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Abstract: Subpixel mapping is a method of enhancing the spatial resolution of images, which involves
dividing a mixed pixel into subpixels and assigning each subpixel to a definite land-cover class.
Traditionally, subpixel mapping is based on the assumption of spatial dependence, and the spatial
correlation information among pixels and subpixels is considered in the prediction of the spatial
locations of land-cover classes within the mixed pixels. In this paper, a novel subpixel mapping
method for hyperspectral remote sensing imagery based on a nonlocal method, namely nonlocal
total variation subpixel mapping (NLTVSM), is proposed to use the nonlocal self-similarity prior
to improve the performance of the subpixel mapping task. Differing from the existing spatial
regularization subpixel mapping technique, in NLTVSM, the nonlocal total variation is used as a
spatial regularizer to exploit the similar patterns and structures in the image. In this way, the proposed
method can obtain an optimal subpixel mapping result and accuracy by considering the nonlocal
spatial information. Compared with the classical and state-of-the-art subpixel mapping approaches,
the experimental results using a simulated hyperspectral image, two synthetic hyperspectral remote
sensing images, and a real hyperspectral image confirm that the proposed algorithm can obtain better
results in both visual and quantitative evaluations.

Keywords: subpixel mapping; nonlocal total variation; hyperspectral remote sensing imagery;
spatial regularization

1. Introduction

Due to the impact of the sensors’ instantaneous field of view (IFOV) and the diversity of land-cover
objects, mixed pixels are common in hyperspectral remote sensing images [1–3]. Spectral unmixing
can effectively solve the mixed pixel problem by acquiring the spectra of the endmembers and the
abundance fraction images of these endmembers [4–7]. However, the spatial distribution of each
endmember or land-cover class in the pixel remains unknown [8,9], which is quite important in
real applications such as subpixel classification and subpixel target detection. To solve this problem,
the subpixel mapping technique was proposed to determine the subpixel location of each class or
endmember based on the fractional abundances [10–15]. In recent years, subpixel mapping has
been applied in many practical applications, including land-cover change detection [16], waterline
mapping [17], and landscape pattern indices calculation [18].
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Subpixel mapping methods have been proposed to handle the mapping problem inside pixels.
They aim to generate a finer classification result from a low-resolution abundance map by maximizing
the spatial dependence, which is the basic principle of many subpixel mapping methods [19]. Subpixel
mapping algorithms predict the spatial distribution of the different classes by dividing pixels into
smaller subpixels based on the abundance values of each endmember, and then assign each subpixel
to a single land-cover class, which can greatly enhance the spatial resolution of images. A number
of subpixel mapping methods have been proposed based on spatial dependence, which refers to the
fact that observations that are spatially close tend to be more similar than those that are further apart.
Many subpixel mapping methods, both traditional and state-of-the-art, belong to this category, such as
the linear optimization technique [20], the spatial attraction model (SASM) [21], the pixel-swapping
subpixel mapping algorithm (PSSM) [22], neural networks [23,24], random fields [13,25], the geometric
subpixel mapping algorithm (GSM) [26], evolutionary computing based subpixel mapping [27–30],
and multi-agent systems [31].

Since the subpixel mapping issue is a typical ill-posed inverse problem whose aim is to predict
unknown detail information at the subpixel scale from coarser pixels, subpixel mapping algorithms
based on a spatial regularization prior have recently been studied by many researchers [12,14,32,33], as
it is standard to use a regularization technique to make the original ill-posed problem well-posed [34].
These algorithms transform the ill-posed subpixel mapping problem into a well-posed regularization
problem by assuming spatial prior information about the unknown subpixel mapping result based on
a maximum a posteriori (MAP) model. A finer-resolution map can then be reconstructed from a series
of lower-resolution abundance fraction images. Different spatial prior models have been applied for
subpixel mapping, such as the Laplacian prior, the total variation prior, and the bilateral total variation
prior. These spatial prior models, such as the subpixel mapping based on total variation (TVSM) model
proposed in [12], incorporate the local spatial information in the subpixel mapping model, and they
have achieved better subpixel mapping performances. However, both the total variation regularization
method and the Laplacian prior model just consider the local spatial homogeneity of the neighborhood
system (horizontal and vertical) and reconstruct the main geometrical configuration, but they do not
utilize all the potential spatial information [35], especially in the nonlocal spatial neighborhood.

