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Abstract: Industrial forest plantations are expanding rapidly across Monsoon Asia and monitoring
extent is critical for understanding environmental and socioeconomic impacts. In this study, new,
multisensor imagery were evaluated and integrated to extract the strengths of each sensor for
mapping plantation extent at regional scales. Two distinctly different landscapes with multiple
plantation types were chosen to consider scalability and transferability. These were Tanintharyi,
Myanmar and West Kalimantan, Indonesia. Landsat-8 Operational Land Imager (OLI), Phased
Array L-band Synthetic Aperture Radar-2 (PALSAR-2), and Sentinel-1A images were fused within
a Classification and Regression Tree (CART) framework using random forest and high-resolution
surveys. Multi-criteria evaluations showed both L-and C-band gamma nought γ˝ backscatter decibel
(dB), Landsat reflectance ρλ, and texture indices were useful for distinguishing oil palm and rubber
plantations from other land types. The classification approach identified 750,822 ha or 23% of the
Taninathryi, Myanmar, and 216,086 ha or 25% of western West Kalimantan as plantation with very
high cross validation accuracy. The mapping approach was scalable and transferred well across the
different geographies and plantation types. As archives for Sentinel-1, Landsat-8, and PALSAR-2
continue to grow, mapping plantation extent and dynamics at moderate resolution over large regions
should be feasible.

Keywords: plantations; rubber; oil palm; PALSAR-2; Sentinel-1; random forest; classification;
data fusion; Myanmar; Kalimantan

1. Introduction

The expansion of industrial forest plantations is a critical driver of land cover land use changes in
Monsoon Asia. The Food And Agriculture Organization (FAO) estimated 187,086,000 hectares (ha) of
forest plantation in 2000 with a rate of 4.5 million new ha/year from 1990 to 2000 [1]. Approximately
79% of the estimated total area was located in Asia. Forest plantations in this report were defined as
having a minimum area of 0.5 ha, tree crown cover of at least 10 percent, and a total adult height above
5 m. More recently, a survey conducted by the FAO targeting major producing nations, following
up on the Global Forest Resources Assessment, reported plantation extents of 103,728,000 ha and
140,818,000 for 1990 and 2005 worldwide [2]. The report described an augmented approach for data
assimilation compared to the 2000 report (e.g., separating productive vs. protective plantations).
The report also highlights significant regional and subregional variations between and within years.
The discrepancy in these figures emphasize the challenges of producing accurate plantation estimates
and the scale of land conversion. Furthermore, the need for tools to accurately characterize the
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distribution and dynamics of forest plantations is amplified by international agreements focused on
carbon, conservation, and land management.

Satellite remote sensing is playing an important role in mapping the spatial distribution and
temporal dynamics of forest plantations. A number of studies have used optical satellite images
(Landsat, Spot, and Moderate Resolution Imaging Spectroradiometer (MODIS)) to identify and map
industrial forest plantations [3], specifically rubber [4,5], oil palm [6,7], eucalyptus [8,9], teak [10],
acacia [11,12], and bamboo [13,14]. The main difficulty in mapping industrial forest plantations is the
similar spectral characteristics between natural forests and forest plantations. This is especially evident
when trying to implement traditional classifiers.

One approach to mapping plantations using optical data has been to take advantage of
phenological characteristics unique to a particular species (e.g., rubber, oil palm) in order to separate
them from similar cover types such as natural forest. However, the known limitation of optical data in
the tropics due to cloud cover remains an obstacle for operational (automated) mapping over large
areas and transferability of phenological approaches to different regions or species. Higher temporal
resolution MODIS data has been utilized to circumvent temporally inconsistent moderate scale optical
imagery. A limitation of MODIS imagery is the relatively coarse spatial resolution, as this is an obstacle
in studying fragmented landscapes with patch sizes smaller than the sensor’s spatial resolution.

Some studies have also used synthetic aperture radar (SAR) observations to map rubber and oil
palm plantations [15,16]. The sensitivity of SAR to structural information (biomass, density, vertical
layering) make SAR advantageous especially in the tropics where cloud cover is high. Miettinen and
Liew [17] investigated statistical backscatter signatures of four (wattle, rubber, oil palm, and coconut)
closed canopy plantations in Malaysia and Indonesia. They found statistical differences in backscatter
and HH-HV (horizontal transmitting, horizontal receiving—horizontal transmitting, vertical receiving)
L-band difference able to distinguish oil palm and coconut from other types and attributed this to
the unique structure of palm stands (i.e., branchless stem, flat crown with leaves, open space below
canopy). Highlighted is the need for testing in other conditions, species, and geograhpic areas.

