining the geometric nature of
the established neighborhood. The Eigenvectors represent the orientation of the neighborhood in 3D
space, whereas the Eigenvalues define the extent of the neighborhood along the directions of their
corresponding eigenvectors [93]. The relative sizes of the Eigenvalues and the Eigenvectors’ directions
can indicate the type of primitive feature. For a rough surface/crease edge point, two of the estimated
Eigenvalues will be much smaller than to the third Eigenvalue, for which the conventional equations
(Equations (6a) and (6b)) were used in this study. The three normalized Eigenvalues denoted by “λ”
were sorted from largest to smallest values as λ3, λ2, and λ1,

λ1 « λ2 (6a)

λ1

λ2
ě λ3 (6b)

3.3.2. Slope

The slope angle is the most important parameter in a slope stability analysis [94] because the
slope angle is directly related to landslide probability. Other parameters contributing to landslide
probability include geology, soil type, and hydrology [95], but this study specifically utilizes sudden
change detection via examination of changes in slope angle. This method can also be useful in the
identification and extraction of cliff information for other site-specific needs. The variability in slope is
used to detect and extract landslide scarps [96–98]. The slope is often initially employed to identify
landslides [99], based on the assumption that the slope changes abruptly between two successive scarps
and that scarps become more distinct from their surroundings as they evolve. The slope angle for each
point in an image-based point cloud can be estimated using Equation (7) because the Eigenvector for
each point is calculated based on the PCA analysis in the previous step.

|θ| “ tan´1
a

Nx2 ` Ny2

Nz
˚

180
π

(7)

where θ is the slope angle, and Nx, Ny, and Nz are the normal vector components of the plane.

3.3.3. Surface Roughness Index

Surface roughness can be defined as the irregularity of a topographic surface [96]. The surface
roughness index is based on the calculation of deviations between the elevation model’s surfaces
fitted in the local range of a moving 0.5 m search radius window. The surface of most landslides is
rougher, at the local scale of a few meters, than adjacent stable slopes, which are relatively smoother.
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Tarolli [100] states that as long as erosion associated with precipitation and time is not severe, old
landslides can be identified because there will still be a distinct difference in surface roughness
between the landslide area and the local terrain. On the other hand, low average rainfall and semiarid
climatic conditions dominating the study area result in poor susceptibility to weathering effects, thus
maintaining associated surface roughness features.

This characteristic can be exploited to automatically detect and map landslides captured in
high-resolution 3D point clouds. As illustrated in Figure 9, the surface roughness of landslide terrain
(bottom image) features higher topographic variability than stable terrain (top image). McKean
and Roering [12] and Glenn et al. [4] examined surface roughness and confirmed that landslide
surfaces are rougher than the neighboring stable terrain due to the landslide mechanics, surface
deformation, and subsidence of material. The algorithm developed in this study utilizes surface
roughness information to detect and extract landslide scarps based on the measurement of the
variability in local topographic surfaces.
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The surface roughness index is the standard deviation of the object height (h) within 0.5 m local
sampling window was used to calculate the surface roughness in this study in Equation (8).
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where γ is the surface roughness index, h1 is the mean height of all points within the local window,
and n is the number of points within the local search window.

4. Results and Discussion

In this study, three sets of results were produced. The first set of results consists of the camera
calibration parameters that were obtained by calibrating the LFOV digital camera. The second set of
results consists of the image-based point cloud and orthophotos produced by implementing the image
processing using the SGM algorithm for the study area. Finally, the third set of results consists of the
landslide scarps detected and extracted using (a) the ratio of the Eigenvalues (λ1/λ2 ě λ3) based on
PCA analysis; (b) the topographic surface roughness index; and (c) the approach based on measuring
the variability in slope in the local neighborhood of the 3D image-based point cloud.