In this paper, a new spatial regularization subpixel mapping algorithm based on a nonlocal prior
model, namely nonlocal total variation subpixel mapping (NLTVSM), is proposed. In NLTVSM, a
nonlocal total variation prior model [36] is designed as the spatial regularizer by incorporating the
nonlocal spatial information in the subpixel mapping model. The nonlocal means-based regularization
has been applied in many real applications, including hyperspectral image denoising [36] and noise
estimation [37], super-resolution reconstruction [38], image segmentation [39], image classification [40],
sparse unmixing [41], and so on. Differing from the previous TVSM method, which utilizes the spatial
information in a limited local window, the proposed NLTVSM method combines the nonlocal spatial
information of the whole image and the total variation framework. NLTVSM can use all possible
self-predictions in the image to take advantage of the high degree of redundancy of the image, and a
variational framework-based nonlocal operator is utilized as the spatial prior by averaging all the pixels
in a sliding window and then computing the problem as a weighted graph gradient [42]. Compared
with the previous subpixel mapping algorithms, the experimental results using a simulated image,
two synthetic hyperspectral remote sensing images, and a real remote sensing image demonstrate that
the proposed NLTVSM algorithm can obtain an improved subpixel mapping accuracy, which is a little
better than the latest TVSM algorithm.

The rest of this paper is organized as follows. Section 2 presents the basic idea of the proposed
NLTVSM model. Section 3 provides the experimental results and analyses with simulated, synthetic,
and real hyperspectral images. The conclusion is drawn in Section 4.
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2. The Nonlocal Total Variation Subpixel Mapping Model for Hyperspectral Imagery

Differing from the previous TVSM [12], in this paper, the nonlocal total variation spatial operator
is introduced into the subpixel mapping model to predict the fine structure, details, and texture, to
enhance the subpixel mapping results.

In this part, the framework of the spatial regularization subpixel mapping model is first
introduced, and the flowchart of the proposed NLTVSM is shown in Section 2.1. The spatial
regularization method, the nonlocal total variation spatial operator, is presented in detail in Section 2.2.
Finally, the proposed spatial regularization subpixel model, the NLTVSM algorithm, is described in
Section 2.3.

2.1. Spatial Regularization Subpixel Mapping

Subpixel mapping techniques aim to obtain a higher-resolution classification image based on the
low-resolution abundances, and divide a mixed pixel into several subpixels with a single land-cover
class. The subpixel mapping problem involves estimating the possible distribution of every land-cover
class inside a pixel at a subpixel scale, and the solution should not be unique, which is a typical
ill-posed inverse problem. A simple example of subpixel mapping with three classes is displayed in
Figure 1. In this example, the scale factor is 5, which means that one pixel in the original low-resolution
image is divided into 5 ˆ 5 subpixels. Figure 1a shows the original low-resolution fraction image,
and the red, green, and blue pixels represent pure land-cover classes, while the white ones represent
mixed pixels. The aim of subpixel mapping is to estimate the optimal distributions at the subpixel
scale. Figure 1b,c show two possible distributions. Based on the spatial dependence rule, Figure 1b is
more reasonable than the latter.
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Figure 1. Simple example of subpixel mapping (3 ˆ 3 low-resolution pixels, scale factor 5, three
land-cover classes). (a) Fraction image; (b) optimal distribution; and (c) inferior distribution.

To better solve the ill-posed problem, a regularization technique can be considered to make it
well-posed. In this way, the subpixel mapping problem can be transformed into a regularization
problem, and a MAP model is utilized to regularize the subpixel mapping problem to be well-posed.
The basic spatial regularization subpixel mapping model can be formulated as the following
minimization problem:

min
X

1
2

||DX´Y||2
` λUpXq (1)

where Y P RNˆ n denotes the input low-resolution abundance images, with N pixels with n dimensions,
where n is the number of land-cover classes. X P Rps ˆ s ˆ Nq ˆ n is the high-resolution subpixel
mapping distribution map with s*s*N subpixels, and s is the scale factor. In the process of subpixel
mapping, each pixel in the low-resolution abundance images corresponds to specific s*s subpixels.
D P RNˆps ˆ s ˆ Nq is the downsampling matrix, and the elements’ values of matrix D are 0 and 1/(s2).

In Equation (1), the first term describes the data fidelity term, and the second term is the
spatial prior term. U(X) represents the spatial regularization term, and the parameter λ is the
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spatial regularization parameter which controls the balance of the data fidelity and regularization
terms. Different spatial regularization models have previously been successfully applied for subpixel
mapping, such as the Laplacian prior model, the total variation model, and the bilateral total variation
(BTV) method. In this paper, the nonlocal total variation model is utilized to consider the spatial
information in subpixel mapping, and the flowchart of the proposed NLTVSM method is shown in
Figure 2.
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Figure 2. Flowchart of the proposed NLTVSM method.

In the proposed method, the important improvement is the application of the nonlocal total
variation method for the spatial consideration in the process of subpixel mapping. To better understand
the proposed algorithm, the nonlocal total variation model should first be introduced.

