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Abstract: River runoff and associated flood plumes (hereafter river plumes) are a major source
of land-sourced contaminants to the marine environment, and are a significant threat to coastal
and marine ecosystems worldwide. Remote sensing monitoring products have been developed
to map the spatial extent, composition and frequency of occurrence of river plumes in the
Great Barrier Reef (GBR), Australia. There is, however, a need to incorporate these monitoring
products into Risk Assessment Frameworks as management decision tools. A simple Satellite Risk
Framework has been recently proposed to generate maps of potential risk to seagrass and coral reef
ecosystems in the GBR focusing on the Austral tropical wet season. This framework was based on
a “magnitude ˆ likelihood” risk management approach and GBR plume water types mapped from
satellite imagery. The GBR plume water types (so called “Primary” for the inshore plume waters,
“Secondary” for the midshelf-plume waters and “Tertiary” for the offshore plume waters) represent
distinct concentrations and combinations of land-sourced and marine contaminants. The current
study aimed to test and refine the methods of the Satellite Risk Framework. It compared predicted
pollutant concentrations in plume water types (multi-annual average from 2005–2014) to published
ecological thresholds, and combined this information with similarly long-term measures of seagrass
and coral ecosystem health. The Satellite Risk Framework and newly-introduced multi-annual risk
scores were successful in demonstrating where water conditions were, on average, correlated to
adverse biological responses. Seagrass meadow abundance (multi-annual change in % cover) was
negatively correlated to the multi-annual risk score at the site level (R2 = 0.47, p < 0.05). Relationships
between multi-annual risk scores and multi-annual changes in proportional macroalgae cover (as an
index for coral reef health) were more complex (R2 = 0.04, p > 0.05), though reefs incurring higher risk
scores showed relatively higher proportional macroalgae cover. Multi-annual risk score thresholds
associated with loss of seagrass cover were defined, with lower risk scores (ď0.2) associated with
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a gain or little loss in seagrass cover (gain/´12%), medium risk scores (0.2–0.4) associated with
moderate loss (´12/´30%) and higher risk scores (>0.4) with the greatest loss in cover (>´30%).
These thresholds were used to generate an intermediate river plume risk map specifically for seagrass
meadows of the GBR. An intermediate river plume risk map for coral reefs was also developed
by considering a multi-annual risk score threshold of 0.2—above which a higher proportion of
macroalgae within the algal communities can be expected. These findings contribute to a long-term
and adaptive approach to set relevant risk framework and thresholds for adverse biological responses
in the GBR. The ecological thresholds and risk scores used in this study will be refined and validated
through ongoing monitoring and assessment. As uncertainties are reduced, these risk metrics will
provide important information for the development of strategies to manage water quality and
ecosystem health.

Keywords: environmental risk mapping; river plumes; land-sourced contaminants; MODIS; Great
Barrier Reef; seagrass meadows; coral reefs

1. Introduction

The rapid development of coastal areas has resulted in a substantial increase in land-sourced
contaminants entering the marine environment [1–3], with a “contaminant” defined in this study
as “a substance that occurs at above ‘natural’ concentrations” [3]. For instance, clearing and grazing of
land, in conjunction with extensive use of fertilizers and herbicides in the agricultural sector, result in
increased loads of sediments, nutrients and herbicides in river runoff and associated flood plumes
(hereafter river plumes) [4,5]. Acute impacts from river plume discharges and chronic declines in
water quality contribute to localised impacts that threaten coastal and marine ecosystems and increase
vulnerability to climate change stress (e.g., [6]). Identifying the movement, duration, frequency and
composition of river plumes and associated coastal water quality is critical in measuring the exposure
and risk to marine ecosystems of land-sourced contaminants.

Stretching more than 2000 km along the Queensland coast, Australia, the Great Barrier Reef
Marine Park (hereafter GBR; Figure 1) was inscribed on the World Heritage List in October, 1981. It is
the most extensive reef system in the world, and shelters over 2900 coral reefs and 35,000 km2 of
seagrass meadows [7,8]. More than 30 rivers drain into the GBR and are a major source of land-sourced
contaminants delivered to the marine environment [9]. The sediments, nutrients and herbicides
discharged as agricultural runoff through river plumes have been identified as the contaminants of
greatest concern with regards to their potential impacts on GBR key ecosystems, including coral reefs
and seagrass meadows (e.g., [9,10]). Different river plume water types (hereafter plume water types),
so called “Primary” for the inshore plume waters, “Secondary” for the midshelf-plume waters and
“Tertiary” for the offshore plume waters, have been described in the GBR. They represent a gradient
from the inshore to the offshore boundaries of river plumes. Each plume water type is associated
with characteristic optical properties, light levels and colours, as well as different concentrations and
proportions of land-sourced contaminants (e.g., [11–16]).

Table 1 gives examples of remote sensing monitoring products developed through the GBR
Marine Monitoring Program (MMP) to improve our understanding of the relationships between
coastal water quality in river plumes and its effects on marine ecosystems [15]. River plume maps have
been developed to document the spatial extent and frequency of occurrence of the GBR plume water
types (Table 1A). Coupled with in situ data, river plume maps have been used to document water
quality conditions associated with river plumes (Table 1B) (e.g., [12–15]). The remote sensing outputs
are produced as single-week and multi-week (seasonal and multi-annual, see Table 1) composite
maps and provide an aggregated approach to reporting contaminant concentrations in the GBR
marine environment. Several water quality parameters are monitored, including salinity, temperature,
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particulate and dissolved nutrients, phytoplankton, total suspended solids (TSS), diffuse attenuation
coefficient of photosynthetically active radiation (Kd(PAR)), coloured dissolved organic matters
(CDOM), chlorophyll-a (Chl-a) and herbicides [15]. Other remote sensing products (not used in
this study) developed to monitor river plumes and water quality in the GBR were outlined in a recent
review [15].
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regions and marine portions, and major rivers (Normanby: No, Barron: Ba, Tully: Tu, Herbert: He, 
Burdekin: Bur, Pioneer: Pi, Fitzroy: Fi and Burnett: Bu). Key marine ecosystems: coral reefs and seagrass 
meadows. Coral reef outlines used are per the GBR Marine Park Authority Spatial Data Centre official 
reefs spatial data layer 2013. Seagrass areas show where meadows boundaries have been mapped (map: 
composite of surveyed data as at November, 1984–June, 2010) and the modelled (mod.) probability  
(50%–100%, pixel size 2 km2) of deepwater seagrass habitat [17]. The seagrass and coral reef sites 
monitored though the Great Barrier Reef Marine Monitoring Program are indicated with green asterisks 
and white dots, respectively. 
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Figure 1. The GBR (Great Barrier Reef) World Heritage Area, Natural Resource Management (NRM)
regions and marine portions, and major rivers (Normanby: No, Barron: Ba, Tully: Tu, Herbert: He,
Burdekin: Bur, Pioneer: Pi, Fitzroy: Fi and Burnett: Bu). Key marine ecosystems: coral reefs and
seagrass meadows. Coral reef outlines used are per the GBR Marine Park Authority Spatial Data
Centre official reefs spatial data layer 2013. Seagrass areas show where meadows boundaries have
been mapped (map: composite of surveyed data as at November, 1984–June, 2010) and the modelled
(mod.) probability (50%–100%, pixel size 2 km2) of deepwater seagrass habitat [17]. The seagrass and
coral reef sites monitored though the Great Barrier Reef Marine Monitoring Program are indicated with
green asterisks and white dots, respectively.

The river plume and contaminant maps help cluster and identify areas and ecosystems which may
experience acute or chronic high exposure to river plumes and associated contaminants. By overlaying
maps of contaminants with maps of the presence or distribution of key ecosystems susceptible to
the land-sourced contaminants, a greater understanding of the adverse biological responses of GBR
ecosystems to land-sourced contaminants can be achieved. River plume maps have thus been used as
an interpretative tool for understanding changes in seagrass meadow health [18] and, in a case study
in Cleveland Bay (north Queensland), the decline in seagrass meadow area and cover was positively
linked to a high occurrence of primary plume water masses mapped through Moderate Resolution
Imaging Spectroradiometer (MODIS) imagery [19]. There is, however, a need to improve these
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remote sensing monitoring products and incorporate them into unique Risk Assessment Frameworks
focusing on the GBR-wide scale and incorporating the potential of cumulative impacts from multiple
contaminants in river plume waters [13,16]. The assessment of risk in this study is defined as
“the methods by which the likely adverse effect of combined contaminants on ecosystems is estimated with
a known degree of certainty using scientific methodology” [20]. Risk management approaches are becoming
increasingly more common [21] in a range of applications including fisheries science [22,23], marine
spatial planning [24] and ecosystem management [25,26].

Table 1. Key remote sensing monitoring products (operational and in progress) developed through
MMP (Marine Monitoring Program) funding and used to develop the present Satellite Risk Framework.

Product Management Outcome Spatial and Temporal
Resolution

A: River plume maps
(Operational)

Illustrate the extent of riverine waters and plume
water types, but do not provide information on the
composition of the water and WQ constituents

Spatial resolution:
- GBR-wide scale

- NRM regions
Temporal resolution:

- Daily
- Weekly composites

- Seasonal composites:
focusing on the tropical wet

season (December–April).
- Multi-annual composites

(mean of several wet seasons)

B: Contaminant maps
(Operational)

Plume water types are associated with different
levels and combinations of pollutants and, in
combination with in situ WQ information, provide
a broad scale approach to reporting contaminant
concentrations in the GBR marine environment.