Multi-sensor and data fusion techniques that integrate multiple types of observations and data
modalities will continue to improve map detail and accuracy. This is partially driven by open
data policies such as the release of Landsat and Phased Array L-band Synthetic Aperture Radar-1
(PALSAR-1) archives and the open distribution of Sentinel-1 and Sentinel-2. By integrating the
strengths of different sensors the limitation of any one sensor can be overcome or complimented,
and additional information can often be derived. Several studies have combined optical and SAR
observations to map rubber plantations [18,19] and oil palm plantations [20]. Recently, Koh et al. [21]
illustrate for a small area how using vegetation indices derived from historical Landsat can help map
timing of events, within a landscape already classified using PALSAR and Landsat, to estimate rubber
plantation stand age.

The overarching goal of this research application was to map plantations at regional scales across
distinct geographies. The specific objectives were to (1) develop multisensor data fusion techniques for
mapping plantations; (2) evaluate transferability across regions and plantation species; and (3) evaluate
new sensors including Sentinel-1 C-band, PALSAR-2 L-band, Landsat-8 Operational Land Imager (OLI)
using 2015 data. The study was carried out in two hot spot regions with rapid plantation development:
West Kalimantan, Indonesia and Tanintharyi, Myanmar.

2. Materials and Methods

2.1. Study Areas

2.1.1. Tanintharyi, Myanmar

The Tanintharyi administrative region is a long narrow body of land adjacent to the Andama Sea
and bordering Thailand (Figure 1). The total land area is 43,344 km2 with a population of 1.5 million.
The region is influenced by its tropical monsoon climate and receives upwards of 3000 mm of rain
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per year with monthly temperatures above 18 ˝C. The landscape ranges from coastal villages to high
mountain terrain. The FAO estimated a plantation extent increase from 394,000 ha to 849,000 between
1990 and 2005 within Myanmar. In 2013, the volume of timber exports reached 3.3 million m3 with a
value of $1.6 billion US, which has tripled in the past decade [22]. As designated historical timber areas
are declining, additional natural forested regions are highly susceptible to development. Large-scale
land acquisitions for commercial agriculture are a likely outcome as the government begins to evolve
and encourage more foreign investment. The Myanmar Forest Department is charged with oversight
on timber estates; however, many forested areas remain outside management, policy and coordinated
regulation. Tanintharyi, Myanmar has some of the most remote and last remaining “pristine” tracts of
tropical forests in the region. Much of the concessions in this ethnically rich and land conflict prone
region is driven by oil palm and rubber [22]. Chain of custody and official government data are limited
emphasizing the need for robust and transparent Monitoring, Reporting, and Verification (MRV) tools.
One report estimated that 28,327 ha of lowland forest was cleared or burned in 2010 and 2011 for oil
palm in Tanintharyi concessions, many which are suggested to be located in forest reserves of high
conservation value [22,23].
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Figure 1. Tanintharyi, Myanmar and West Kalimantan, Indonesia study areas in tropical
South/Southeast Asia with Landsat path rows overlaid and training and validation polygons
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2.1.2. West Kalimantan

West Kalimantan is one of five provinces making up the Indonesian part of Borneo.
The boundaries of West Kalimantan nearly follow the rugged terrain around the Kapuas River and
border Malaysia. The province has an area of 147,307 km2 and nearly 4.5 million people. This study
focused on western West Kalimantan plantations hot spots including the entire regencies (kabupaten)
of Landak, Sanggau, and Sekadau and portions of Bengkayang, Ketapang, Melwai, Pontianak, Sambas,
and Sintang. Kalimantan is characterized by the tropical rainforest climate with average monthly
rainfall of 60mm or more. Recent estimates state that half of the world’s oil palm supply comes
from Sumatra and Kalimantan and the Agricultural Ministry shows a 600% increase in oil palm
between 1990 to 2010. For these reasons, Kalimantan is often considered a major “hot spot” for tropical
deforestation and industrial plantations have been identified as the primary driver of extensive loss
of peat swamp forest [17,24]. Carlson et al. [7] note that fire is often cited as a driver of deforestation
in West Kalimantan; however, they elaborate on that process to report that oil palm was the direct
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cause of 27% of total and 40% of peatland deforestation. The FAO estimates that Indonesia as whole
contained plantations areas of 2,209,000 ha and 3,399,000 for 1990 and 2005, respectively. Carlson et al.
used Landsat and a decision tree approach to map oil palm extent in 1990, calculated to be 90,300 ha to
3,164,000 in 2010 and emphasized the critical role of plantations (extent, distribution, and dynamics) in
carbon emissions and driving land use and cover change, which they state is largely undocumented.