4.1. Dataset Description

The study area (Salhoub/Al-Juaidieh, Jordan), yielded a set of 370 nearly vertical images with
overlap of 80% and sidelap of 60% along the north-south flight path direction. These images were
captured with a calibrated GoPro Hero 3+ Black Edition camera mounted to a DJI Phantom 2 UAV
over a total flight time of 12.73 min. To obtain the lowest data redundancy while filling in data gaps
caused by shadowed areas, occlusions, and blurred images, a set of 160 images was collected along
east-west flight paths with an overlap of 50% and a sidelap of 30%. The utilized GoPro camera was
equipped with several imaging modes; however, in this study, only the medium field-of-view mode
was utilized. Each image covered an area of approximately 83 m ˆ 62 m on the ground, resulting
in imagery with a resolution of approximately 2 cm (GSD). Figure 10 shows an example of a strip of
aerial photographs in the study area.
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4.2. Camera Calibration and Stability Analysis

The camera was calibrated and checked for stability over a two-month period from January 2014 to
March 2014. It should be noted that, over the two-month the camera is mounted on a UAV that is flown
in different environments, difficult terrain, and have been subjected to rough landings, significant
vibrations from the UAV, and even a few crashes. For each image dataset, a total of 12 convergent
images of a 2D calibration test field with 116 targets were captured with the same image network
configuration. The ultimate goal was to decide whether the two sets of IOPs were equivalent. If the
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sets of IOPs are similar, then a stability analysis of the camera is ensured and the IOP parameters have
not changed over time. Thus, the camera can be deemed stable, which is essential for achieving an
accurate 3D model later on. The experimental results were examined using the United States Geological
Survey (USGS) Simultaneous Multi-frame Analytical Calibration (SMAC) model with R0 values of
0 and 3 mm with K1, K2, and K3 as the distortion parameters. The derived square roots of posteriori
variance (σ0) values are all smaller than one pixel in size (1.55 µm) according to Habib et al. [102], and
the image coordinate measurement had an accuracy range of one-half pixel, which indicates that no
blunders were present, that the utilized SMAC model was appropriate and that the derived IOPs
were acceptable.

The stability of the camera was analyzed using the ROT method [78]. In the case of the GoPro
Hero 3+ Black Edition camera used in this study, the pixel size was 1.55 µm. Therefore, if the square
root of the variance component was less than 1.55 µm, which is approximately around one pixel, then
the IOP sets were considered similar and stable according to the ROT method [102–104] and was the
correct choice for an accurate estimation of the 3D coordinates.

4.3. Automated Point Cloud Generation

To generate a point cloud using the SGM methodology, a total of 530 images were captured. The
image orientation (EOP) is a fundamental prerequisite parameter in any image-based reconstruction.
Orienting the images was accomplished by applying the SfM approach developed by He and Habib [83].
The estimated image position and orientation and the reconstructed sparse point cloud from the UAV
image dataset are shown in Figure 11.

Once a set of images was oriented, the surface was digitally reconstructed by implementing
the SGM algorithm starting from the known exterior orientation and camera calibration parameters.
A dense point cloud with more than 13.65 million points was constructed for the study area using
all of the captured images with an average point spacing of 1.5 cm and an average point density
of approximately 4431.52 points/m2. The dense point cloud obtained from SGM is illustrated in
Figure 12.
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during image acquisition by the UAV.
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4.4.1. Topographic Eigenvalue Ratios 

Figure 14 illustrates the variation in the topographic parameters using the normalized 
Eigenvalue ratio of λ1/λ2 computed in a 0.5 m moving sampling window on a dense 3D 
image-based point cloud. The map in Figure 14 clearly shows that the boundary of the landslide 
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those in the nearby terrain outside the slide. 

Figure 12. The dense 3D point cloud generated from the UAV image dataset collected in September
2014. The blue inset square represents the point density within 1 m2.

4.4. Detection and Extraction of Landslide Scarp Features

The landslide geomorphological analysis in this study was based on a 1.5 cm point spacing in a
dense 3D point cloud generated for the study area. The dense image-based point cloud proved to be a
very useful tool for rapidly creating profiles along the slope direction. Using these profiles the vertical
walls of the landslide scarps were measured and observed to have a range of 3 m to 5 m. The cross
section along the profile A-A1 is shown in Figure 13.
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map) of the landslide in the central part of the study area.

