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Abstract: High spatial resolution estimating of exposure to particulate matter 2.5 (PM2.5) is currently
very limited in China. This study uses the newly released nationwide, hourly PM2.5 concentrations
to create a nationwide, geographically weighted regression (GWR) model to estimate ground-level
PM2.5 concentrations in China. A3 km resolution aerosol optical depth (AOD) product from MODIS
is used as the primary predictor. Fire emissions detected by MODIS fire count were considered in
the model development process. Additionally, meteorological features were used as covariates in
the model to improve the estimation of ground-level PM2.5 concentrations. The model performed
well and explained 81% of the daily PM2.5 concentration variations in model predictions, and the
cross validations R2 is 0.79. The cross-validated root mean squared error (RMSE) of the model was
18.6 µg/m3.Annual PM2.5 concentrations retrieved by the MODIS 3 km AOD product indicated that
most of the residential community areas exceeded the new annual Chinese PM2.5 National Standard
level 2. Estimated high-resolution national-scale daily PM2.5 maps are useful to identify severe air
pollution episodes and determine health risk assessments. These results suggest that this approach is
useful for estimating large-scale ground-level PM2.5 distributions, especially for regions without PM
monitoring sites.
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1. Introduction

Aerosols or airborne particulate matters (PMs), which originate from both natural and
anthropogenic emission sources, substantially influence the climate, environment and human health [1].
Numerous epidemiological studies have demonstrated that exposure to ambient PMs is associated
with various adverse health outcomes [2–4]. With intensive economic development and industrial
reconstruction, China has endured extremely high PM2.5 concentrations in recent years. Consequently,
the accurate assessment of air quality, particularly in terms of PM2.5 (particulate matter with an
aerodynamic diameter less than 2.5 µm) and its spatiotemporal variability, is currently a pressing issue.

Ground-based monitoring networks canprovide important information on atmospheric PM2.5
concentration and composition. However, the spatial coverage of routine measurements is still limited
and thus often insufficient to obtain the spatial variability of PM2.5 concentration. Furthermore, the
Ministry of Environmental Protection (MEP) of China only began carrying out routine monitoring
of PM2.5 in major cities (e.g., Beijing and Guangzhou City) since the beginning of 2013. Inadequacy
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of spatially and temporally continuous ground-based PM2.5 monitoring networks contributes to the
difficulty in estimating the historical spatial and temporal variation of PM2.5 concentrations, especially
on a regional scale, and hinges on restrained epidemiological studies of PM2.5 in China [5].

Satellite-derived aerosol optical depths (AODs) have been widely used to monitor surface
PM2.5 concentrations [6–8]. Satellite remote sensed AOD represents columnar aerosol loading of
the atmosphere and can be empirically converted into PM mass. To date, a number of empirical
models have been developed to estimate ground-level PM concentration from satellite-derived AOD
products for different parts of the world [7,9–11]. To improve the accuracy of PM2.5 estimation, more
advanced models have been set-up over the past few years, such as hybrid models and mixed effective
models [12–17]. Nevertheless, the strength of the AOD–PM2.5 relationship varies widely by region,
and the relationships in certain regions may not be applicable to other regions [18,19].

Although a variety of advanced models of PM2.5 estimation have been made in China [5,20–24],
most of these studies were limited to specific cities or regions. In addition, most of these studies have
used lower resolution (~10 km) AOD products in estimating PM2.5 concentration. This commonly used
resolution of AOD products is often too coarse and thus insufficient to determine exposure estimates in
urban areas. Until recently, the widely anticipated 3 km MODIS AOD product (Collection 6) has been
released [25]. Furthermore, the major cities in all provinces have released hourly PM2.5 concentrations
to the public since 2013 through a nationwide air quality monitoring network, which provides data for
higher resolution AOD and hourly PM2.5 modeling.

By taking advantage of the newly established national PM2.5 monitoring network and utilizing
the newly released 3 km resolution AOD products, in this paper, we established a national-scale
satellite based geographically weighted regression (GWR) model to estimate ground-level PM2.5.
To improve accuracy, we considered fire emissions in the GWR model development process as previous
studies have reported that biomass burning can affect AOD–PM2.5 relations [23,26].