C: River plume risk maps
(In progress: [16], this study)

Product aiming to evaluate the risk of GBR
ecosystems from river plume exposure through the
use of established risk management approaches
(magnitude ˆ likelihood)

A simple risk framework has been recently proposed to generate maps of potential risk
of seagrass and coral reef ecosystems in the GBR to river plumes using MODIS imagery ([16],
Table 1C and Figure 2). This framework (hereafter Satellite Risk Framework) was based on a
“magnitude ˆ likelihood” approach that assumed there would be increased adverse biological
responses from GBR seagrass and coral ecosystems if contaminant concentrations and frequency
of exposure to river plumes were increased. The Satellite Risk Framework used MODIS data to
delineate the spatial extent and frequency of exposure to GBR plume water types and assumed that the
magnitude of the river plume risk for seagrass meadows and coral reefs from combined water quality
stressors decreased from the Primary to the Tertiary waters of river plumes [16]. The assumptions and
outputs of the Satellite Risk Framework were, however, not validated against ecosystem health data.

The Satellite Risk Framework used MODIS satellite data processed using the SeaWiFS Data
Analysis System (SeaDAS, [27]) [16]. The SeaDAS program incorporates various operational bio-optical
algorithms and has become the standard for processing MODIS imagery [28]. MODIS data were used
to characterise water types within GBR river plumes using a supervised classification based on
threshold values for CDOM, Chl-a and TSS estimated from two remote sensing proxies [16] (see the
supplementary material (Table S1) for a description of the bio-optical algorithms used). Regional
parameterisation helps to increase accuracies of these operational algorithms in the optically complex
coastal waters [29–31], with a regionally calibrated inversion algorithm for the GBR coastal waters
developed to achieve more accurate retrieval of water quality constituents in the GBR (hereafter GBR
Algorithm) [32–37]. The GBR algorithm will be instrumental in more accurate mapping of river plume
waters; however, it still requires further validation in the Austral tropical wet season (hereafter wet
season: December–April inclusive), and particularly in the optically complex river plume waters of
the GBR [34]; however, this is out of the scope of this paper. To map river plumes and plume water
types in the GBR, “alternative” remote sensing methods based on MODIS true colour data instead of
satellite water quality estimates, have been established (e.g., [12,15]).
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The current study aimed to test and refine the methods of the Satellite Risk Framework using
MODIS true colour imagery [16]. It focused on the land-sourced contaminants that pose the greatest
risk to seagrasses and coral reefs, i.e., the suspended sediments, nutrients and herbicides [26].
It built on methods and remote sensing products developed for routine monitoring and reporting
(Table 1), as well as recent case studies undertaken in the GBR [16,19], but focused on broader
spatial and temporal scales (GBR-wide and decadal). In order to produce ecologically-significant
risk maps, contaminant concentrations in river plumes must be compared to published ecological
threshold values for consequences and effects [38], i.e., for “adverse ecosystem responses”. Furthermore,
bio-indicators for regional risk assessments must be related to the long-term survival of ecosystems,
i.e., for example, to the death, immobilisation, growth, abundance and reproductive impairment of the
local ecosystems [39]. The bio-indicator should also be a measurement for which there is an existing
time series of data so that background levels, variability and trends can be estimated [40].

This study compared predicted pollutant concentrations in river plumes to published thresholds
for adverse biological responses, and combined this information with long-term measures of seagrass
and coral ecosystem health. The assumptions of the Satellite Risk Framework [16] were tested:
i.e., that (i) levels of contaminants in plume waters exceed published ecological thresholds and
decrease from the inshore to offshore plume water types; and (ii) the ecosystem responses are linked
to the local water quality conditions, i.e., adverse biological responses are correlated to increased
contaminant concentrations (magnitude of the risk) and frequency of exposure to the contaminant
concentrations (likelihood of the risk). This study allowed the definition of a set of multi-annual risk
thresholds associated with loss of seagrass cover and higher proportion of macroalgae within the
algal communities at reef sites. It also allowed the generation of river plume risk maps specifically for
seagrass meadows and coral reefs of the GBR.
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2. The Great Barrier Reef as a Case Study Area

2.1. The Great Barrier Reef

In the GBR, river plumes are driven by high river flow conditions, which occur in the monsoonal
(wet) season, typically associated with the passage of cyclones or low pressure systems, i.e., from about
December–April [14]. The GBR catchment has been divided into six large areas defined as Natural
Resource Management (NRM) regions (Figure 1), each defined by a set of land use/cover, biophysical
and socio-economic characteristics. Wet Tropics catchments (Wet Tropics and Cape York NRM regions)
have frequent storm and runoff events and, having generally short and steep catchments, there is more
direct and frequent runoff to coastal environments. In the largest (Burdekin, Mackay Whitsunday,
Fitzroy and Burnett-Mary) NRM regions, the major flood events can occur at intervals of years, with
long lag times for the transport of material from the catchments to the coastal ecosystems [41]. The Cape
York region is largely undeveloped and is considered to have the least impact on GBR ecosystems from
existing land based activities. In contrast, the Wet Tropics, Burdekin, Mackay Whitsunday, Fitzroy and
Burnett-Mary regions are characterised by diverse land uses, including horticulture, cropping, mining
and urban development, which contribute to discharge of varying land-sourced contaminants to the
GBR during the wet season. Occurrence of coastal waters with elevated concentrations of Dissolved
Inorganic Nitrogen (DIN) is linked to fertiliser in agriculture (predominantly sugarcane) in the Wet
Tropics region, high TSS concentrations are mainly linked to grazing activities in the Dry Tropics and,
in particular, the Burdekin and Fitzroy catchments, and higher occurrence of herbicides is linked to
agriculture in the Mackay Whitsunday and Burdekin catchments (e.g., [8,9,26,39,42,43]).

2.2. Link between Contaminants and Reef and Seagrass Health

Widespread decline of seagrass and coral cover in the GBR over the last decade [44,45] has been
linked to reduced water quality, with susceptibility varying greatly between ecosystems, species
and habitats (see review [46]). Elevated levels of suspended sediments, which increase turbidity
(or TSS concentrations) and reduce the amount of light available for seagrass photosynthesis, are
described as one of the main causes of seagrass loss [45,47]. Macroalgal cover on GBR coral reefs is
correlated with increased turbidity [48] and reef development ceases at depths where light is below
6%–8% of surface irradiance [49,50]. Both seagrasses and corals are also vulnerable to elevated rates of
sedimentation [50].

Nutrient enrichment can stimulate seagrass growth [51–53] if other factors, such as light
availability, are not limiting; but nutrient over-enrichment can favour the growth of plankton,
macroalgae and epiphytic algae, all of which attenuate light to seagrass leaves and corals and
compete for space [47,54–57]. DIN enrichment can also lead to significant physiological changes
in coral [3,58]. Photosystem II herbicides (hereafter PSII), the herbicides most commonly found in
the GBR [59,60], inhibit electron transport and reduce efficiency of photosynthetic energy acquisition
of seagrasses and corals [61–63]. Finally, both the amount (concentration or load) and duration
of exposure to a contaminant often co-determines the severity of an ecosystem response to the
contaminant exposure [57,62,64–67]. For example, a coral that is exposed to a high concentration
of a contaminant for a short period of time can be similarly affected as one that is exposed to lower
concentrations for longer periods [67]. A “magnitude ˆ likelihood” Risk Assessment approach is thus
particularly well suited to the study of the ecological impacts of land-sourced contaminants in river
plume waters.

2.3. Published Ecological Thresholds for Land-Sourced Contaminants

Relatively few studies have quantified thresholds for land-sourced contaminant concentrations or
the duration of exposure that leads to seagrass and coral ecosystems health decline. A Risk Assessment
Framework (hereafter GBR Risk Framework) was recently developed and applied to the GBR to
provide information for policy makers and catchment managers on the key land-sourced contaminants
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of greatest risk to the health of coral reefs and seagrass meadows [26]. The GBR Risk Framework
developed a set of ecologically-relevant thresholds (hereafter ecological thresholds) for concentrations
and frequency of occurrence of TSS, Chl-a and PSII during flood conditions [26] (supplementary
material (Table S2)). A TSS threshold of 7 mg¨L´1(equivalent to a turbidity of 5 NTU) was identified
for various ecosystem effects, including coral reef stress and declines in seagrass cover. A Chl-a
threshold of 0.45 µg¨L´1 was identified as an important ecological threshold for macroalgal cover,
hard coral species richness and octocoral species richness. Finally, photosynthesis was reduced by up
to 10% in corals, seagrass and microalgae at PSII concentrations of >0.1 µg L´1 (see references in the
supplementary material (Table S2)).