4.4.1. Topographic Eigenvalue Ratios

Figure 14 illustrates the variation in the topographic parameters using the normalized Eigenvalue
ratio of λ1/λ2 computed in a 0.5 m moving sampling window on a dense 3D image-based point cloud.
The map in Figure 14 clearly shows that the boundary of the landslide scarps (yellow-red color in
the map) were recognized in detail, which means the normalized Eigenvalue ratio values inside and
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surrounding the landslide scarps were much less clustered than those in the nearby terrain outside
the slide.Remote Sens. 2016, 8, 95 17 of 32 
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than λ3 were selected as a candidate scarp points. The landslide scarps that were automatically 
extracted using the proposed threshold values (λ1/λ2 ≥ λ3) are shown in Figure 15. Some open areas 
associated with the spacing/opening between two successive landslide scarps were observed to have 
been filled with recently fractured rocks and sediments. Therefore, after the initial landslide scarp 
extraction, these areas were also classified as scarps because they presented similar characteristics 
(i.e., top and bottom scarps). Further refinement to filter out noisy extracted points (i.e., points 
enclosed between higher candidate scar points circled in red in Figure 16) based on the height 
profile (cross section) along the slide direction was required to obtain more accurate results. In 
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Figure 15. Extraction of landslide scarp features for the of Salhoub/Al-Juaidieh landslide based on 
variation in the local topography’s Eigenvalue ratio. 

Figure 14. Eigenvalue ratio (λ1/λ2) computed with a 0.5 m moving sampling window in the dense
3D image-based point cloud. Higher Eigenvalue ratios indicate landslide scarp features because the
values of these areas are less clustered than the smooth terrain surface.

The extracted features were filtered, and only the areas with λ1/λ2 Eigenvalue ratios greater than
λ3 were selected as a candidate scarp points. The landslide scarps that were automatically extracted
using the proposed threshold values (λ1/λ2 ě λ3) are shown in Figure 15. Some open areas associated
with the spacing/opening between two successive landslide scarps were observed to have been filled
with recently fractured rocks and sediments. Therefore, after the initial landslide scarp extraction,
these areas were also classified as scarps because they presented similar characteristics (i.e., top and
bottom scarps). Further refinement to filter out noisy extracted points (i.e., points enclosed between
higher candidate scar points circled in red in Figure 16) based on the height profile (cross section)
along the slide direction was required to obtain more accurate results. In Figure 16, the height profile
along the slide direction is in blue, the preliminary scarp points are in green, and the accepted scarp
points are circled in red.
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The 3D topographic image-based point cloud data were used to generate maps of the local 
topographic slopes. The slope angle for each point of the image-based point cloud was derived using 
a 0.5 m moving sampling window and was determined by calculating the slope of the normal vector 
for each point. As shown in Figure 18, the resulting slopes of the study area were distributed 
between 0° and 90°. The slope calculation results show that the active landslide scarps had slopes up 
to 50° associated with the abrupt changes in the Earth’s surface compared with their local 
neighborhood and, to a lesser degree, they formed a ridge of the depletion area (toe area) that is 
comprised of marlstone sediments. 

Figure 16. Height profile (cross section) along the slide direction in blue, preliminary scarp points in
green, and accepted scarp points circled in red.

The extracted features based on the proposed threshold were overlaid on the orthophoto image
(Figure 17). Visual inspection indicates that the features related to landslide scarps (blue segments)
were accurately extracted and accurately overlaid on the corresponding landslide scarps.
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Figure 17. Final landslide scarp detection results (blue) based on Eigenvalues ratios of the topographic
surface (left image) overlaid on the generated orthophoto using UAV images of the study area
(right image).

4.4.2. Topographic Slope Surface

The 3D topographic image-based point cloud data were used to generate maps of the local
topographic slopes. The slope angle for each point of the image-based point cloud was derived using
a 0.5 m moving sampling window and was determined by calculating the slope of the normal vector
for each point. As shown in Figure 18, the resulting slopes of the study area were distributed between
0˝ and 90˝. The slope calculation results show that the active landslide scarps had slopes up to 50˝

associated with the abrupt changes in the Earth’s surface compared with their local neighborhood
and, to a lesser degree, they formed a ridge of the depletion area (toe area) that is comprised of
marlstone sediments.
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For landslide scarp detection using the slope method, the point cloud classified the ground 
objects into either landslide or non-landslide classes based on the assumption that the slope changes 
abruptly between two successive scarps and that the scarps become more distinguishable from their 
surroundings as they evolve. In the analysis of the slope distribution in this study, the classification 
of landslide scarps usually occurred above a mean slope value of 22°, which corresponds to the 
internal frictional angle at which most slope instabilities in the area occur [28]. The statistics for the 
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Figure 19. Statistics of the slope distribution. 