This paper is organized as follows. Section 2 describes the methods of processing the data from
different sources and the methodology that we used to establish the relationship between AOD and
hourly PM2.5 concentration. Section 3 shows the results of the performance of model. Several potential
sources of prediction error of the GWR model is discussed in Section 4. The summary and conclusion
are given in Section 5.

2. Materials and Methods

2.1. Data Collection and Reprocessing

2.1.1. Ground-Based Hourly PM2.5 Concentration Data

More than 900 ambient air-quality monitoring sites were set up in China by the Ministry
Environmental Protection (MEP) and local environmental protection agencies (Figure 1) for the
purpose of protecting ambient air quality. These sites monitor the mass concentration of particulate
air pollutants on the ground. The PM2.5 data from these sites include hourly mass concentrations
and 24 h average concentrations (daily-mean). Hourly PM2.5 measurements from 1 January 2014 to
31 December 2014 were collected primarily from the official Web site of the China Environmental
Monitoring Center (CEMC) [27]. A total of 943 monitoring sites are included in the present study
(Figure 1).
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Figure 1. Spatial distribution of the air-quality monitoring stations (violet dots) and meteorological 
stations (yellow triangles) used in this study. There are 943 particulate matter 2.5 (PM2.5) monitoring 
sites and 926 ground meteorological stations. It should be noted that the monitoring sites are 
clustered in the urban areas of major cities, whereas rural areas have little coverage. Many 
monitoring sites are overlaid in this map. 

2.1.2. Satellite AOD Datasets 

Two MODIS instruments were put onboard the Terra satellite in December 1999 and the Aqua 
satellite in May 2002. Both instruments collect AOD data. Recently, more accurate MODIS collection 
6 (C6) AOD products were released at a spatial resolution of 3 km at nadir. In addition, these newly 
released AOD products have been validated by AOD observations from 33 Aerosol Robotic 
Network (AERONET) sites in China and the results were satisfactory [28]. Detailed information on 
the Collection 6 (C6) retrieve algorithm can be found elsewhere [29,30]. 

The Terra and Aqua satellites cross the equator at approximately 10:30 a.m. and 1:30 p.m. local 
solar time (LST), respectively. The data acquired during the daytime passes of both MODIS 
instruments are used here. The global MODIS Level 2 Aerosol Products for 2014 (Collection 6) can 
be downloaded from the website [31]. In this study, we used the values of both MODIS Terra 
(MOD04) and MODIS Aqua (MYD04) AOD, which were extracted at 550 nm. 

The MODIS Active Fire product provided by Information for Resource Management System 
(FIRMS) was used to detect the fire emission in China. The original data are processed by MODIS 
Adaptive Processing System (MODAPS) using the enhanced contextual fire detection algorithm into 
the Collection 5 Active fire product [32]. The fire data are at a spatial resolution of 1 km. For this 
study, we have considered both the total fire number and high-confidence fire counts spanning from 
1 January 2014 to 31 December 2014. 

2.1.3. Ground-Based Meteorological Measurements 

Ground-based meteorological parameters, including surface wind speed (SPD), surface air 
temperature (ST), horizontal visibility (Vis), and surface relative humidity (SRH), were collected 
from 926 meteorological stations (Figure 1). Corresponding to ground-based PM2.5 measurements, 
the meteorological data used were from 1 January 2014 through 31 December 2014 and was 
provided by the China Meteorological Center. The measurements at these stations were made every 
three hours.  

2.1.4. Data Preprocessing and Integration 

Because the data from the three sources have different temporal and spatial resolutions, all 
datasets were re-processed to be consistent in space and time to form a complete dataset that can be 
used as the basis of the following analyses. For the retrieved AOD data from both Terra and Aqua 

Figure 1. Spatial distribution of the air-quality monitoring stations (violet dots) and meteorological
stations (yellow triangles) used in this study. There are 943 particulate matter 2.5 (PM2.5) monitoring
sites and 926 ground meteorological stations. It should be noted that the monitoring sites are clustered
in the urban areas of major cities, whereas rural areas have little coverage. Many monitoring sites are
overlaid in this map.