3. Material and Methods

3.1. Mapping of the GBR Plume Water Types over 10 Wet Seasons

River plumes were mapped in this work using MODIS true colour imagery and the method
of Álvarez-Romero et al. ([12] and the supplementary material (Material and Method section)).
In this method, daily MODIS data focused on the wet season are classified into six colour classes
corresponding to a gradient of six distinct plume water types. The six plume water types are hereafter
referred to as plume colour classes 1 (CC1) to 6 (CC6). CC1–CC4 correspond to the Primary plume
water type, CC5 to the Secondary plume water type and CC6 to the Tertiary plume water type of
Petus et al. [16]. The method of Álvarez-Romero et al. [12] was used to classify 10 years of GBR
MODIS images and to produce daily plume water type maps for the wet season 2005 (i.e., December,
2004–April, 2005) to the wet season 2014 (i.e., December, 2013–April, 2014). Coral reefs and land areas
were masked out and weekly water type composite maps (22 composites per wet season) were created
to minimize the amount of area without data per image, due to masking of dense cloud cover, common
during the wet season [68] and intense sun glint [12].

Weekly composites were thus overlaid (i.e., presence/absence of each plume water type) and
normalised (i.e., number of weeks divided by 22 wet season weeks) to compute seasonal normalised
maps of frequency of occurrence for each plume water type (hereafter plume or water type frequency
maps). Frequency values were extracted along a notional transect from the mouth of the Herbert
River to illustrate that the extent and frequency of occurrence of the river plumes and water types
was variable with distance from the coast and across wet seasons. Multi-annual composite maps
were finally created by overlaying the seasonal composites in ArcGIS®10 and calculating the average
frequency values of each cell/dry season. The Cape York region was removed from this analysis as it
is a shallow environment where the remote sensing methods have not been fully validated [12].

3.2. Environmental Data: The Marine Monitoring Program (MMP)

The MMP undertaken in the GBR lagoon assesses the effectiveness of the Australian and
Queensland Governments’ Reef Water Quality Protection Plan and the Australian Government’s
Reef Rescue initiative. The MMP was established in 2005 to help assess the long-term status and
health of GBR ecosystems, focusing on seagrass meadows and coral reefs. The current program
includes the monitoring of ambient [69] and wet season [70] water quality and of seagrass [71] and
coral reef [72] conditions.

3.2.1. Wet Season Monitoring of Water Quality

Water quality monitoring during the wet season characterises the acute and chronic influence
of terrestrial runoff on water quality conditions that can, in turn, be used to assess effects on
coral and seagrass health [15]. The design of the wet season monitoring program is detailed in,
e.g., Devlin et al. [14,70] with documented QA/QC procedures [73]. Surface water samples are
collected inside the visible extent of river plumes, in a series of transects away from the river mouths.
Flood plumes originating from the major rivers between 10 and 27 degrees S are targeted. Water
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quality parameters collected in river plumes include nutrients and organic carbon (particulates and
dissolved), Chl-a, TSS, herbicides, CDOM and Secchi depth. Depth profiling by CTD-casts, including
Kd(PAR), temperature, dissolved oxygen and salinity, accompany each surface sample.

In this study, the Wet Tropics herbicide data was used as the surrogate for the GBR, as this was the
most data-rich site throughout the sampled wet seasons. Herbicide measurements in this region were
collected sporadically during the wet seasons 2010–2011 to 2012–2013 and more extensively during
the wet season 2013–2014, but numbers of samples were limited, with a total of 86 key herbicides
measurements collected. The key PSII herbicides measured in the Wet Tropics include Ametryn,
Atrazine, desethyl-atrazine (DE Atrazine), desisopropyl-atrazine (DI Atrazine), Diuron, Fluometuron,
Hexazinone, Prometryn, Simazine and Tebuthiuron residues (in ng¨L´1). The key concentrations
of these herbicides were normalised to an herbicide-equivalent concentration (PSII, µg¨L´1), which
is based on the relative toxicity of Diuron [74]. Each herbicide is attributed a toxicity factor relative
to the Diuron toxicity (TF), where a TF equal to 1 indicates the same toxicity as Diuron at the same
concentration. PSII concentration of any given grab sample was calculated as indicated in Equation (1),
assuming these herbicides act additively [75–77].

PSII “
n
ÿ

i“1

pHi ˆ TFiq (1)

where Hi stands for each sampled herbicide and TFi is the corresponding toxicity factor in relation
to Diuron. TfAmetryn = 1.31, TfAtrazine = 0.16, TfDE_Atrazine = 0.11, TfDI_Atrazine = 0.003, TfDiuron = 1.00,
TfFluometuron = 0.04, TfHexazinone = 0.38, TfPrometryn = 1.05, TfSimazine = 0.07, TfTebuthiuron = 0.08.

3.2.2. Seagrass Monitoring Programs

Seagrass monitoring undertaken under the MMP and Seagrass-Watch occurred from 2005 to 2014
at 23 locations inside the marine park boundary (Figure 1) and has been thoroughly described [45,71].
Meadows chosen for monitoring were lower littoral (rarely exposed to air) and subtidal (~2 m depth).
Field survey methodology followed Seagrass-Watch standard protocols [78]. Sites were defined as
a 50 m ˆ 50 m or 50 m ˆ 6 m area, for lower littoral and subtidal, respectively, within a relatively
homogenous section of a representative seagrass community/meadow. Sites were monitored for
seagrass abundance (% cover, hereafter: cover) and species composition. As the major period of
runoff from catchments and agricultural lands is the wet season, monitoring was focused on the late
wet season (March–April) and on the late dry season (October–November) during peak growth and
expansion. Data were collected 3–4 times per site per year, and as flood-related losses of seagrass can
occur during the 6 months following the flood [79], the late dry season cover data were selected in this
study to capture the status of seagrass in relation to the previous wet season.

3.2.3. Coral Monitoring Programs

The cover of macroalgae is one of the bio-indicators used in the MMP to assess the current
condition of the coral reef community [72]. The reefs monitored are typically fringing reefs of high
islands located between 2 and 25 km from the mainland coast and so span the gradient of river plume
exposure and turbidity associated with wind driven resuspension of shallow coastal waters (Figure 1).
The proportion of total cover of benthic algae consisting of large fleshy species was derived from
photo point intercept transects in which the percent cover of the substrate cover was estimated by
identifying organisms beneath five points on each of 320 digital images (adapted from [80]) distributed
over 10 ˆ 20 m transects at 2 m depth below the lowest astronomic tide. Sites have been monitored
annually or biannually in winter (May through August) since 2005. Recruitment, growth and biomass
of macroalgae are controlled in part by nutrient availability [81]. In addition, a high abundance of
macroalgae suppresses coral resilience (e.g., [82–84]) by increased competition for space or by changing
the microenvironment into which corals settle and grow (e.g., [57,85]). A high macroalgal cover is
widely accepted as an indicator of reef degradation and the macroalgae data were accordingly used
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here as an indicator of the likelihood of increased coral-algal space competition [72]. We considered
the proportion of the total cover of algae on a reef that is comprised of macroalgae (hereafter referred
to as proportional macroalgae cover or MAp in %), as opposed to the cover of macroalgae per se, as
this allows the standardisation of macroalgae cover for space occupied by corals, loose sediments and
other reef biota.

3.3. Testing of the Satellite Risk Framework

3.3.1. Magnitude Score

Average concentrations of TSS, PSII, DIN, DIP, Kd(PAR), Chl-a and CDOM measured in situ in
each plume water type were calculated for every wet season (from 2005 to 2014), by comparing the
weekly plume water type composite maps and in situ water quality measurements, collected as part of
the Wet Season Program of the MMP (Figure 3A). In situ water quality values are assigned to weekly
water masses CC1–CC6 based on their location, and data extraction were performed using the bilinear
method implemented in the raster package of R 3.1 [86]. The mean value (ˆ ˘ standard error) of TSS,
PSII, DIN, Dissolved Inorganic Phosphorus (DIP), Kd(PAR), Chl-a, CDOM and PSII, as well as the
mean salinity, was then calculated for each water type over the 2005–2014 sampling period. It has been
shown that the herbicide residues in the GBR flood plumes are predominantly in the dissolved phase
rather than bound to particulate materials [59], and change in herbicide concentrations across plume
waters is believed to be principally controlled by a conservative mixing behaviour with the seawater
rather than by a chemical or biological breakdown [60]. The number of PSII data available in each
plume water type was limited and showed a non-conservative behaviour. A linear model was, thus,
applied to the in situ data to estimate the multi-annual mean PSII concentrations per plume water type.

Ratios between predicted TSS, PSII and Chl-a concentrations in river plumes and the ecological
thresholds were calculated and summed for each plume water type (Equation (2): RCCx). The ecological
thresholds used were those published in Brodie et al. [26] (Section 2.3. and the supplementary material
(Table S2)), i.e., TSS = 7 mg¨L´1, Chl-a = 0.45 µg¨L´1 and PSII = 0.1 µg¨L´1. A cumulative risk
magnitude score was then calculated for each plume water type (Figure 3B, hereafter Magnitude Score
or MSCCx) by normalising across plume water type (Equations (2) and (3)). Concentration addition has
been suggested as the “general solution” to the problem of calculating an expected quantitative effect
for any combination of agents, and when their mechanisms of action are unknown [20,87–89].

RCCx “
TSSpCCx
TSStCCx

`
Chl ´ apCCx
Chl ´ atCCx

`
PSIIpCCx
PSIItCCx

(2)

where p stands for the predicted concentration of each contaminant, t for the corresponding ecological
threshold and CCx for an individual colour class (CC1 to CC6).

MSCCx “
RCCx ´ min pRCCxq

max pRCCxq ´ min pRCCxq
ˆ 10 (3)

where min(RCCx) stand for the minimum “RCCx” across plume water type and “max(RCCx)-min(RCCx)”
for the range of RCCx across plume water types.