2.2. Data Preprocessing

2.2.1. ALOS-2 PALSAR-2

The Advanced Land Observing Satellite (ALOS-2) carries the PALSAR-2 building on the lineage
of ALOS-1 PALSAR-1 and Japanese Earth Resources Satellite 1 (JERS-1). ALOS-2 orbits at an altitude of
628 km in a Sun-synchronous pattern with a 14-day revisit cycle. In this study, PALSAR-2 images were
collected in Single Look Complex (SLC 1.1) to optimize the complete signal and adjust the effective
number of looks considering the ground range resolution, the pixel spacing in azimuth, and incidence
angle. Images were co-registered using a cubic convolution cross-correlation approach considering
shifts in range and azimuth dependency. A Lee speckle filter was applied to remove spatially random
multiplicative noise (speckle). Images were radiometrically calibrated and normalized by eliminating
local incident angle effects and antenna gain and spread loss patterns using cosine correction. Terrain
geocoding used a Digital Elevation Model (DEM) following the range-Doppler approach to provide
gamma nought γ˝ dB for the study areas. Local incidence angle θ and layover/shadow maps were
generated for potential post classification processing to adjust for poor data pixels. Twenty-eight (28)
and twenty-three (23) single and dual polarization L-band images were used for Tanintharyi and
western West Kalimantan, respectively (Appendix 1).

2.2.2. Sentinel-1A

Sentinel-1A carries a C-band imager at 5.405 GHz with an incidence angle between 20˝–45˝.
The platform follows a sun-synchronous, near-polar, circular orbit at a height of 693 km. The 1A
platform has a 12-day repeat cycle at the equator. The additional 1B platform planned for launch
will increase the repeat coverage by an order of magnitude. Sentinel-1 collects in four modes with
different resolutions. The Interferometric Wide (IW) swath collection strategy observes in single and
dual polarization VV;VH (vertical transmitting, vertical receiving; vertical transmitting, horizontal
receiving) with a 250 km footprint in range direction. All data are freely available from the European
Space Agency (ESA) Data Hub. This study utilized SLC and ground range detected (GRD) products
that have been focused, multilooked, and projected in ground range. The Sentinel-1 collection strategy
began with different observations for SLC and GRD depending on geography, which can be viewed
on the ESA Data Hub. Now all regions are operating in the full observation strategy. Images were
converted into gamma nought γ˝ dB for analyses and mapping. Layover and shadow map were
generated for post processing using a DEM. Twenty (20) and fourteen (14) single and dual pol (VV;VH)
Sentinel-1 C-band images were obtained for wall-to-wall coverage of Tanantharyi and West Kalimantan,
respectively. Multitemporal imagery for wet and dry seasons were collected to consider the potential
influence of phenology in distinguishing rubber and oil palm from other land covers.

2.2.3. Landsat-OLI

Landsat 8 OLI data were collected to provide surface reflectance ρλ and optical indices to help
characterize the landscape. This study used L8SR code to generate surface reflectance and Function
of MASK (FMASK) to screen out poor quality optical pixels due to clouds and shadows following
lineage of Landsat 5 and 7 preprocessing workflows, i.e., [25–29]. All Landsat data were obtained
from United States Geological Survey (USGS) Earth Explorer with phenology and image quality
diligently considered during selection. The best available imagery between 2013 and 2015 were
selected based on phenology and then mosaicked. A set of well-established indices was also used
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to help classify the landscape. Indices are less sensitive to image-to-image noise, viewing geometry,
and atmospheric attenuation making them advantageous over reflectance products in some regard
for large area (i.e., multiple scenes over many path rows) and multitemporal mapping. This study
used the Normalized Difference Vegetation Index (NDVI; Equation (1)) [30,31], a useful metric of
greenness and vigor across a landscape, it is one of the most applied indices for land surface monitoring.
The Land Surface Water Index (LSWI; Equation (2)) given its sensitivity to water or equivalent water
thickness and leaf moisture has been successfully applied for mapping inundation, forest characteristics,
and agricultural landscapes [32,33]. The Normalized Difference Till Index (NDTI; Equation (3)) was
used for its sensitivity to residue and crop management practices [34]. The Soil-Adjusted Total
Vegetation Index (SATVI; Equation (4)) has demonstrated utility in mapping senescent biomass,
ground residue, plant litter, and surface conditions while compensating for varying soil brightness
and background artifacts [35].