2.1.2. Satellite AOD Datasets

Two MODIS instruments were put onboard the Terra satellite in December 1999 and the Aqua
satellite in May 2002. Both instruments collect AOD data. Recently, more accurate MODIS collection 6
(C6) AOD products were released at a spatial resolution of 3 km at nadir. In addition, these newly
released AOD products have been validated by AOD observations from 33 Aerosol Robotic Network
(AERONET) sites in China and the results were satisfactory [28]. Detailed information on the
Collection 6 (C6) retrieve algorithm can be found elsewhere [29,30].

The Terra and Aqua satellites cross the equator at approximately 10:30 a.m. and 1:30 p.m. local
solar time (LST), respectively. The data acquired during the daytime passes of both MODIS instruments
are used here. The global MODIS Level 2 Aerosol Products for 2014 (Collection 6) can be downloaded
from the website [31]. In this study, we used the values of both MODIS Terra (MOD04) and MODIS
Aqua (MYD04) AOD, which were extracted at 550 nm.

The MODIS Active Fire product provided by Information for Resource Management System
(FIRMS) was used to detect the fire emission in China. The original data are processed by MODIS
Adaptive Processing System (MODAPS) using the enhanced contextual fire detection algorithm into
the Collection 5 Active fire product [32]. The fire data are at a spatial resolution of 1 km. For this
study, we have considered both the total fire number and high-confidence fire counts spanning from
1 January 2014 to 31 December 2014.

2.1.3. Ground-Based Meteorological Measurements

Ground-based meteorological parameters, including surface wind speed (SPD), surface air
temperature (ST), horizontal visibility (Vis), and surface relative humidity (SRH), were collected
from 926 meteorological stations (Figure 1). Corresponding to ground-based PM2.5 measurements,
the meteorological data used were from 1 January 2014 through 31 December 2014 and was provided
by the China Meteorological Center. The measurements at these stations were made every three hours.

2.1.4. Data Preprocessing and Integration

Because the data from the three sources have different temporal and spatial resolutions, all datasets
were re-processed to be consistent in space and time to form a complete dataset that can be used as
the basis of the following analyses. For the retrieved AOD data from both Terra and Aqua satellites,
we used the nearest of AOD pixel over a window size of 3 ˆ 3 pixels centered at a given PM2.5 station
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for our analysis. For example, we applied a 9 km search radius around each PM2.5 monitoring site and
the MODIS AOD pixels with shortest distance to the PM2.5 station were used. Furthermore, to avoid
possible cloud contamination, we eliminated all of the AOD–PM2.5 pairs where the number of pixels
is less than two. In addition, to reduce the possibility of including spurious AOD pixels, we removed
AOD pixels with a standard deviation of greater than 0.5. As the AOD data from Terra and Aqua were
collected two different times each day, we used its average as the mean AOD value.

Corresponding to the period of the AOD data, 3-h surface meteorological data were re-processed
by averaging values at 11:00 a.m. and 2:00 p.m. and hourly PM2.5 observations were sampled from
10:00 a.m. to 2:00 p.m. LST (corresponding to the satellite overpass times). The surface meteorological
data from the closest meteorological station were used to represent the meteorological conditions
for each PM2.5 monitoring station. To select the meteorological station, we applied a 150 km search
radius around each PM2.5 monitoring station and the meteorological station in closest proximity to
the PM2.5 station was used. The final paired dataset contains 30,130 samples, which was used for the
following analysis.

2.2. Methodology

2.2.1. Detection of Fire Emissions

Crop residues burning in the field is a common approach used to eliminate agricultural waste for
next crop in line and to enrich soil nutrients, and this practice is more prevalent during the harvest
season in China. In addition, crop residue burning as fuel and in the field is the major source of
biomass burning in China [33].

Figure 2 displays the annual distribution of fire counts collected from both Terra and Aqua
satellites. There were a total of 287,332 fire spots detected by satellite in our study area during 2014.
Fire occurrence was highest in the summer and lowest in the winter. A previous study reported that
biomass burning can produce aerosols above the boundary layer, which could eliminate AOD–PM
relationships [23]. Thus, we chose to exclude all of the AOD–PM2.5 pairs where one or more high
confidence fires was detected within a window size of 3 ˆ 3 AOD pixels centered at a given PM2.5 site.
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2.2.2. Model Development and Validation

Our previous study developed a GWR model to estimate ground-level particulate matter 10
(PM10) in a specific city in northwest China and the model performed well in Xi’an [23]. We extend
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our previous satellite methodology to the national-scale. Using a novel 3 km resolution MODIS
AOD product, we estimated national-scale daily PM2.5 concentration in China. We calibrated
the AOD–PM2.5 relation using newly released national-wide hourly PM2.5 ground monitors and
meteorological parameters.