2.2. The Nonlocal Total Variation Model

Unlike TVSM, in the proposed NLTVSM algorithm, the nonlocal total variation model is utilized
as a spatial regularization term, which deals with the unknown pixels by searching for the similar
pixels in a searching window to replace the current unknown pixels, with the aim being to exploit the
similar patterns or patches in the image. The nonlocal-based method averages the other pixels with
patches similar to that of the current one, as shown in Equation (2) [36]:

NLpXqpxq “
1

Cpxq

ż

e´
pGσ˚|Xpx`q´Xpy`q|

2qpoq

h2 Xpyqdpyq (2)

where X describes the original image, x is the current pixel in the image, y is the central pixel in

the similar window, C pxq “
r

e´
pGσ˚|Xpx`q´Xpz`q|

2qpoq

h2 d pzq is the normalizing factor, Gσ represents a
Gaussian kernel with standard deviation σ, and h is a decay parameter. x`, y`, and z` are the
neighborhoods or the similar windows of pixels x, y, and z, respectively.

Figure 3 describes the basic principle of the nonlocal means model. In Figure 3, the whole image
is assumed to be the searching window, which is utilized to restrict the search of similar windows in
a real application. The small window centered at pixel P is the current window, and the windows
centered at pixels q1, q2, and q3 are the similar windows to the current one. The nonlocal means
operator is used to estimate the value of P using an average of all the pixels similar to the current one,
such as the windows centered at pixels q1, q2, and q3, based on the weights of the measurement of the
similarity w(P,q1), w(P,q2), and w(P, q3).
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The nonlocal total variation (NLTV) functional is defined as a gradient-based function, which
concerns both the nonlocal structures and textures, shown as:

JNLTVpXq “
n
ř

i“1

ˆ

ř

xPΩ
|∇wXi pxq|

˙

“
n
ř

i“1

˜

ř

xPΩ

c

ř

yPΩ
pXipyq ´Xipxqq

2 wpx, yq

¸

`

y, x P Ω, Ω Ă R2, Xi : Ω Ñ R
˘

(3)

where Xi (i P [1,n]) denotes one category of the distribution matrix X, and ∇wXi is a nonlocal gradient
which is defined as the vector of all the partial differences ∇wXi(x,¨ ) at pixel x. Xi(x) and Xi(y) are the
values located at pixels x and y in the ith distribution map Xi. The weight w(x,y) is used to measure
the similarity between pixels x and y. In Equation (3), there are two notations that should be given
in detail. Firstly, the definition of the nonlocal gradient ∇wXi(x,¨ ), which is calculated as shown in
Equation (4) and, secondly, how to obtain the weight w(x,y), which is shown in Equation (5):

∇wXipx, yq “
d

ÿ

yPΩ

pXipyq ´Xipxqq
2 wpx, yq px, y P Ωq (4)

wpx, yq “
1

Zpxq
e´

||XpNxq´XpNyq||2
2,σ

h2 (5)

where Xi(Nx) and Xi(Ny) respectively denote the square neighborhood of pixels x and y with a fixed
window size on the category subpixel image Xi. The Euclidean distance between these vectors,
Xi(y) ´ Xi(x), expresses the similarity of the two pixels, x and y. In Equation (5), Z(x) is the normalizing
constant, which is defined as Equation (6):

Zpxq “
ÿ

y
e´

||XpNxq´XpNyq||2
2,σ

h2 (6)

where ||X ppNxqq´X
`

Ny
˘

||2
2,σ represents the Gaussian weighted Euclidean distance; σ is the standard

deviation of the Gaussian kernel (σ > 0); and h acts as the degree of filtering, which controls the decay
of the exponential function.

2.3. The NLTVSM Algorithm

In the previous section, we described the nonlocal total variation spatial operator in detail. Based
on the basic spatial regularization subpixel mapping model in Equation (1), together with the nonlocal
total variation model acting as the spatial regularization term, the NLTVSM algorithm can be written
as Equation (7), where JNLTV(X) denotes the nonlocal total variation defined in Equation (3):

min
X

1
2

||DX´Y||2
` λJNLTVpXq (7)
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As shown in Equation (7), the NLTVSM model has been built and the nonlocal total variation is
designed as the spatial prior regularization term. Based on the equations introduced in Section 2.2,
especially for the nonlocal total variation spatial operator, the objective function of the NLTVSM
algorithm can be formulated. In this section, the Bregmanized operator splitting (BOS) algorithm [34]
is used to optimize the NLTVSM model. The basic idea of the optimization algorithm can be stated
as follows.