NDVI “
ρnir´ ρred
ρnir` ρred

, (1)

LSWI “
ρnir´ ρswir
ρnir` ρswir

, (2)

NDTI “
ρswir´ ρswir2
ρswir` ρswir2

, (3)

SATVI “
ρswir´ ρred

ρswir` ρred` 0.1
˚
`

1.1´ p
swir

2
q
˘

. (4)

2.3. Mapping Approach

Summarizing, our mapping approach centered on generating a suite of complementing inputs
and an integrated stack from Landsat-8, PALSAR-2, and Sentinel-1 (Figure 2). The preprocessed
imagery and derivatives were stacked into a data cube for analyses and classification. A suite of
evaluation techniques was used to investigate classification inputs and accuracies. The fused satellite
observations were fed into a classifier to map plantation extent for the study regions.
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A particular focus was investigating separability of plantations from natural forest, as these
tend to be the most easily confused classes based on spectral information. Training and independent
validation polygons were developed using multiple high resolution (HR) and field data sources.
The first HR data were collected over Kalimantan across 15 sites covering nearly ~65,000 ha in a
stratified approach. Very high resolution airborne data covering the visible spectrum (R:G:B) at 50 cm
spatial resolution were collected in November (26 November 2014). These data were used to help
interpret imagery and generate polygons. Figure 3 illustrates very high resolution airborne data over
areas of oil palm, natural forest, and highlights their structural characteristics (e.g., planting spaces,
natural forest canopy variation).
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natural forest canopy.

The second data source used for interpretation was a limited set of geofield photos. In an
effort to promote transparency and improved land cover validation our team has been growing
an online archive of field-level photos collected using a GPS-enabled camera (“geofield photos”).
All geofield photos are linked to shape files or keyhole markup language (KML) files to store,
display, and share photos. KML files use a tag based structure with attributes that allow display.
These photos are available for viewing and sharing in Google Earth or any GIS platform at
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www.eomf.ou.edu/photos [36]. At this website, users can search and share a library of global
georeferenced field photos for product development and validation. Figure 4 shows a representative
geofield photo for creating an agricultural training site. All photos for the study regions were
considered for help interpreting imagery (Figure 5) and generating polygons.
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We combined the high resolution imagery and field data with high resolution Google Earth Pro
imagery to make final polygons. Google Earth Pro contains time series high resolution data that
enables some temporal tracking of landscapes respective of the available dates. A total of 509 polygons
containing 1,771,563 30 m pixels were carefully digitized across both study regions (Table 1). A range
of plantation ages and landscape conditions (i.e., patch size, slope, interjuxtaposition, distance to urban
areas) were included to build a robust calibration and validation data set. Plantation stand age was
characterized into three broad classes (young, mixed, mature) based on visual interpretation and
examining time-series high resolution imagery in Google Earth Pro.

Table 1. Training data characteristics across both study regions.

Class # of Polygons # of Pixels Min Patch (ha) Max Patch Average Patch

Agriculture 87 32,992 0.5 636 33
Developed 94 37,262 0.4 557 35

Forest 100 1,103,423 0.8 1211 1102
Plantation 134 282,215 4.0 3865 192

Water 94 315,671 1.3 11,370 420

A suite of derivative indices was generated from both the SAR and optical data. These included
common ratios (HH/HV2) and vegetation indices (NDVI, LSWI, SATVI, and NDTI) that have been
found useful in other agroforest mapping studies, i.e., [18,19,32,33,35,37]. Texture indices were also
generated in an effort to capture the “uniformity” or homogeneity of plantation canopy, spacing,
and structure relative to natural forests. Several studies have found the integration of texture indices
useful for mapping forest biometrics, i.e., [37]. Texture indices (Equations (5)–(12)) keyed off gray-level
co-occurrence matrix (GLCM) included mean, variance, homogeneity, contrast, dissimilarity, entropy,
second moment, and correlation [38]. Next, image statistics for the radar and optical variables were
extracted to form a large database for mining, exploration, and model training.
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p(i,j) is the (I,j)th entry in a normalized gray-tone spatial-dependence matrix; Ng = Number of distinct
gray levels in the quantized image; µx, µy are the means of px and py; σx, σy are the standard
deviations of px and py.