An estimate of the threshold was based on the fact that the histogram of the slope value was set 
to a mean slope value of 22°. The obtained threshold provided a filtering process to extract the most 
likely landslide scarps in the study area. The extracted potential landslide scarps from the derived 
slope variation based on the defined threshold are shown in Figure 20. 

Figure 18. Slope map of the creeping Salhoub/Al-Juaidieh landslide calculated using a 0.5 m moving
sampling window on a dense 3D dense image-based point cloud.

For landslide scarp detection using the slope method, the point cloud classified the ground
objects into either landslide or non-landslide classes based on the assumption that the slope changes
abruptly between two successive scarps and that the scarps become more distinguishable from their
surroundings as they evolve. In the analysis of the slope distribution in this study, the classification of
landslide scarps usually occurred above a mean slope value of 22˝, which corresponds to the internal
frictional angle at which most slope instabilities in the area occur [28]. The statistics for the slope
distribution, derived from the point cloud, are shown in Figure 19.
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Figure 19. Statistics of the slope distribution.

An estimate of the threshold was based on the fact that the histogram of the slope value was set
to a mean slope value of 22˝. The obtained threshold provided a filtering process to extract the most
likely landslide scarps in the study area. The extracted potential landslide scarps from the derived
slope variation based on the defined threshold are shown in Figure 20.
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detection results were overlaid on the orthophoto image. Visual inspection revealed that the 
detection results were accurately overlaid onto the corresponding landslide scarps. 
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4.4.3. Topographic Surface Roughness Index 

The surface of a landslide is usually rougher on a local scale than that neighboring stable 
terrain, which means that the local vector orientations of the rougher surfaces more highly variable 
than those of the smooth topographic surfaces, which have similar orientations. The roughness of a 

Figure 20. Distribution of the identified Salhoub/Al-Juaidieh landslide scarp features based on local
slope variations.

The extraction smooth landslide head scarps from the previous results were based on the
assumption that the detected candidate points should only decrease in height. In this study, the
height profile (cross section) in the slide direction was analyzed to ensure that the smoothed head
scarps fit the established criteria (i.e., Figure 16). As seen in Figure 21, the final landslide scarp detection
results were overlaid on the orthophoto image. Visual inspection revealed that the detection results
were accurately overlaid onto the corresponding landslide scarps.
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UAV images of the study area.

4.4.3. Topographic Surface Roughness Index

The surface of a landslide is usually rougher on a local scale than that neighboring stable terrain,
which means that the local vector orientations of the rougher surfaces more highly variable than those
of the smooth topographic surfaces, which have similar orientations. The roughness of a landslide
surface is calculated using point clouds without interpolation. To provide a more reliable roughness
indicator, the standard deviation of the height point (h) within a 0.5 m local moving sampling window



Remote Sens. 2016, 8, 95 21 of 32

is used to calculate surface roughness of each point in the dense 3D point cloud, using Equation (8) in
Section 3.3.3. As illustrated in Figure 22, the surface roughness is higher in the landslide terrain in this
study than in the stable terrain. The surface roughness varies from approximately 5 cm to 14 cm, with
greater roughness near active landslide scarps and along the higher steeper slopes due to landslide
mechanics, surface deformation, and subsidence of material. The smoother topographic surface
roughness, which covered the flat surfaces and stable areas, was within a maximum range of 5 cm.
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Figure 22. Topographic surface roughness index map of the creeping Salhoub/Al-Juaidieh landslide
calculated using a 0.5 m moving sampling window in the dense 3D point cloud.

The topographic surface roughness map (Figure 22) indicates that the dataset exhibits a good
correlation with the landslide scarp boundaries using the topographic surface roughness index
approach. To extract the candidate landslide scarps, the histogram of the topographic surface roughness
index distribution (Figure 23) was used to estimate the thresholds.