3.3.2. Likelihood Score

The likelihood of exposure (defined here as the frequency of exposure) to each colour class at the
seagrass and coral sites locations was extracted from the multi-annual water type frequency maps
using ArcMap Spatial Analyst (ESRI, 2010). A 3 ˆ 3 km buffer was created around each monitoring
site and the multi-annual (2005–2014) frequency value of each pixel was extracted from the buffered
area. Each seagrass and coral monitoring site was then assigned a multi-annual Likelihood Score
(LSCCx) based on the averaged values extracted (Figure 3C).
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Figure 3. Conceptual model of the Satellite Risk Framework presented in this study, including data
sources, main outputs and the different steps necessary to implement the framework. (A) comparison
of river plume water type maps and in situ water quality measurements; (B) calculation of a magnitude
score for each plume water type; (C) calculation of a likelihood score (frequency of exposure) at the
seagrass and coral sites locations; (D) calculation of a river plume risk score (magnitude ˆ likelihood)
at the seagrass and coral sites locations; (E) correlation between bio-indicator responses and their risk
score; (F) derivation of multiannual risk score thresholds and generation of intermediate river plume
risk maps specifically for seagrass meadows and coral reefs of the GBR. The risk score thresholds and
maps will be refined and validated through ongoing monitoring and assessment; (G) Incorporation of
these products into applied management actions as useful tools to monitor and mitigate water quality
impacts on ecosystem health in the GBR.

3.3.3. Risk Score: Magnitude ˆ Likelihood

The probability of exceeding ecological threshold concentrations from exposure to river plumes,
i.e., the river plume risk to seagrass and coral reef ecosystems (RSsite), was estimated by multiplying
each respective MSCCx by its LSCCx (magnitude ˆ likelihood) and summing (Equation (4): RS’site),
then normalising over all monitored sites (Equation (5)) (Figure 3D).

RS1site “
ÿn

i“1
pLSCCi ˆMSCCiq (4)

where LS stand for the Likelihood Score, MS for the Magnitude Score and CCi: the colour classes, (n = 6).

RSsite “
RS1site ´ min

`

RS1site
˘

max pRS1siteq ´ min pRS1siteq
(5)

where min(RS’site) stand for the minimum RS’site across all monitored sites and max(RS’site)–min(RSsite)
for the range of RS’site across all monitored sites.

3.3.4. Relationships between Risk and Ecosystem Response

The seagrass and MAp data were used as bio-indicators of ecosystem response to test the initial
validity of the risk maps. The long-term (2005–2014) response of seagrass and coral to river plume
exposure was evaluated by calculating (i) the changes in seagrass cover and MAp across years
2005–2014 (Equation (6)) and (ii) the mean multi-annual seagrass cover and MAp (Equation (7)).
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Because the bio-indicator monitoring data were not always continuous at each seagrass and coral site
(i.e., missing years), we interpolated between the years to get continuous times series. When no data
was available for 2005 or 2014, the earliest and most recent ecosystem data available were considered
(see the supplementary material (Tables S3 and S4)).

∆BioIndicator “ BioIndicator2014 ´ BioIndicator2005 (6)

MBioIndicator “
1
n

ÿn

i“1
BioIndicatori (7)

With bio-indicators: seagrass meadow cover or MAp and i: the monitoring year (2005–2014, n = 10)
Finally, the hypothesis that long-term (2005–2014) responses of coral reefs and seagrass

meadows will be influenced by contaminant concentrations and frequency of exposure to the
contaminant concentrations was investigated by correlating biological bio-indicator responses
(Equations (6) and (7)) to their risk score at the site (Equation (5): RSsite) and NRM regional scales
(by averaging all sites within a same NRM region: RSNRM) (Figure 3E).

3.4. Spatial Distribution of Risk of Seagrasses and Coral Reefs to River Plume

The above correlations were used to derive multiannual risk score thresholds and relative risk
categories for loss of seagrass cover and higher MAp, as well as to generate river plume risk maps
specifically for seagrass meadows and coral reefs of the GBR (Figure 3F). The exposure of GBR marine
ecosystems was expressed simply as the area (km2) and percentage (%) of coral reefs and seagrass
meadows within each NRM region that were exposed to different categories of river plume risk.
Figure 1 presents the marine boundaries used for the GBR Marine Park, each NRM region, and the
seagrass (mapped and modelled) and coral reefs ecosystems. Seagrass meadows of Hervey Bay (which
is outside of the GBR southern boundary, Figure 1) were not included in the risk analysis.

4. Results

4.1. Mapping the Water Types in Flood Plumes

This study covered ten wet seasons (2005–2014) in which there were four wet seasons with low
(total river discharge below the 20-year median) river flows (2005–2007 and 2014) and six with high
(total river discharge over the 20-year median) river flows (2008–2013) (Figure 4a). The 2011 wet season
was an extreme wet season, with a river discharge about 5 times the 20-year median value.
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Figure 4. (a) Hydrological characteristics of the wet seasons monitored in this study (2005–2014), in the
context of 20 years (1995–2014) of GBR river flow. The low/high flow wet seasons are defined as wet
seasons with a total river discharge below/over the 20-year median (dashed line); (b) GBR river flow
compared to the area of turbid plume waters (colour classes 1–4) for 2005–2014 wet seasons. The years
2007 and 2011(bold lines) are examples of low flow and high flow wet seasons, respectively, in Figure 5.
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The extent and frequency of occurrence of the river plumes and water types was variable across
regions, cross-shelf and wet seasons, reflecting the constituent concentrations and intensity of the river
discharge (Figures 4b and 5). Despite this variability, the primary (turbid plume) waters were generally
limited to a small near-shore zone (<10 km across the shelf) and, on average, 38,281 km2 (11%) of the
GBR lagoon was exposed to primary plume waters (Figure 4b). This area increased during the wettest
wet seasons and decreased during the driest wet seasons (Figures 4b and 5). The maximum area of
primary water was recorded in 2011 (69,745 km2, or 20% of the GBR). The extent of the secondary (CC5)
and tertiary (CC6) flood plume frequency is rarely attributed to an individual river and is usually
merged into one heterogeneous plume [90]. On average, the secondary and tertiary plume waters
covered 25,000 km2 of the GBR lagoon and 43,000 km2, respectively.
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Figure 5. Multi-annual (2005–2014), 2007 (low flow wet season) and 2011(high flow wet season)
(a) plume frequency (Fpl.); (b) plume water type composite maps (Primary: Fp, Secondary: Fs,
Tertiary:Ft); and (c) extracted frequency values (Fpl., Fp, Fs, Ft) along a notional transect from the
mouth of the Herbert River.

4.2. Contaminant Concentrations across Plume Water Types

The mean salinity linearly decreased from the CC6 to the CC1 water type (Figure 6a and the
supplementary material (Table S5)) and the variation of water concentrations across the six water
types followed the expected gradients over multi-annual time-scales [13,15,90]. Most of the water
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quality parameters, including Kd(PAR), TSS, DIN and DIP, decreased across the six plume water types
(Figure 6a and the supplementary material (Table S5)). Highest TSS concentrations were recorded
in the coastal colour class (34.0 ˘ 60.8 mg¨L´1 in CC1) and dropped rapidly as the heavier particles
settled, with only the finer colloidal sediment moving further offshore in the plume waters [91].
The highest Chl-a concentrations were measured in the CC1–CC3 with maximum values recorded
in CC1 (2.4 ˘ 3.2 µg¨L´1) and a slight decrease in concentration from CC2–CC3 (2.1–2.0 µg¨L´1).
Chl-a concentrations varied between 1.4 ˘ 1.3 and 0.9 ˘ 0.7 µg¨L´1 in CC4 and CC5 and deceased
to 0.4 ˘ 0.6 µg¨L´1 in the offshore plume waters. The number of PSII data available in each plume
water type was limited (less than 10 data in CC1, CC2, CC3 and CC6 and 29 data in the CC4 and
CC5, respectively) and showed a non-conservative behaviour (Figure 6b). Based on the linear model
(Figure 6b), mean multi-annual PSII concentrations were, respectively, 0.04 µg¨L´1, 0.02 µg¨L´1 and
0.01 µg¨L´1 in CC1, CC4 and CC6.
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Figure 6. (a) Mean and standard deviation of water quality concentrations measured in the plume
water types (CC1–CC6): Salinity (Sal), CDOM in m´1, DIN and DIP in µmol¨L´1, Kd(PAR) in m´1,
TSS in mg¨L´1 and Chl-a in µg¨L´1; (b) Mean and standard deviation of measured PSII and fitted
linear model. Ecological thresholds for TSS (7 mg¨L´1), Chl-a (0.45 µg¨L´1) and PSII (0.1 µg¨L´1) are
indicated with red dotted lines. Numerical values are in the supplementary material (Table S5).