In this study, a classification and regression tree framework was carried out using the multiscale
SAR and optical data (Figure 2). The ensemble, machine-learning, random forest algorithm [39]
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was employed to classify the remote sensing inputs for mapping plantation extent. A random
forest is generated through the creation of a series of Classification and Regression Trees (CARTs)
using bootstrapping, or resampling with replacement. Random forest is a flexible and powerful
nonparametric technique that many mapping applications have recently implemented for a range
of studies including mapping crops [40–42], wetlands [43–45], canopy height [46], algal blooms [47],
urban sprawl [48], biomass [49], and many other thematic areas.

For random forests as applied here, a number of decision trees were built and each time a split in a
tree is considered, a random sample of m (m<p) predictors is chosen as split candidates from the full set
of p predictors. In this case m:

?p was applied and this process can be seen as decorrelating the trees
to make the average of the resulting trees less variable (reduce the variance). A large tree with more
splits may have small bias but lead to higher variance that is challenging to interpret. A small tree with
less splits may result in more bias but have lower variance and more straight forward interpretation.
With random forest, it is possible to build regression trees that are large, and then prune to determine
which subtree gives the lowest tree error rate. Random forest has the ability to treat small and large p
problems, high-order interactions, and correlated predictor variables. An advantage of random forest
is the easy integration of multiscale and multimodal input variables, and includes a robust ability to
handle large and diverse datasets efficiently.

A complementing set of statistical measures were used to evaluate input variables and determine
quality of model outcomes. First, box and whisker plots were generated to simply visualize and assess
separability and variability of classes (i.e., plantation, natural forest, urban, water, and agriculture).
Second, the Gini index (Equation (13)) was used to help determine the influential remote sensing
variables in the CART models, and focused on identifying plantations and characterizing the landscape.
Every time a split of a node is made on variable m, the Gini impurity criterion for the two descendent
nodes is less than the parent node. Adding up the Gini decreases for each individual variable over all
trees in the forest gives a fast variable “importance” that is often very consistent with the permutation
importance measure. A small value indicates that a node contains predominantly observations from a
single class.

G “
K
ÿ

k“1

p̂mkp1´ p̂mkq, (13)

where p̂mk is the proportion of training observations in the mth region that are from the kth class.
The Gini index is commonly used to measure node purity. A small value indicates that a node contains
predominantly observations from a single class; thus, the Gini index can be used to evaluate the
importance of a particular split.

Sensitivity pTrue Positive Rate, TPRq “
True Positive

True Positive` False Negative
, (14)

False positive rate pFPRq “
False Positive

False Positive` True Negative
, (15)

Area under the curve pAUCq : AUC “
ż 1

0
ypxqdx, (16)

Precision “ True Positive{pTrue Positive ` False Positiveq, (17)

Recall “ True Positive{pTrue Positive ` False Negativeq. (18)

Third, Receiver Operating Characteristic (ROC) curves were generated to help understand
classification performance and false positive rates (seen as type I error) against the true positive
rate (seen as power) (Equations (14) and (15)). An ROC curve graphs true positive rates (y-axis) versus
false positive rates (x-axis) at a variety of classification thresholds. The true positive rate (tp) is the
probability that a predicted value or score, S, for an observation exceeds a classification threshold given
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that the observation belongs to the population of interest. The false positive rate (fp) is the probability
that the score, S, for an observation exceeds the threshold when the observation does not belong to the
population of interest. Area under the curve (AUC), precision, and recall are a common approach to
further help describe ROC curves (Equations (16)–(18)).

To generalize for polytomous cases, an ROC curve is created for each response level versus the
other levels. If there are only two levels, one is the diagonal reflection of the other, representing the
different curves based on which is regarded as the “positive” response level. Because the ROC curve
summarizes the accuracy of the classification across all possible thresholds, it provides a summary of
the overall accuracy of a classification system. A goal is to increase the true positive rate and, at the
same time, keep a small false positive rate. Lastly, out of bag (OOB) or “withheld” samples were
used to construct error matrices and validate mapping outcomes. Together these metrics provide a
robust assessment of mapping capabilities across the different geographies, managements (industrial
commercial plantation tracts vs. smallholder plantation plots), and varying landscape conditions
(slope, juxtaposition, and heterogeneity).