A defined threshold, which was equal to 2σ (0.046 m), was used as a filtering process. The filtering
process selected areas with a surface roughness value greater than 0.046 m. Figure 24 shows the
extracted features based on the 2σ threshold value.Remote Sens. 2016, 8, 95 22 of 32 
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Figure 24. Extraction of landslide scarp features of the Salhoub/Al-Juaidieh landslide based on local
topographic surface roughness values.

The final results of the landslide scarp extraction process using the surface roughness index
approach are shown in Figure 25a. The extracted landslide scarps are overlaid on the orthophoto
image for verification in Figure 25b, and is the result shows that the extraction results are accurately
overlaid on the corresponding landslide scarps.Remote Sens. 2016, 8, 95 23 of 32 
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software, whereby the active landslide scarps were manually digitized (screen digitizing) by visual 
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Figure 25. (a) Final landslide scarp detection results (blue) based on the topographic surface roughness
index and (b) the scarps overlaid on the orthophoto using UAV images of the study area.

4.5. Accuracy Assessment

The accuracy assessment of the identified results consisted of a comparison between the
automatically extracted scarp segments obtained from the different topographic surface analyses
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and manually digitized scarp segments. The manual measurements were accomplished using GIS
software, whereby the active landslide scarps were manually digitized (screen digitizing) by visual
recognition of the landslide scarp edges in the orthophoto image of the study area generated using the
dense 3D image-based point cloud, and this manual image was treated as ground truth data (reference
data) (Figure 26).
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Figure 26. Manually digitized ground truth (reference) data for the landslide scarps overlaid on the
orthophoto image of the study area.

A per-pixel-based approach is used to validate and examine the accuracy of the extracted landslide
scarps. The results were compared to the reference data by calculating the RMSE between the
automatically extracted landslide scarp segments and the manually digitized landslide reference
segments (ground truth). If the average RMSE was above a threshold, then the entire landslide
scarp segment was regarded as an unmatched segment. The maximum RMSE tolerance was set to
6 pixels, which is equal to 30 cm (number of pixels multiplied by the pixel size equal to 5 cm) due
to the horizontal accuracy in the orthophoto when visually and manually digitizing. This maximum
tolerance buffer of 6 pixels was chosen to account for the manually digitized reference accuracy and
the minimum spacing between neighboring scarps (~70 cm) observed in this dataset. Using lower
tolerance values might miss true matches because of manual reference inaccuracies, and using a
higher tolerance value might cause detected scarps to be double matched to neighboring manually
referenced scarps.

The RMSE analysis was achieved using the proposed approaches shown in Figure 27a–c. No
significant differences in accuracy were found between the different automatic extraction methods
in this paper and the manually digitized landslide scarps. The RMSE values, which represent an
accuracy assessment, of the Eigenvalue ratio, topographic surface slope, and topographic surface
roughness index methods are 11.98 cm, 9.05 cm, and 10.45 cm, respectively. Thus, the positions of
the extracted scarp segments may have shifted by approximately two pixels on average from their
positions in the reference data. In general, the automatically extracted results were comparable to the
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results obtained through manual digitization of the orthophoto image of the study area for landslide
scarp identification. Therefore, the scarps in this study were accurately extracted.
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Further validation and examination of the accuracy of the assessment was accomplished by
performing a confusion (error) matrix to quantify the errors as well as to assess the quality difference
between the two datasets obtained by visual interpretation (the reference data) and the map data
(extracted scarp segments) using a per-pixel approach. Each variable of the two datasets was organized
in a matrix format populated by the number of agreements and disagreements according to the
following four classes: (1) true positive (TP), or matched, which indicates that an extracted landslide
scarp correspond to a reference landslide scarp; (2) true negative, which indicates that the extracted
non-landslide pixels correspond to reference non-landslide pixels; (3) false positive (FP), or unmatched,
which indicates an extracted landslide scarp correspond to reference non-landslide pixels; and (4) false
negative, which indicates that an extracted non-landslide pixel corresponds to a reference landslide
scarp Matching was performed based on the constant in the pre-defined buffer method. The maximum
tolerance of the buffer around the reference landslide scarp data was set at 6 pixels. The parts of the
extracted data within the buffer were considered to match the manual reference. The accuracies of the
extracted landslide scarp segments based on the different approaches and the reference datasets are
shown in Tables 2–4. The error matrix was obtained for the per-pixel assessments of quality based on a
comparison of the extracted scarp segments as presented in Figures 17a, 21a, and 25a. The reference
map is shown in Figure 26.