Remote Sens. 2016, 8, 210 14 of 30

Mean multi-annual concentrations of TSS and Chl-a were over the ecological thresholds in all
plume water types, except in CC6 where MSCC6 was scored as zero (Table 2). However, estimated
mean PSII concentrations were all under PSII = 0.1. Ratios of contaminant concentrations against
ecological thresholds increased across the plume water gradient (toward the inshore CC1 plume
water type). Mean concentrations of TSS and Chl-a were more than 1.5 and 4.0 times higher than
threshold concentrations in the CC3, respectively, and about 5 times higher in the CC1. As a result,
the normalised Magnitude Score increased from the offshore (Table 2: MSCC6 = 0) to the inshore
(MSCC1 = 10) plume waters, with a sharp increase of the combined Magnitude Score in the CC1 vs. CC2
or CC3 (MSCC2/CC3 = 5).

Table 2. Contaminant concentration in each plume water type (TSSpCCx, Chl-apCCx, PSIIpCCx: Figure 5
and the supplementary material (Table S5)) is compared by ratio to published ecological threshold
values for consequences and effects (TSStCCx, Chl-atCCx, PSIItCCx). Ratios are summed (Equation (2):
RCCx) and normalised across all plume water types in order to calculate a Magnitude Score within each
plume water type (Equation (3): MSCCx).

CCx
Tertiary Secondary Primary

CC6 CC5 CC4 CC3 CC2 CC1

TSSp (mg¨L´1) 5.66 6.10 7.33 10.62 10.52 33.97
Chl-ap (µg¨L´1) 0.42 0.86 1.44 1.95 2.14 2.41
PSIIp (µg¨L´1) 0.01 0.01 0.02 0.03 0.03 0.04

TSSt 7
Chl-at 0.45
PSIIt 0.1

TSSp/TSSt 0.8 0.9 1.0 1.5 1.5 4.9
Chl-ap/Chl-at 0.9 1.9 3.2 4.3 4.8 5.4

PSIIp/PSIIt 0.1 0.1 0.2 0.3 0.3 0.4
R 1.8 2.9 4.4 6.2 6.6 10.6

MS 0 1 3 5 5 10

4.3. Environmental Data: Seagrass Meadows and Proportional Macroalgae Cover in the Algal Communities

Seagrass meadow cover declined from 2005 to 2014 (though with some recovery after 2011) in
all NRM regions of the GBR (Figure 7a: black arrows and Table 3). The largest changes in seagrass
cover occurred in the Burnett Mary NRM region with a loss of 43.2% of cover (Table 3: ∆BM), and
a mean multi-annual cover of 12.4% (Table 3: MBM). The smallest changes occurred in the Mackay
Whitsunday (∆MW= ´7.1%) and the Wet Tropics (∆MW = ´7.5%). Mean multi-annual cover for both
of these regions was about 15.3% and 15.0%, respectively. At the site level, maximum changes were
measured at the Urangan sites (Table 3: ∆UG = ´54.1%) and minimum changes at the outer Gladstone
Harbour sites (Table 3: ∆GH = ´1.40%).

The proportional macroalgae cover (MAp) was highly variable through time and between regions
(Figure 6b: black arrows and Table 4) compared to that of seagrass meadows. The Fitzroy NRM region
showed a clear increasing trend of MAp across the years 2005–2014 (∆Fi = +32.7%) and the highest
mean multi-annual MAp of the GBR regions (MFi = 41.0%). Increasing trends were also observed at
the Wet Tropic reefs (∆WT = +7.8%), while a decrease in MAp was measured in the Burdekin region
(∆Bu = ´11.1%). No trend could be observed at the Mackay Whitsunday reefs (∆MW = +2.5%), with
macroalgae only common at the Pine Island and Seaforth Island sites where it has maintained a
reasonably consistent representation in the algal communities (∆PI = 8.9%, ∆SI = 7.0%, MPI = 31.0%
and MSI = 31.8%).
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Figure 7. (a) Seagrass cover and (b) proportional macroalgae cover in the algal communities at each
reef collected throughout the MMP. GH: Gladstone Harbor, SB: Shoalwater Bay, MP: Middle point
and PKI: Peak Island. The black line represents the averaged values per NRM regions and light grey
lines values of each monitored sites (see the supplementary material (Tables S3 and S4) for numerical
values). Interpolated data are symbolised with dashed grey lines. Multi-annual trends are indicated
with a black arrow.
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Table 3. Magnitude Score (MSCCx) of each plume water type, Likelihood Score (LSCCx) at the seagrass sites locations and risk scores (RSsite and RSNRM) at the
seagrass site and NRM scales. The likelihood scores were extracted from the multi-annual (2005–2014) frequency composites by averaging the frequency values
extracted in a 3 km square buffer around each monitoring site. The Magnitude Scores (MSCCx) values are from Table 2 and the risk scores calculated following
Equations (4) and (5). Multi-annual changes (∆site and ∆NRM, in %) and mean multi-annual (Msite and MNRM, in %) seagrass cover at the seagrass site and NRM scales
are calculated following Equations (6) and (7). Full site names are given in the supplementary material (Table S4).

Colour Class CC1 CC2 CC3 CC4 CC5 CC6 Risk scores Seagrass Cover

Magnitude Score MSCCx: 10 5 5 3 1 0 RSsite RSNRM
Likelihood Score: LSCC1 LSCC2 LSCC3 LSCC4 LSCC5 LSCC6 ∆site ∆NRM Msite MNRM

Burdekin (Bu)

JR 0.18 0.31 0.11 0.20 0.04 0.00 1.00 0.47 na ´17.53 6.21 18.40
MI 0.00 0.01 0.01 0.15 0.74 0.01 0.24 ´13.80 24.37

MI2 0.00 0.00 0.01 0.12 0.78 0.01 0.22 ´26.20 30.88
TSV 0.01 0.07 0.04 0.33 0.39 0.00 0.41 ´12.60 12.13

Burnett-Mary (BM) RD 0.06 0.15 0.11 0.38 0.09 0.00 0.67 0.59 ´32.30 ´43.20 14.50 12.42
UG 0.05 0.07 0.05 0.32 0.37 0.00 0.52 ´54.10 10.34

Fitzroy (Fi)
GH 0.03 0.18 0.17 0.47 0.06 0.00 0.75 0.44 ´1.40 ´10.13 28.19 18.12
GK 0.01 0.01 0.01 0.09 0.74 0.05 0.23 ´4.60 3.28

SWB 0.02 0.05 0.02 0.15 0.61 0.00 0.33 ´24.40 22.88

Mackay Whit. (MW)

HM 0.00 0.00 0.00 0.01 0.72 0.11 0.13 0.25 ´6.20 ´7.05 6.63 15.33
MP 0.01 0.04 0.05 0.32 0.35 0.00 0.37 9.40 22.70
PI 0.00 0.01 0.01 0.06 0.65 0.01 0.16 ´10.30 19.64
SI 0.03 0.07 0.03 0.19 0.33 0.00 0.33 ´21.10 12.32

Wet Tropics (WT)

DI 0.00 0.01 0.01 0.11 0.69 0.04 0.21 0.10 ´12.10 ´7.50 6.83 14.98
DI2 0.00 0.00 0.01 0.08 0.65 0.12 0.17 ´5.40 3.44
GI 0.00 0.01 0.00 0.01 0.19 0.27 0.01 ´5.10 32.69
GI2 0.00 0.01 0.00 0.01 0.16 0.30 0.00 ´8.10 42.48
LB 0.00 0.02 0.02 0.23 0.53 0.01 0.28 ´3.20 2.69
LI 0.00 0.00 0.00 0.02 0.20 0.50 0.02 ´12.30 10.53

LI2 0.00 0.00 0.00 0.02 0.13 0.42 0.00 ´12.00 11.01
YP 0.00 0.00 0.00 0.05 0.60 0.10 0.13 ´1.80 10.20
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Table 4. Magnitude Score (MSCCx) of each plume water type, Likelihood Score (LSCCx) at the coral sites locations and risk scores (RSsite and RSNRM) at the coral site
and NRM scales. The likelihood scores were extracted from the multi-annual (2005–2014) frequency composites by averaging the frequency values extracted in a 3km
square buffer around each monitoring sites. MSCCx values are from Table 2 and the risk scores calculated following Equations (4) and (5). Multi-annual changes (∆site

and ∆NRM, in %) and mean multi-annual (Msite and MNRM, in %) MAp at the site and NRM scales are calculated following Equations (6) and (7). Full site names are
given in the supplementary material (Table S3).