3. Results and Discussion

3.1. Data Mining

The data mining results indicate that no single sensor provided comprehensive and thorough
separation of all the broad classes or the plantations and forest classes. The box and whisker plots
showed the PALSAR-2 HV distribution having the most separation between plantation and forested
pixels among the three sensors when using SAR γ˝ backscatter and optical ρλ reflectance observations.
PALSAR-2 HV had lower (mean ~4 db lower) backscatter values in both West Kalimantan and
Myanmar for plantations compared to natural forest. The L-band wavelength (23.5 cm, 1.25 Ghz)
observations penetrate more into the forest canopy and between branches and spaces, compared to
the C-band and reflectance measurements, before direct- or double (ground)-bounce scattering or
extinction. HH in tropical forests can be dominated by volume and volume-surface scattering while
HV can be dominated largely by volumetric scattering [50] due to dense vegetation cover. It is also
likely that forest has a higher amount of canopy variability influencing scattering due to significant
surface roughness as observed by the cross pol (HV) term. Since structure influences the cross pol term,
management (thinning, branch removal, selected harvest, debris removal) is theoretically observable
by PALSAR-2 HV if the disturbance is significant enough. Although we note both plantations and
“natural” forests can undergo various “managements”.

In young plantations, SAR sensors can receive a relatively higher amount of surface scattering
rather than a majority of scattering from trunks and trees or branches and crowns. Therefore, stand
age can influence these relationships although variability remains low regardless of age in plantations.
As plantations mature, above ground biomass (AGB) increases rapidly. For AGB mapping, the use
of L-band [51–53], as well as L- and C-band fusion [54,55], has been shown to be successful although
saturation thresholds at given incidence angles are often noted. Typically, the higher the biomass,
the stronger the backscatter response at the nominal PALSAR incidence angle, and 150–200 Mg¨ha´1

has been noted as HV thresholds where signal to noise begins to wash out [56–61]. We note that the
forest class in this study focused on more mature patches (pixels) rather than degraded stands or
regrowth patches. Plantations with short life cycles (<5 years) will have a very dynamic range and
higher temporal frequency observations will aid in identification.

Sentinel-1 VV and Landsat 8 Shortwave Infrared (SWIR1) had slightly higher backscatter (~1db)
and reflectance values, respectively, in both West Kalimantan and Myanmar for plantations compared
to natural forest. This is influenced by crown distribution (density, spacing) and biomass or senescence,
respectively, given the particular sensitivity of these bands. It is feasible that newly installed plantations
(<2 years old) would have lower volume and much more open ground reducing these separations.
Further, the condition of the “background” signal could impact the observations. In some regions,
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the influence of peat has been observed in the ability of C-band VV, but not VH, for distinguishing forest
types. For example, Quegan and Uryu [62] used Envisat ASAR C-band VV and VH for mapping acacia
and found influences of peat in scattering. HH and VH had substantial overlap in box and whisker
quantile distributions of plantations and forest as did the reflectance bands of Landsat 8 excluding
SWIR2 which had some separation but not as much as SWIR1.

The Landsat texture indices based on NIR had some separation in box and whisker plots between
plantations and forest, and more so than SWIR1. NIR variance, contrast, and dissimilarity all had
substantial separation with forest values higher than plantations. NIR entropy also had strong
separation in box and whisker plots with plantations having higher entropy values. Sentinel-1 VV
and VH had similar patterns in box and whisker texture plots with forests having higher values in
variance, contrast, and dissimilarity (Figure 6). PALSAR-2 HV and HH also followed the pattern of
higher values in variance, contrast, and dissimilarity for forest compared to plantations, although not
as pronounced as the other two sensors. Generally the box and whisker plots support the notion that
forests have greater variability—in crown size, structure, biomass, density, spacing, stand height, vigor,
fractional cover—compared to plantations and the texture metrics help capture this pattern.
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Figure 6. Box and whisker plot showing distributions for plantation and forest for Landsat-8 NIR,
PALSAR-2 HH and HV, and Sentinel-1 VV and VH for texture metrics.

The Gini index showed that VV, VH, SWIR, HV, LSWI, and the texture derivatives homogeneity,
dissimilarity, contrast, and entropy were effective for both regions, although not in the same order
(Table 2). In Myanmar, the optical variables tended to be recognized as more influential variables while
in West Kalimantan the more important variables tended to be dominated by SAR metrics. SWIR was
not evident in West Kalimantan, making it less useful in that region as compared to Myanmar. Further,
L-band measurements were less important in Myanmar according to the Gini index while proving to
be quite important in West Kalimantan. This suggests differences in structure and scale, and potentially
other factors such as phenology, varying topography, or background signals, influenced responses.
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Table 2. Top Gini index values for (top) West Kalaimantan and (bottom) Tanintharyi using combined
Landsat 8, PALSAR-2, and Sentinel-1.