It has been established that the association of AOD and ground-level PM2.5 varies spatially and
temporally, and changes with spatial context (Figure 3). Such spatial variability of the relationship
may be attributed to several differences, including meteorological patterns and seasonality. A GWR
model can be used to explore geographically varying relationships between dependent variables and
independent variables. GWR model has been successfully adopted in modeling the PM2.5–AOD
association in China [5,21]. GWR model can generate a continuous surface of parameter values by
taking measurements of the parameters at each local observation to denote the spatial variations of the
surface [5,34]. To account for these temporal variations in the PM2.5–AOD relationship, a GWR model
was established to obtain a local R2 for each PM2.5 monitoring site on a daily basis. The adaptive
bandwidths were chosen as the uneven distribution of the monitoring sites. The detail of GWR model
structure is expressed in the following equation:

PM2.5ij “ β0,ij ` β1,ijAODij ` β2,ijSRHij ` β3,ijVisij ` β4,ijSTij ` β5,ijSPDij (1)

where PM2.5ij (µg/m3) is the averaged hourly ground-level PM2.5 concentration at a location i on
day j; β0,ij denotes the location-specific intercept on day j; β1,ij ´ β6,ij is the location specific slopes on
day j; AODij (unitless) is the MODIS-derived AOD (unitless) products at a location i on day j; and
SRHij (unit: %), Visij (unit: Km), STij (unit: ˝C), and SPDij (unit: m/s) are meteorological parameters
at location i on day j (definitions in Section 2.1). The selection of the meteorological variables in the
model is based on findings of previous study [5,23].
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To validate the performance of the model, the estimated PM2.5 concentrations are fitted against
the observed values. In addition, commonly used factors including the correlation coefficients, mean
absolute percentage prediction error (APE), and root-mean-square error (RMSE) are calculated to
evaluate the degree of goodness of fit between estimated and observed PM2.5 concentrations.
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We applied a 10-fold cross validation method [35] to test for potential model over-fitting in the
present study. The dataset was first broken into 10 folds with approximately 10% of the total data
points in each fold. In each round of the cross validation, the model was fitted with nine folds (90% of
the total dataset) and one fold was predicted using the fitted model. This step can be repeated 10 times
until every fold is tested. Furthermore, APE and RMSE are adopted to evaluate the model prediction
accuracy for model fitting and cross validation results.

3. Results

3.1. Descriptive Statistics

Table 1 summarizes the descriptive statistics of dependent variables as well as PM2.5
measurements used in model fitting. The MODIS AOD has an annual mean value of 0.69 and a standard
deviation (SD) of 0.45. Theannual mean ground-level PM2.5 concentrations in 2014 ranged from 2 to
494 µg/m3, with a mean value of 61 µg/m3 and SD of 41 µg/m3. The annual mean visibility values
extended from 0.05 to 30 km, and surface air temperature ranged from ´9.1 to 38.1 ˝C. The relatively
small mean value of SRH (40%) implies a relatively dry atmospheric environment. Surface wind speed
(3.3 ˘ 1.8 m/s) is less variable when compared with other meteorological variables.

Table 1. Descriptive statistics summarizing observations for PM2.5 monitoring sites for Year 2014.