The overall accuracy of the confusion matrix was calculated by dividing the total number of
agreements (i.e., the sum of the diagonal cells of the matrix) by the total number of samples. The user’s
accuracies, producer’s accuracies, and Cohen’s kappa coefficient statistics were calculated from the
confusion matrix to obtain a more in-depth perspective of the uncertainty analysis. The user’s accuracy
(row values) was based on the agreement of a particular class to the summation of all classes in each
row. Similarly, the producer’s accuracy (column values) was computed considering the agreement of a
particular class to the summation of that column. In many cases, according to Zhan et al. [105] and
Tuermer et al. [106], the user’s accuracy represents a measure of correctness (Equation (9)), and the
producer’s accuracy represents as a measure of completeness (Equation (10)).

Correctness “
ˆ

TP
TP` FP

˙

ˆ 100 (9)

Completness “
ˆ

TP
TP` FN

˙

ˆ 100 (10)
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Cohen’s kappa coefficient was calculated from the confusion matrix and was estimated for the
performance evaluation of landslide extraction. This coefficient is a measure of the agreement between
the extracted and reference data. In other words, the kappa statistics are a measure of true agreement,
which is represented by the following relationship [107]:

Kappa coefficient pkq “
N
řr

i“1 Xii ´
řr

i“1pXi`˚ X`iq

N2 ´
řr

i“1pXi`˚ X`iq
(11)

where (k) is the Kappa value, r is the number of rows in the confusion (error) matrix, Xii is the number
of observations in row i and column i on the major diagonal of the matrix, Xi` is the total observations
in row i, X`i is the total observations in the column, and N is the total number of observations included
in the matrix.

Table 2. Confusion (error) matrix for assessing the quality of extracted landslide scarps based on the
topographic Eigenvalue ratios approach.

Ground Truth (Reference)

Positive Negative Total User’s
Accuracy/Correctness (%)

Error of
Commission (%)

Extracted
Features

Positive 3917 846 4763 82.24 17.76
Negative 1306 26698 28004 95.37 4.66

Total 5223 27544 32767

Producer’s
Accuracy/Completeness (%) 75.0 96.93 Overall accuracy 93.43%; kappa 74.58%.

Error of Omission (%) 25.00 3.07

Table 3. Confusion (error) matrix for assessing the quality of extracted landslide scarps based on the
topographic surface slope approach.

Ground Truth (Reference)

Positive Negative Total User’s
Accuracy/Correctness (%)

Error of
Commission (%)

Extracted
Features

Positive 3325 781 4106 80.98 19.02
Negative 1468 27193 28661 94.88 5.12

Total 4793 27974 32767

Producer’s
Accuracy/Completeness (%) 69.37 97.20 Overall accuracy 93.14%; kappa 70.78%.

Error of Omission (%) 30.63 2.79

Table 4. Confusion (error) matrix for assessing the quality of extracted landslide scarps based on the
topographic surface roughness approach.

Ground Truth (Reference)

Positive Negative Total User’s
Accuracy/Correctness (%)

Error of
Commission (%)

Extracted
Features

Positive 3168 450 3618 87.56 12.44
Negative 1669 27480 29149 94.27 5.73

Total 4837 27930 32767

Producer’s
Accuracy/Completeness (%) 65.50 98.39 Overall accuracy 93.53%; kappa 71.31%.

Error of Omission (%) 34.50 1.61

The overall qualities of the landslide scarp segments extracted from the Salhoub/Al-Juaidieh
landslide test site using different approaches were calculated to be 93.43% for the Eigenvalue ratio
approach, 93.14% for the slope approach, and 93.53% for the surface roughness index approach. The
producer’s accuracies (completeness) and user’s accuracies (correctness) were found to be 75.0% and
82.24%, respectively, for the Eigenvalue ratio approach; 69.37% and 80.98%, respectively, for the slope
approach; and 65.50% and 87.56%, respectively, for the surface roughness index approach. The main
causes of error, in terms of the extracted landslide scarp segments, were due to a few manmade
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buildings and isolated bushes within the study area. These segments were not extracted because they
were directly connected to adjacent bushes and do not show the desired characteristics of landslide
scarps. Additional incomplete extracted scarp segments were associated with errors in the visual and
manual digitizing due to horizontal inaccuracy present in the orthophoto.