Colour Class CC1 CC2 CC3 CC4 CC5 CC6 Risk Scores MAp Cover

Magnitude Score MSCCx: 10 5 5 3 1 0 RSsite RSNRM
Likelihood Score: LSCC1 LSCC2 LSCC3 LSCC4 LSCC5 LSCC6 ∆site ∆NRM Msite MNRM

Burdekin (Bu)

GB 0.00 0.00 0.01 0.14 0.77 0.04 0.48 0.31 ´6.95 ´11.13 50.81 24.08
HI 0.00 0.01 0.00 0.06 0.36 0.46 0.14 ´36.51 20.43
LE 0.01 0.01 0.01 0.22 0.62 0.03 0.58 ´32.18 43.20
MR 0.00 0.01 0.02 0.21 0.69 0.01 0.59 14.25 8.17
OIE 0.00 0.00 0.00 0.05 0.31 0.43 0.09 3.28 1.07
PAN 0.00 0.01 0.01 0.05 0.51 0.35 0.20 ´19.69 44.82
POIW 0.00 0.01 0.00 0.06 0.32 0.46 0.11 ´0.11 0.05

Fitzroy (Fi)

BI 0.01 0.01 0.00 0.05 0.22 0.42 0.13 0.58 5.68 32.73 2.70 41.00
HHI 0.02 0.02 0.01 0.16 0.55 0.23 0.52 69.93 40.69
MI 0.01 0.01 0.01 0.12 0.71 0.09 0.49 59.87 46.21

NKI 0.01 0.01 0.01 0.12 0.55 0.24 0.39 35.36 51.53
PKI 0.04 0.03 0.04 0.25 0.63 0.01 0.92 ´10.26 61.59
PLI 0.03 0.05 0.04 0.33 0.53 0.03 1.00 35.78 43.24

Mackay Whit. (MW)

DDI 0.00 0.00 0.00 0.03 0.70 0.16 0.23 0.17 1.67 2.54 2.86 9.87
DI 0.00 0.00 0.00 0.02 0.75 0.08 0.26 ´1.15 0.33

DCI 0.00 0.00 0.00 0.01 0.39 0.47 0.05 0.25 0.14
HI 0.00 0.00 0.00 0.02 0.40 0.43 0.06 ´0.15 2.03
PI 0.00 0.00 0.00 0.01 0.70 0.16 0.20 8.88 31.04
SI 0.00 0.00 0.00 0.01 0.67 0.22 0.18 7.03 31.80

STI 0.00 0.00 0.00 0.02 0.67 0.14 0.20 1.26 0.87

Wet Tropics (WT)

SIN 0.01 0.01 0.00 0.06 0.51 0.24 0.26 0.20 36.92 7.78 30.62 18.24
SIS 0.01 0.01 0.00 0.05 0.45 0.34 0.21 0.61 2.66
FIE 0.00 0.01 0.00 0.01 0.25 0.37 0.00 0.66 0.48
FIW 0.00 0.01 0.00 0.01 0.42 0.38 0.08 1.12 1.39
FGE 0.00 0.01 0.00 0.04 0.23 0.43 0.04 37.13 17.14
FGW 0.00 0.01 0.00 0.04 0.21 0.39 0.03 3.06 11.46
HIE 0.00 0.00 0.00 0.07 0.40 0.38 0.15 7.75 2.27
HIW 0.00 0.01 0.00 0.09 0.56 0.25 0.28 3.91 7.43
DIN 0.00 0.01 0.01 0.15 0.66 0.08 0.45 ´5.94 28.55
DIS 0.00 0.01 0.01 0.13 0.68 0.08 0.43 ´3.85 37.22
K 0.00 0.00 0.01 0.07 0.59 0.21 0.26 9.33 61.78

NBG 0.00 0.00 0.01 0.05 0.58 0.22 0.23 2.70 17.83
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4.4. Relationships between Plume Exposure and Seagrass Response

Multi-annual changes in seagrass cover (∆site) across sites were negatively correlated to their
risk scores (RSsite; Table 3); however, Gladstone Harbour and Midge Point appeared to be outliers of
the observed relationship (Figure 8a: R2 = 0.47, p < 0.05). At the regional (NRM) scale, no significant
relationship was found between ∆NRM and RSNRM (Table 3 and Figure 8b, R2 = 0.61, ns.). However, the
relatively lower loss of cover in the Wet Tropics and Mackay Whitsunday NRM regions (Table 3:
∆WT = ´7.5% and ∆MW = ´7.1%) was associated with the lowest regional risk scores (Table 3:
RSWT = 0.1 and RSMW = 0.2). Inversely, the higher loss in cover observed in the Burnett-Mary region
(Table 3: ∆BM = ´43.2%) was associated with the highest risk score (RSBM = 0.6). No significant
relationships were found between the mean multi-annual seagrass cover values and the risk scores at
the site and regional scales (Figure 8c,d).

Remote Sens. 2016, 8, 210 18 of 31 

 

4.4. Relationships between Plume Exposure and Seagrass Response 

Multi-annual changes in seagrass cover (Δsite) across sites were negatively correlated to their risk 
scores (RSsite; Table 3); however, Gladstone Harbour and Midge Point appeared to be outliers of the 
observed relationship (Figure 8a: R2 = 0.47, p < 0.05). At the regional (NRM) scale, no significant 
relationship was found between ΔNRM and RSNRM (Table 3 and Figure 8b, R2 = 0.61, ns.). However, the 
relatively lower loss of cover in the Wet Tropics and Mackay Whitsunday NRM regions (Table 3:  
ΔWT = −7.5% and ΔMW= −7.1%) was associated with the lowest regional risk scores (Table 3: RSWT = 0.1 and 
RSMW= 0.2). Inversely, the higher loss in cover observed in the Burnett-Mary region (Table 3:  
ΔBM = −43.2%) was associated with the highest risk score (RSBM = 0.6). No significant relationships were 
found between the mean multi-annual seagrass cover values and the risk scores at the site and regional 
scales (Figure 8c,d). 

 
Figure 8. Multi-annual (2005–2014) changes in (Δ: a,b) and mean (M: c,d) seagrass cover compared to 
risk scores (RS) at the: site (left) and NRM scales (right). Determination coefficient and p values of (a) 
are calculated without considering Midge Point (MP) and Gladstone Harbour (GH): grey dots. WT: 
Wet Tropics, MW: Mackay Whitsunday, Fitz.: Fitzroy Burd.: Burdekin and BM: Burnett-Mary. The 
dotted line in (a) indicates three risk score thresholds (I: ≤0.2, II: 0.2–0.4 and III: >0.4) associated with a 
gain or little loss in seagrass cover (gain/−12%), with moderate loss (−12/−30%) and with the greatest 
loss in seagrass % cover (>−30%), respectively. 

The correlation between the multi-annual changes in seagrass cover and risk scores at the site 
level (Figure 8a) were used to derive multiannual risk score thresholds and relative risk categories 
for loss of seagrass cover (Table 5: I, II and III). The risk score thresholds were manually optimised to 
have fewest sites with an underestimated loss of seagrass cover (a conservative approach, whereby 
there is a greater chance of identifying high risk than not identifying it). The following risk score 
thresholds were selected: a RS ≤ 0.2 was associated with a gain or the lowest loss in seagrass cover 
(Δcover: gain/−12%, hereafter risk category I), 0.2 < RS ≤ 0.4 was associated with moderate loss (Δcover: 
−12/−30%, hereafter risk category II), and a RS > 0.4 was associated with the greatest loss in cover 
(Δcover>−30%, hereafter risk category III). Using this conservative approach and the selected risk 
score thresholds, 14 out of the 20 (70%) monitored seagrass sites had their multi-annual loss in cover 
well estimated and only one site had an underestimated loss in cover (Table 5). 
  

Figure 8. Multi-annual (2005–2014) changes in (∆: a,b) and mean (M: c,d) seagrass cover compared
to risk scores (RS) at the: site (left) and NRM scales (right). Determination coefficient and p values
of (a) are calculated without considering Midge Point (MP) and Gladstone Harbour (GH): grey dots.
WT: Wet Tropics, MW: Mackay Whitsunday, Fitz.: Fitzroy Burd.: Burdekin and BM: Burnett-Mary.
The dotted line in (a) indicates three risk score thresholds (I: ď0.2, II: 0.2–0.4 and III: >0.4) associated
with a gain or little loss in seagrass cover (gain/´12%), with moderate loss (´12/´30%) and with the
greatest loss in seagrass % cover (>´30%), respectively.

The correlation between the multi-annual changes in seagrass cover and risk scores at the site
level (Figure 8a) were used to derive multiannual risk score thresholds and relative risk categories
for loss of seagrass cover (Table 5: I, II and III). The risk score thresholds were manually optimised to
have fewest sites with an underestimated loss of seagrass cover (a conservative approach, whereby
there is a greater chance of identifying high risk than not identifying it). The following risk score
thresholds were selected: a RS ď 0.2 was associated with a gain or the lowest loss in seagrass cover
(∆cover: gain/´12%, hereafter risk category I), 0.2 < RS ď 0.4 was associated with moderate loss (∆cover:
´12/´30%, hereafter risk category II), and a RS > 0.4 was associated with the greatest loss in cover
(∆cover>´30%, hereafter risk category III). Using this conservative approach and the selected risk score
thresholds, 14 out of the 20 (70%) monitored seagrass sites had their multi-annual loss in cover well
estimated and only one site had an underestimated loss in cover (Table 5).
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Table 5. Risk score thresholds associated with loss of seagrass cover and number of sites (name in
bracket) well/miss-classified. The thresholds were derived from Figure 8a (dotted lines) and were
selected to minimise the number of seagrass sites with an underestimated loss of seagrass cover
(conservative approach).