Parameters Mean SD Min Max

PM2.5 (µg/m3) 61.14 41.21 2.2 494.20
MODIS AOD 0.69 0.45 0.01 4.51

Relative humidity (%) 40.10 14.85 6.50 100.00
Visibility (km) 16.33 8.83 0.05 30.00

Surface air temperature (˝C) 23.01 7.42 –9.12 38.05
Wind speed (m/s) 3.27 1.78 0.50 15.00

3.2. Model Fitting and Validation

After excluding fire emission points, there are a total of 27,813 matched predictors available for
model fitting. Figure 4 shows the scatterplots for the model fitting and cross validation for the GWR
model. For the model fittings, the overall R2 between the predicted and observed PM2.5 concentration
is 0.81, with a RMSE value of 17.2 µg/m3 and APE of 18.5%. The model performed very well with
a cross validated R2 of 0.79, which indicated that this model can generate an accurate prediction.
In comparison to the model fitting, the cross validation R2 only decreases by 0.02, and cross validation
RMSE only increases by 1.4 µg/m3 for the model, which are both greater than the model fitting and
suggests that the model is not substantially over-fitted.
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a reference.
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Our results show that the cross validation RMSE of the model is 18.6 µg/m3, which is much
lower than the results of a previous study in China [5]. The cross validation relative prediction error
(RPE, defined as RMSE divided by the mean ground-level PM2.5 concentration) of the model is 31.6%,
which is 19.7% lower than the previous study in the China. There are several possible reasons that
may contribute to the more accurate estimation generated by our model compared with the previous
study. First, the PM2.5 concentrations in the previous study are daily-mean concentrations, which
are averaged hourly observations. However, satellite AOD data cannot capture the diurnal variation
of daily PM2.5 concentration and therefore that data cannot be well represented. In this study, the
ground-based PM2.5 measurements closest to the overpass time of the satellite were selected. Hourly
PM2.5 concentrations sampled from 10:00 a.m. to 2:00 p.m. LST were used to correspond to the satellite
overpass times. Second, we excluded the AOD data that detected fire emissions at a given PM2.5 site
in the model development process. From our previous study, we reported that crop residue burning is
an important factor that leads to airborne aerosols, which can eliminate the AOD–PM relationship [23].
Third, we used a fine-resolution 3 km AOD product as predictors of surface PM2.5 concentrations
while the previous study used 10 km AOD products. Another previous study reported that the model
performance was more accurate using the 3 km AOD product than the performance based on the
10 km product [16]. Finally, the ground meteorological parameters used in our model obtained from
ground-based observations more accurately represented surface air conditions when compared to the
parameters obtained via model output in previous studies.

3.3. Estimation of Spatial Distributions of PM2.5 Concentrations.

Daily MODIS 3 km AOD and meteorological data were gridded to 0.1 degree (~10 km) spatial
resolution using the Kriging method. Subsequently, spatial distributions of PM2.5 concentration were
predicted using the validated GWR model. Figure 5 shows the ground-level observed annual mean
PM2.5 concentrations in China, and AOD-derived PM2.5 are shown in Figure 5.
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The observations from ground monitoring sites exhibited a strong heterogeneity of PM2.5
concentrations among discrete sites, while the MODIS AOD-derived PM2.5 concentrations provided
a more comprehensive map of the spatial distributions of PM2.5 concentrations across China.
Figures 5 and 6 show the annual averaged ground-observed PM2.5 concentrations and AOD retrieved
PM2.5 concentrations from 1 January to 31 December 2014, respectively. The spatial distributions
among figures are in accordance. Spatially, the highest PM2.5 loadings appear in the Beijing-Tianjin
Metropolitan Region (including Beijing, Tianjin, and Hebei), followed by Central China (including
Hunan, Hubei, and Henan).
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The annual mean PM2.5 concentrations in the Beijing-Tianjin Metropolitan Region are generally
higher than 85 µg/m3, with the highest concentrations greater than 135 µg/m3. The annual mean
PM2.5 concentrations are generally greater than 75 µg/m3 in Central China. These regions in China
have the greatest amount of industrial structures and are densely populated. Intense human activity
and rapid urbanization have led to a high production of PM2.5 concentration in these regions.
The Tarim Basin located in the southern part of Xinjiang Autonomous Region is another area of
heavily polluted area with high PM2.5 levels. The Taklamakan Desert covers over 60% of the Tarim
Basin. Dust generated in the Taklamakan Desert and Asian pollution can become entrained and
transported across eastern Asia [36], and thus high level PM2.5 derived by AOD in desert regions
contribute significantly to regional PM2.5 pollution in the Tarim Basin. The Chongqing Metropolitan
is another area of high pollution with the annual PM2.5 concentrations of 75–85 µg/m3. Persistent
temperature inversion and stagnant air circulation usually occur in this region owing to its unique
topography, and thus often lead to severe air pollution. High PM2.5 concentrations also occur in the
Yangtze River Delta, an area that is one of the most developed regions in China. The cleanest areas are
in North Inner Mongolia, Hainan, and Tibet, where the annual mean values from both MODIS AOD
are generally lower than 35 µg/m3. Heilongjiang and Yunnan Province have annual mean values of
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25–55 µg/m3. Figure 7 shows spatial distributions of standard deviation of predicted residuals across
China. Overall, the highest prediction errors appear in Northern China, Yangtze River Delta, and
Hunan province, followed by eastern Heilongjiang, northern Xinjiang Province and the junction of
Guangdong and Hainan Provinces.
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4. Discussion