Kappa statistics arrange in from value of 1 or (100%), indicating a strong agreement, to 0 (or 0%),
indicating that any agreement is entirely due to chance (i.e., incorrectly extracted). Kappa values
greater than 75% indicate very good to strong agreement [108–110]. The values of the kappa coefficient
associated with the confusion matrices in Tables 2–4 were 74.58%, 70.78%, and 71.31%, respectively,
thereby denoting good agreement between the extracted results and the reference results.

5. Conclusions and Recommendations for Future Work

This paper presents a practical approach for the detection of landslide scarps using point clouds
that have been derived from captured imagery by low-cost unmanned aerial vehicles (UAVs). The main
advantages of the proposed methodology is allowing for the derivation of accurate information for
landslide characterization while alleviating the inherent risk in surveying hazardous landslide-prone
areas and reducing the incurred cost. Due to the inherent excessive lens distortions in the utilized
imaging system, GoPro Hero 3+ Black Edition onboard a DJI Phantom 2, a camera calibration and
stability analysis procedure is essential. Derived interior orientation parameters (IOPs) for the GoPro
during the time period from January to March, 2014 revealed that the camera maintains the stability
of its internal characteristics and is suitable for landslide mapping. The paper also introduces
procedures for automated recovery of the exterior orientation parameters (EOPs) of the images that
have been captured over the investigated landslide location as well as generation of dense point clouds
representing the surface within the mapped area. More specifically, a point cloud comprised of more
than 13.65 million points—whose average inter-point spacing and local point density values are 1.5 cm
and 4431.5 points/m2, respectively—have been derived from a set of 530 overlapping images.

The paper presented three automated approaches for the detection and extraction of scarps using
the morphometric characteristics of the derived point cloud. The first approach uses ratios among
the principal component analysis PCA-based Eigenvalues at local neighborhoods to extract salient
geo-morphometric features that represent scarps. The second approach is based on slope variability
within local neighborhoods, which are defined by a 0.5 m moving window, while assuming that abrupt
slope changes will take place between two successive scarps. This slope change will become more
distinct as the scarps evolve. Finally, the last approach is based on evaluating the surface roughness
index for the derived point cloud at local neighborhoods represented by a moving window with 0.5 m
search radius.

The experimental results show that the proposed approaches accurately identify and extract
landslide scarps with a recognition accuracy of approximately 72%. The results also indicate that the
scarp detection is 70% complete and 84% correct with an overall quality of 93.4%. These measures
have been evaluated by calculating the Root Mean Square Error (RMSE) between the automatically
extracted landslide scarp segments and manually-digitized ones. No significant differences in accuracy
are observed among the different approaches. The RMSE analysis also revealed that the accuracy of the
topographic surface slope, topographic surface roughness index, and Eigenvalue-based approaches are
9.05 cm, 10.45 cm, and 11.98 cm, respectively. Thus, the proposed approaches can accurately identify
and extract landslide scarps at the decimeter-level accuracy. Such ability to detect landslide scarps will
lead to better understanding of the landslide mechanisms for a given area. This in turn will lead to
better identification of the most likely failure site within a landslide prone area and estimation of the
volume of potential sliding rock mass. In summary, the developed approaches are fast, economical,
labor-saving, and safe tools for detecting and recognizing landslide scarps. They can be also used
to monitor and assess the rate of horizontal displacement between the extracted landslide scarps at
different times.
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The experimental results are based on datasets covering bare earth with little to no vegetation,
where the proposed approaches will lead to accurate scarp detection and extraction. Future work
will be extended to deal with areas covered by bushes, boulders, and tree stumps. More specifically,
filtering techniques will be developed to remove such features before the application of the proposed
approaches. In addition, rather than having three independent approaches, future research will
integrate the three proposed approaches to explore the possibility of improving the scarp detection and
extraction accuracy, especially in areas with higher levels of vegetation cover than the current study
site. Finally, the proposed methodologies will be incorporated for monitoring and change detection
evaluation while using temporal UAV-based datasets over a given site.
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