Risk I II III

RS 0–0.2 0.2–0.4 >0.4
∆cover +/´12 ´12/´30 >´30

number sites 8 8 4
Well classified 7 5 2

Overestimated loss 0 3 (GK, MP, LB) 2 (GH, TSW)
Underestimated loss 1 (LI) 0 0

4.5. Relationships between Plume Exposure and MAp Response

Multi-annual trends in MAp were highly variable both through time and between regions
(Figure 7b) and the interactions between risk scores and multi-annual changes in MAp were complex
(Table 4 and Figure 9a). At the site scale, a slight increase of the ∆site with increased RSsite values
was observable, but was not significant (Figure 9a, R2 = 0.04, ns.). At the regional scale, trends were
clearer though still not significant (Figure 9b, R2 = 0.52, ns.). Relatively stable multi-annual trends
in the MAp cover of the Mackay Whitsunday and Wet Tropics or loss of MAp cover in the Burdekin
NRM regions (Figure 7b) were associated with similar low regional risk scores (Table 4 and Figure 9b:
RSNRM = 0.17–0.31). Inversely, the increasing trend in MAp cover observed in the Fitzroy NRM region
was associated with the highest risk scores (RSFitz. = 0.58).
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Figure 9. Multi-annual (2005–2014) changes in (∆: a,b) and mean (M: c,d) MAp compared to risk scores
(RS) at the site (left) and NRM scales (right). ns. non-significant. The dotted line in (c) indicates an
initial risk score threshold of about 0.2, below which there is rarely high MAp at the reef sites.

Stronger relationships were observed by considering the mean multi-annual MAp values
(Figure 9c,d) rather than the MAp changes across years 2005–2014 (Figure 9a,b). Significant
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relationships were observed, and suggested an increase of the mean multi-annual MAp with increased
risk magnitude scores, at both the site (Figure 9c, R2 = 0.42, p < 0.05) and regional scales (Figure 9d,
R2 = 0.96, p < 0.05). The correlation between the multi-annual MAp and risk scores at the site level
(Figure 9c) were used to derive a multiannual risk score threshold and two relative risk categories for
MAp. Seventy percent (14 out of 20) of the monitored coral sites with RS > 0.2 had a mean multiannual
MAp > 10%, while only 33% (4 out of 12) monitored coral sites with RS ď 0.2 had a mean multiannual
MAp > 10%. A threshold of about 0.2 was thus selected under/above which a smaller/higher (risk
categories I/II) MAp at the reef sites can be expected.

4.6. River Plume Risk Map

River plume risk maps were generated from the multi-annual water type frequency maps and
the above risk score thresholds (Figure 10). They show the spatial distribution of risk of seagrasses
(Figure 10a) and coral reefs (Figure 10b) to river plumes in the GBR. The area of higher risk for the
seagrass meadows (risk categories II and III) and the coral reefs (risk category II) was limited to a
narrow coastal band (5 to 20 km), representing 3%–4% of the GBR (minus the Cape York region).
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Figure 10. Multi-annual risk map from river plume exposure for the GBR (a) seagrass ecosystems
and (b) coral reefs; (c) Inset bar chart compares coastal seagrass (map.), deepwater seagrass (mod.)
and coral reef areas within the higher risk categories; (d) pie charts show the area of coastal seagrass
(map.) and coral reef within each region as a percentage of total area (GBR-wide, minus Cape York ) of
coral reef and seagrass within the higher risk category (III and II, respectively). See Figure 1 for the
description of the seagrass meadows and coral reefs shapefiles used for the risk assessment.

Considering the area of seagrass meadows (Figure 10a: map. and mod.) exposed to river plume
risk categories within the regions included in this study (excludes Cape York), 38% (527 km2) and
29% (395 km2) of the coastal (map.) seagrass meadows were within the risk categories II and III,
respectively (Figure 10c). One hundred percent of the deepwater (mod.) seagrass meadows were
within the risk category I. Of the coastal seagrass exposed to the risk category III, 30% (117 km2) and
29% (113 km2) were in the Burdekin and Fitzroy regions, respectively (Figure 10d). Considering the
area of coral reefs exposed to river plume risk categories (Figure 10b: excludes Cape York), the majority
(89% or 12,212 km2) were within risk category (I) and only 1% (153 km2) was within the risk category
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II (Figure 10c). Ten percent of the reef area was beyond risk of plume exposure. Of the reefs exposed to
the risk category II, 59% (90 km2) were in the Fitzroy region with similar proportions (11%–15%) in
each of the Burdekin, Wet Tropics and Mackay Whitsunday regions (Figure 10d).

5. Discussion

This study contributes to the development, test and validation of innovative remote sensing
monitoring tools currently undertaken in the GBR in order to understand the relationships between
pressures from human activities, including influences on coastal water quality, and their effects
on marine ecosystems [15]. It contributes to adaptive management approaches developed to set
relevant frameworks and thresholds for adverse biological responses and to map spatial risk in
the GBR. The ecological and risk score thresholds used in this study will be refined and validated
through ongoing monitoring and assessment (Figure 3F). However, the risk framework proposed
here is designed to help GBR scientists and managers that aim to mitigate the risk of degraded water
quality to local ecosystems and provides an important data visualization tool for communicating
environmental risks to stakeholders such as the general public and policy makers [38]. It is readily
applicable to other regions of the world, given that the ecological and risk thresholds are regionally
adjusted following the processes proposed here.

This study confirms that levels of TSS and Chl-a in GBR river plume waters exceed published
ecological thresholds, except in the most offshore CC6 plume water type, and generally decrease
from the inshore to offshore plume water types (Figure 6 and Table 2). Estimated mean herbicide
concentrations in river plume waters were below the biological response threshold in all plume water
types and therefore risk from exposure to PSII herbicides in river plume waters was scored as zero in the
risk scores. It should be noted, however, that given the persistence of herbicides in coastal waters [88],
sublethal chronic impacts can occur even at low concentrations [62]. The majority of herbicides
of environmental concern in the GBR are soluble in water rather than bound to particles [59], and
therefore this study assumed conservative mixing behaviour with the seawater. However, relatively
high concentrations of the herbicide Diuron have been found in sediments [92] with potential risk to
seagrass health [93]. As a result, the risk assessment presented in this study might underestimate risk
from herbicide exposure.

The highest in situ Chl-a concentrations were measured in coastal plume waters, with
maximum values recorded in CC1 and similar values in CC2 and CC3 (Table 2: 1.95–2.41 µg¨L´1).
High TSS in the CC1 plume water type is expected to inhibit phytoplankton productivity and Chl-a
concentrations [70,90]; therefore, freshwater phytoplankton or detritus transported by GBR Rivers,
could explain the relatively high Chl-a concentrations. With the exception of the CC2 and CC3 plume
water types, which scored the same (RSCC2 and RSCC3 = 5) as a result of very similar Chl-a and TSS
concentrations, risk scores generally decreased from CC1–CC6, supporting the assumption that the
magnitude of risk decrease across the river plume gradient [16].

Comparing Risk Framework outputs with seagrass and coral ecosystem health is important to
validate theoretical risk thresholds. The Satellite Risk Framework and risk scores presented in this
study were successful in demonstrating where plume conditions are, on average, associated with
adverse ecological responses over multi-annual time-scales. The correlation between the multi-annual
changes in seagrass cover and risk scores at the site level (Figure 8a) were used to derive multiannual
risk thresholds associated with loss of seagrass cover (Table 5). From these scores, a plume exposure
risk map for GBR seagrass meadows has been developed (Figure 10a). Furthermore, this initial
analysis provided evidence of a link between river plume exposure and proportional macroalgae cover
(Figure 9c). A multi-annual risk score threshold of 0.2 was proposed, above which a high proportion
of macroalgue in algal communities at these reef sites can be expected (Figure 10b). This result helps
to further resolve the area of high water column concentrations of Chl-a, and total suspended solids
previously identified as corresponding to higher abundance of macroalgae [48] and to maps GBR areas
within which macroalgae could be expected to be a major space competitor of hard corals.
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The area of higher risk for the seagrass meadows and the coral reefs was limited to a narrow
coastal band and the area of coral reefs and seagrass beds in each river plume risk category varied
between NRM regions and ecosystems (Figure 10). Seagrass meadows have relatively high light
requirements [47] and are often restricted to the shallow coastal waters. This places them at higher risk
of exposure to river plume waters, and 29% of the GBR coastal seagrass meadows were within the
highest relative risk area for seagrass meadows. Inversely, only few coral reefs were located within the
highest relative risk area for coral reefs, suggesting that issues related to enhanced completion between
macroalgae and coral communities on the GBR are limited to a relatively small proportion of coral reefs
(about 1%). The river plume risk was greatest for coral reefs in the Fitzroy and Mackay Whitsunday
regions, and for coastal seagrass meadows in the Burdekin and Fitzroy regions. These results are
similar to the results from the GBR Risk Framework that assessed the risk of pollutants to GBR
ecosystems using comprehensive water quality and environmental datasets [26]. This underlines the
potential of using simple supervised classification of true colour satellite imagery in combination with
in situ water quality data to estimate the likely adverse effect of combined contaminants in river plume
waters on ecosystems.