HV VH VV VH_Mean

1.759 1.694 1.594 1.499
Greenness VV mean HV mean VH homogeneity

1.090 1.048 1.030 0.985
VH secondmoment VH entropy NDVI Wetness

0.974 0.957 0.956 0.832
NDTI HV entropy HH VH dissimilarity
0.821 0.809 0.795 0.778

VH correlation HV homogeneity HV dissimilarity LSWI
0.747 0.718 0.696 0.690
VV VV Mean SWIR1 Mean Red SM

5.936 5.181 4.139 3.717
Greenness SWIR2 Entropy VH Mean VH

3.387 3.185 3.163 2.915
SWIR2 SM NDTI SATVI NIR Mean

2.892 2.467 2.258 2.155
SWIR2 Mean Red Entropy SWIR1 NIR

2.100 2.037 1.900 1.866
Red HG SWIR HG SWIR2 Dis Blue Corr

1.856 1.846 1.623 1.573

The ROC plots (Figures 7 and 8), AUC values (Table 3), and precision and recall graphs (Figure 9)
show, as expected, that fusing all three sensors together provides the best overall classification
performance. The ROC curves that are closer to the “northwest” corner of the graph represent better
classifier performance. The closer the curve comes to the 45-degree diagonal of the ROC space, the less
accurate the classifier. The ROC plots show curves using training (T) and withheld (W) outcomes for
Landsat-8, PALSAR-2, Sentinel-1, and all three sensors combined. Landsat and Sentinel have similar
curves, while forest tends to be more confused when using only Sentinel-1. PALSAR-2 struggles more
with agriculture and developed, resulting in lower values in general compared to the other platforms in
Myanmar. In West Kalimantan, PALSAR-2 has stronger ROC outcomes and agriculture had the lowest
recall and precision value tradeoff. This is likely driven by land use, management, and landscape
heterogeneity, as the scale of plantations in West Kalimantan are more industrial (less patchy) as
compared to the landscape matrix identified in Tanintharyi.

Table 3. Area under the curve (AUC) values for (top) Tanintharyi and (bottom) West Kalimantan.

Landsat 8 OLI Sentinel-1 PALSAR-2 Fused

Training Withheld Training Withheld Training Withheld Training Withheld

Agriculture 0.9464 0.9053 0.9864 0.9667 0.9505 0.7011 0.9957 0.9779
Developed 0.9919 0.9331 0.9622 0.9039 0.9617 0.6811 0.9991 1.0000

Forest 1.0000 0.9733 0.9757 0.8774 0.9892 0.9446 1.0000 0.9693
Plantations 0.9835 0.9937 0.9913 0.9713 0.9603 0.8731 0.9994 0.9915

Water 1.0000 0.9924 1.0000 1.0000 0.9857 0.8889 1.0000 1.0000
Agriculture 0.9966 0.9483 1.0000 0.9822 0.9848 0.9852 1.0000 0.9912
Developed 0.9963 0.9874 1.0000 1.0000 0.9982 0.9799 0.9994 0.9989

Forest 0.9980 0.9874 1.0000 0.9053 1.0000 1.0000 0.9969 1.0000
Plantations 0.9958 0.9378 1.0000 0.9554 0.9898 0.9766 0.9976 0.9797

Water 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9804
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3.2. Mapping

The remote sensing variables (“bands”) shown to be effective in distinguishing the cover types
according to the data mining results were applied to both regions. In this study, the dominant class was
used in the land type map, as determined through the use of random forest and multisensor inputs.
In Myanmar, cross validation (withheld random forest model training data) had mean out-of-sample
overall and kappa accuracies of 96% and 93%, respectively. The classifier identified 750,822 ha or
23% of the landscape in the plantation class (Figure 10). Comparing these numbers to existing data is
challenging given the lack of open and robust record keeping. The extent number is 2–3 times higher
than what the Ministry of Agriculture and Irrigation (MOAI) reported for planted oil palm and rubber
in 2012 (266,206); however, direct comparisons are not clear given the differences in definitions and
lack of access to open and robust data. Figure 8 shows plantation fractional cover and confidence
maps for Tanintharyi. The fractional cover map was generated at 10 km cells to visually show percent,
and the confidence map (0–100) contains the probability outcomes of random forest that can be used
to judge accuracy or possible confusion.