In summary, the GWR model proved to have strong potential to estimate PM2.5 concentrations in
China. However, it should be noted that the AOD-derived PM2.5 concentrations in several regions are
substantially over-predicted. For example, the AOD-derived PM2.5 was overestimated in Hunan and
Hubei Provinces, especially in eastern Hunan (Figure 8). The eastern part of Hunan Province was very
over-predicted, with estimated concentrations going up to 135 µg/m3. However, the observed PM2.5
in this region is about 85 µg/m3. Similar overestimation was also found at the junction of Hunan and
Hubei Provinces. There are several factors that may contribute to possible estimation errors. First, the
uneven spatial distribution of ground-based PM2.5 monitors may lead to potential estimation error
of the GWR model. Most of the PM2.5 monitors are located in large urban centers. Rural areas still
have very limited PM2.5 monitoring site coverage, especially in the western part of the country such
as Xinjiang, Tibet, Qinghai and Inner Mongolia. Therefore, the estimated PM2.5 levels in the cleaner
areas of China may contain substantial errors. Nevertheless, this problem is expected to be alleviated
in the near future because the national PM2.5 monitoring network will cover all county-level cities by
2015 [37]. Second, the satellite has less temporal coverage due to its sampling limitation according to
retrieval algorithm (surface conditions, clouds, and other factors), especially in winter. As a previous
study reported, the sampling bias by the satellite may affect the long-term mean PM2.5 derived from
the AOD-based calibration model [16]. Third, although the 3 km MODIS AOD products have been
demonstrated with satisfactory quality over China [30], improper characterization of surface reflectance
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adversely impact retrieval accuracy of the higher-resolution products [38]. Fourth, the spatial and
temporal mismatch among meteorological, AOD, and pollutant data may also bring uncertainties in
the PM2.5 estimating. For example, the MODIS AODs represent average value of a 3 km resolution at
nadir. However, observed PM2.5 is a point value obtained form a given monitor site. Furthermore, we
used Kriging interpolate method to grid the AOD and methodological variables. The uneven spatial
distribution of these parameters may also lead to estimation errors in the interpolation process. Finally,
MODIS AOD retrieval algorithm may also lead to PM2.5 estimation error in some regions such as
Taklamakan and Gobi Deserts. Ideally, the MODIS operational AOD retrieval algorithm over dark
surface uses the near-infrared at 2.1 µm, but the variance in surface reflectance in different regions can
cause differences in the accuracy of AOD retrievals [19].
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Figure 8. Annual mean observed (top) and estimated (bottom) PM2.5 concentrations for Hunan and
Hubei Provinces.

5. Summary and Conclusions

In this study, we applied the newly released 3 km resolution MODIS AOD product to estimate
national-scale surface PM2.5 concentrations using a GWR model. Fire emissions and meteorological
features were taken into consideration to achieve greater accuracy of PM2.5 estimation.

The results from the performance of the GWR model indicated that the model was relatively
accurate in the estimation of ground-level PM2.5 concentrations. The GWR model was able to explain
approximately 79% of the variability in daily PM2.5 concentrations with an RMSE of 18.6 µg/m3.
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These results are useful for health risk assessment, air pollution control strategies and
environmentally related studies. The results also showed that the GWR model presented in this
study has the capacity to identify PM2.5 spatial distributions at various scales. Additionally, the
results from mapping national-scale PM2.5 concentrations can be used to support future monitoring
construction plans in China.
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