This study focused on multi-annual analyses to test the initial validity of the maps produced from
the Satellite Risk Framework. However, exceptions to the general trends highlight that underlying
ecological processes governing short-term and small-scale fluctuations in seagrass and proportional
macroalgae cover could not be resolved. For example, seagrass meadow responses at outer Gladstone
Harbour and Midge Point deviated from the general response to long-term exposure to river plume
(Figure 8a), underlining the complexity of relationships existing between ecosystem response and water
quality condition. The outer Gladstone Harbour site is at a location with relatively little catchment
input [71] and is characterised by a good multi-annual state of seagrass cover, while onset of seagrass
recovery has been observed at Midge Point since 2010 (Figure 7a, Fitzroy region: “GH” and Mackay
Whitsunday region: “MP”). Specific resilience characteristics of seagrass species assemblage at each
of the monitored sites, as well as other environmental conditions within seagrass meadows, also
influence the response of individual sites within the regional groupings. Environmental conditions
such as cyclonic activity [71], temperature and salinity [18], bathymetry and sediment type [94], tide
currents and wave exposure (see references in [46]), or the zonal location of the meadows may have
also contributed to the response of seagrass meadows. For example, very shallow intertidal meadows
that receive light before, during, and immediately after low tide [95] exhibited the smallest loss in
area compared to permanently submersed meadows [19]. Most of the sites considered in this study
were occasionally exposed at low tide and this may also have affected how well seagrass responses
corresponded to risk from plume water in this study. Furthermore, Wet Tropics sites had low overall
risk scores, but a number of sites were under the direct pathway of TC Yasi, which caused physical
removal of seagrass in that year (2011, see Figure 7a), and removed the source of propagules for
recovery, thus maintaining low overall abundance in subsequent years [71].

The plume water types are characterised through the mapping of river plumes by MODIS true
colour images recorded during the wet season [12], as it is typically during these periods of high
flow that water quality is measured as a gradient from the inshore to the offshore boundaries of river
plumes [13]. At the whole GBR scale, restricting the analysis to wet season months also minimises
the occurrence of “false” river plume areas associated with wind-driven re-suspension of sediments
during the strong trade winds typical of the dry season [12]. However, in shallow coastal areas of
the GBR, muddy sediments can be re-suspended by wind, waves and tidal currents [96], increasing
turbidity levels in coastal waters and resulting in misclassification of some pixels. This could explain
the relatively high risk score calculated at the shallow Gladstone Harbor site (Figure 8a) for example,
where very little cover loss was observed at this site, known to have relatively little catchment input [71].
The Gladstone Harbor seagrass meadows are also intertidal meadows, which are exposed to higher
light levels than subtidal sites, which may have contributed to the smaller losses in cover observed at
this site than other subtidal sites at similar plume exposure levels.
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The lack of a consistent increase in macroalgae within algal communities over the period of
increased risk of exposure to river plumes, along with observed high levels of variability at individual
reefs over time (Figures 7b and 9a), indicate the influence of processes not directly linked to the water
quality parameters summarized by the risk score. A number of factors, including the suitability of
the substrate and grazing pressure are understood to influence the abundance of macroalgae on coral
reefs (e.g., [81,82]). Consideration of these factors was beyond the scope of this study, though they will
likely have added to the variability in community responses observed. In addition, the macroalgae
considered represent a grouping of a high number of species [72] with potentially differing responses
to environmental conditions, which may have obscured mean effects. The multi-annual risk score
threshold of 0.2 limited the river plume risk of coral reefs to a narrow band along the coast (Figure 10b)
and many of the monitored reefs included in this study were situated beyond this threshold. This would
likely cause a lack of short-term response to inter-annual variation in risk scores, as even though risk
scores varied at many reefs, they never approached the risk score threshold indicated. Several of the
more offshore reefs received little additional exposure over the period of this study; a consistently low
cover of macroalgae implied these reefs are beyond the threshold that allows macroalgae to flourish.
Conversely, high representation of macroalgae at many of the more inshore reefs prior to the onset of
the wet period of 2008–2012 suggests that those algal communities were not environmentally limited
(Figure 7b).

In addition, the relationship between increased risk score and a macroalgae response should not
be expected to be uniformly linear due to the myriad of interactions between river plume exposure
and other processes operating to control not just algae but all species within these complex ecosystems.
As an example, turbidity and Chl-a concentration (as a proxy for nutrient availability) are aggregated
into the risk score, however, these two factors can have competing influences on macroalgae. There is
ample evidence that availability of nutrients is positively related to macroalgae abundance, but only
where sufficient light is available [97], meaning that in the highly turbid conditions experienced
in a plume, reduced light availability may outweigh any influence of enhanced nutrient supply.
The observed reduction in macroalgae following large flood events on the reefs, with high magnitude
exposure risk following large floods of the Fitzroy River, support this interpretation [72]. Despite this
short term variability in macroalgae commuities as a direct response to flood exposure, the general
increase in macroalgae cover on reefs in the Fitzroy region corresponded to a high risk score in this
region (Figure 9b). Exposure to flood plumes in this region appears to have been not only a cause
of coral mortality, but also a vector for the maintenance of water quality conditions suitable to the
subsequent colonization and maintenance of high macroalgae cover.

Results obtained are encouraging, and the next steps should focus on progressing toward the
production of annual river plume risk maps for GBR ecosystems. Such annual maps would inform a
seasonal water quality context for GBR ecosystems and would provide the temporal scale necessary
to resolve processes that govern short-term fluctuations in seagrass and proportional macroalgae
cover. For example, they would help to determine the number of consecutive years a coral/seagrass
ecosystem needs to receive a certain category of risk to see a shift in species response as a result
of being exposed to reduced water quality in river plume waters. Such short term assessment has
been initiated in the GBR, with preliminary results suggesting that exposure to plume waters from
10% to 60% of the wet season and during two consecutive wet seasons, could result in a significant
loss of seagrass cover (>50%) [18]. Plume exposure thresholds varied in function of the cross-shelf
location of the seagrass habitat and the ambient water quality conditions, but recovery processes after
losses were not resolved [18]. Finally, the use of multidimensional statistics would help to progress
understanding of the mechanisms of influence of the key water quality parameters associated with
river plume waters, as well as additional external (e.g., environmental or competitive) and internal
(e.g., physiology) pressures on seagrass and macroalgae responses.

In the present study, ecological thresholds above which impacts of plume exposure on ecosystems
have been observed were defined following Brodie et al. [26]. However, only limited information is
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available to draw conclusions, for example, on the effects of exposure to sediments and nutrients
(measured as Chl-a concentrations) on seagrass health. Experiments on the responses of GBR key
species to interactive effects of these water quality parameters should be carried out to progress the
development of final risk thresholds for GBR seagrass [18] and coral reefs. It is important to note
that there are a multitude of pathways through which water quality may reduce the resilience of
coral communities; among these are the increasing susceptibility to thermal stress and enhancing
the survival of the crown-of-thorns starfish [98–100]. As the threshold for plume exposure risk will
almost certainly differ, risk maps tailored to additional indicators of coral reef condition, or resilience,
should be considered in later analyses, following the risk framework presented here. As risk metrics
are adapted and improved with continual validation and reduced uncertainty, it will be possible to
incorporate these products into applied management actions as useful tools to monitor and mitigate
water quality impacts on ecosystem health (Figure 3G).

6. Conclusions

This study contributes to the development of remote sensing monitoring tools and to the adaptive
management approaches developed to map spatial risk of ecosystem to river plume exposure in the
GBR. The Satellite Risk Framework and newly-introduced risk score allowed the definition of a set of
multi-annual risk thresholds associated with loss of seagrass cover and an intermediate river plume
risk map specifically for seagrass meadows was generated. Considering a multiannual Risk Score
threshold of 0.2, above which a high proportion of macroalgae within the algal communities at reef
sites can be expected, allowed the identification of a relatively narrow coastal band within which
macroalgae could be expected to be a major competitor of hard corals. This underlined the potential
for using simple supervised classification of true colour satellite imagery in combination with in situ
water quality data to map the likely adverse effect of combined contaminants in river plume waters on
ecosystems. These risk maps will be validated by ongoing monitoring and assessment. They can be
used in future to quantitatively assess ecosystems at greatest risk from plume water contaminants and,
therefore, prioritise investment into water quality improvement.

Supplementary Materials: The following are available online at www.mdpi.com/ 2072-4292/8/3/210, Figure S1:
from Devlin et al. [26], Modified from [24,25]): Summary of the process followed to build plume water maps
with examples of inputs and outputs: (a) Plume mapping process: different shadings represent steps (light gray),
analyses within steps (white), intermediate outputs (dark gray), and final outputs (black); (b) A: MODIS-Aqua
true colour image used to create the spectral signature defining 6 color classes for GBR plumes (25 January 2011),
B and C: daily 6-color class map (25 January 2011) and weekly composite (19 to 25 January 2011) of 6-class map. D:
reclassified map into weekly P, S, T composite (19 to 25 January 2011); E: Frequency of occurrence of the secondary
water type in 2011; Figure C to E are zoomed in the Tully-Burdekin area (see red box on panel B); Table S1:
Operational bio-optical algorithms tested for the retrieval of WQ data gradients [1]; Table S2: Summary of water
quality variables (WQv) and risk assessment classes defined in Brodie et al. risk assessment framework [10].
Magnitude and Likelihood categories (VR: Very Rare, R: Rare, O: Occasional, F: Frequent, VF: Very Frequent)
and final risk categories (likelihood x magnitude): VL: Very Low, L: Low, M: Medium, H: High, VH: Very High
are from published values or estimated by expert opinion. Likelihood categories for TSS and Chl-a are based
on frequency of exceedance of the water quality threshold using remote sensing data and PSII categories are
based on a recent assessment of to PSII (modified from [10,11]); Table S3: Proportion of macroalgue in the algal
communities (MAp) measured through the MMP. Interpolated data are indicated in italic and with an asterisk;
Table S4: Seagrass cover data measured through the MMP. Interpolated data are indicated in italic and with an
asterisk; Table S5: Mean and standard deviation of water quality concentrations measured in the plume water
types (CC1 to CC6).
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