Given the suitable climate for oil palm Tanintharyi has been promoted by the government as a
region for industrial plantations. Large oil palm hot pots are evident in southern regions, and rubber
across northern districts, with patches existing largely along major transport routes. The majority of
plantings tend to spear off “Union Road” in a classic “fishbone” pattern. This is the main transport
route in the region, and provides access to districts with dense plantation fractional cover such as
Myeik, Dawei, and Kaw Thaung which have many concessions with good access to transport and
infrastructure. In 1999, the government had a goal to plant 200,000 ha of oil palm with more than
50 companies receiving concessions [22]. This work suggests plantation extent is larger than current
estimates available from FAO or MOAI. With open access to data a more robust and valid cross walk
between classifications, concessions and allotments, national parks and reserves, and definitions can
be used for transparent accounting and monitoring in Myanmar.
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Figure 10. Plantation fractional cover and confidence maps for Tanintharyi, Myanmar.

In western West Kalimantan, cross validation had mean out-of-sample overall and kappa
accuracies of 98% and 97%, respectively, for the classification model. We emphasize these very
high outcomes from the confusion matrix (and thus derived accuracy metrics) are based on withheld
cross validation training data from the random forest model. More ground data and transparent
comparisons will provide more comprehensive and robust assessments. The classifier identified
216,086 ha or 25% of this landscape study area in the plantation class (Figure 11). Western West
Kalimantan has larger patches compared to Tanintharyi, with plantation blocks outside Pontianak
and within Pisang, for example, on the order of 10 ˆ 10 km of near continuous palm plantation.
More inland, many of the larger blocks of plantations tend to be found outside Sintang and the
northern half of Sekadau. Topographic influences on the distribution are evident with more extreme
topography having intact natural forest cover. Many plantation areas co-occur in peatland regions
that are visible when compared to high resolution imagery and existing maps [7]. Again, direct
quantitative comparisons to existing maps are challenging given differences in classifications, study
area, definitions, and availability of data products.
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The mapping outcomes suggest the approach is scalable and transferable across regions and
plantations, at least that are dominated by rubber and oil palm. Wall-to-wall maps at national scale
at moderate resolution should be feasible. Evaluating across more species, such as acacia, teak,
eucalyptus, and bamboo, will provide a more thorough evaluation, as will additional ground truth
and additional regions such as Laos and Vietnam. Small plots and road side plantings are likely
under classified or mixed with forest or agriculture given the spatial resolution of the sensors. Use of
Sentinel-1 at finer resolution can provide spatial details on the order of a few trees; however, the fusion
with multiple sensors (PALSAR-2, Landsat 8) at moderate resolution (~30 m) provided more robust and
accurate maps. Plantations on high relief and complex topography requires effective SAR processing
to handle viewing geometry (i.e., incidence angles, layover, foreshortening) and the availability of high
resolution DEMs will be required in these cases. With the use of random forest, isolating one or a few
critical variables (bands) becomes less critical although still important for explaining what is driving
mapping performance and utility. The fusion of L- and C-band with optical data ultimately captures
the suite of characteristics that make plantations (oil palm and rubber) unique. Additional temporal
information should further improve mapping, although more testing is required. As Sentinel-1B,
Sentinel-2A, and PALSAR-2 grow their archives, more opportunity for integration of temporal signals
will be available.

4. Conclusions

This study focused on integrating multisensor imagery to map plantation extent across different
geographies. The mapping approach was relatively robust across the regions with ability to map oil
palm and rubber dominated plantation hot spots with varying landscape characteristics. Landsat 8
OLI, PALSAR-2, and Sentinel-1A each had useful information and the CART approach using random
forest transferred well across Tanintharyi and West Kalimantan. PALSAR-2 HV, Senitnel-1 VV and
VH, Landsat LSWI and NIR, and texture metrics sensitive to patch contrast and homogeneity were
identified as being more useful for distinguishing oil palm and rubber in both regions. The classification
approach identified 750,822 ha or 23% of the Taninathryi, Myanmar, and 216,086 ha or 25% of western
West Kalimantan as plantation with very high cross validation accuracy. Potentially, the approach
is applicable over larger areas with moderate resolution which should help support monitoring,
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reporting, and verification toolsets for understanding plantations and landscapes. The need for open
data sharing and robust and transparent plantation assessment tools are evident and will contribute
toward understanding land cover land use changes.
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