Firstly, the original NLTVSM optimization problem is enforced with the Bregman iteration [43]
process as follows:

#

Xk`1 “ argmin
X

1
2 ||DX´Yk||

2
` λJNLTVpXq

Yk`1 “ Yk `Y´DXk`1
(8)

The operator splitting technique is then used to solve the unconstrained subproblem in
Equation (8) as follows: for j ě 0, Xk+1,0 = Xk, where j denotes the infinite inner iteration time:

#

Vk`1,j`1 “ Xk,j ´ δDTpDXk`1,j ´Ykq

Xk`1,j`1 “ argmin
X

´

λJNLTVpXq ` 1
2δ||X´Vk`1,j`1||

2
¯ (9)

where δ is a positive value that satisfies 0 < δ < (2/||DTD||). The minimization problem in
Equation (9) can be solved by the split Bregman method [44], with which the subproblem of X can be
split into the following:

#

`

Xk`1, dk`1˘ “ argmin
X,d

ˆ

λδ
m
ř

i“1

ˆ

ř

xPΩ

b

di pxq
2
˙

` 1
2 ||X´V||2

`
µ
2 ||d´∇wXi ´ bk||

2
˙

, di “ ∇wXi

bk`1 “ bk `∇wXk`1 ´ dk`1
(10)

where µ is the scale of the penalty term ||d-∇wXi-bk||2, and its value is usually inversely proportional
to the value of λ¨ δ. The nonlocal total variation operator, denoted as JNLTV(X) in Equation (9), is

rewritten as
m
ř

i“1

ˆ

ř

xPΩ

b

di pxq
2
˙

and d = ∇wXi. The solution of Equation (10), (Xk+1,dk+1), can be

acquired by alternating between the following two subproblems in Equation (11):
$

’

&

’

%

Xk`1 “ argmin
X

´

1
2 ||X´V||2

`
µ
2 ||dk ´∇wXi ´ bk||

2
¯

dk`1 “ argmin
d

ˆ

λδ
m
ř

i“1

ˆ

ř

xPΩ

b

di pxq
2
˙

`
µ
2 ||d´∇wXi ´ bk||

2
˙ (11)

The subproblem for Xk+1 can be solved with the Euler–Lagrange equation, as follows:

pXk`1 ´Vq ´ µdivwp∇wXk`1 ` bk ´ dkq “ 0 (12)

which provides:
Xk`1 “ p1´ ∆wq

´1
´

V` µdivw

´

bk ´ dk
¯¯

(13)

Therefore, Xk+1 can be solved by the Gauss–Seidel algorithm [44]. Meanwhile, the dk+1 in
Equation (11) can be solved using a shrinkage operator as:

dk`1
i “ shrink

ˆ

p∇wXk`1 ` bkqi,
λδ

µ

˙

(14)

The shrinkage operator is defined as follows:

shrinkpp, tq “ sign ppqmax t|p| ´ t, 0u (15)
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To decrease the influence of the spectral unmixing errors, the winner-takes-all class determination
strategy [13] is then utilized to obtain the final subpixel mapping results.

3. Experiments and Analysis

Experiments were conducted to test the performance of the proposed NLTVSM algorithm with
one simulated image, two synthetic images, and one real image. The proposed algorithm was
compared with five subpixel mapping algorithms: subpixel mapping based on a spatial attraction
mode (SASM) [21], the pixel-swapping subpixel mapping algorithm (PSSM) [22], the genetic algorithm
(GASM) [27], the geometric subpixel mapping algorithm (GSM) [26], the latest adaptive subpixel
mapping method based on a MAP model, and a winner-takes-all class determination strategy
(AMCDSM) with a total variation prior model [12] (denoted as TVSM in this paper). In addition, all the
algorithms used the same fraction images for the subpixel mapping, which were obtained by the fully
constrained least squares (FCLS) [45] method and probabilistic support vector machine (P-SVM) [46].

Since the subpixel mapping result is the same as the classification result, to evaluate the
performance of the different subpixel mapping algorithms, the producer’s accuracy (PA) (for single
classes), the overall accuracy (OA), and the Kappa coefficient were adopted, and were used to verify
the performance of the different classification algorithms with the help of ENVI software [47]. For the
simulated hyperspectral images and the synthetic images, the low-resolution hyperspectral remote
sensing images were first obtained by downsampling the original high-resolution images with a fixed
scale. A spectral unmixing technique was then utilized to obtain the unmixing results—the fractional
abundance images—as the input of the subpixel mapping. With the same fractional abundance images
as the input, the different subpixel mapping algorithms obtained different performances and obtained
different subpixel mapping results. The reference classification image used to verify the performance
of the different subpixel mapping results was obtained by classification of the original high-resolution
images by a hard classification method, such as a support vector machine (SVM) [48] or the minimum
distance hard classification algorithm [49], which were implemented in ENVI software. For the real
hyperspectral image, the low-resolution (LR) hyperspectral image was collected with a Nuance NIR
imaging spectrometer, and the high-resolution (HR) image was taken by a digital camera for the same
area at the same time. The spectral unmixing algorithm was then used with the LR images to obtain
the fraction images, and the hard classification algorithm was used to obtain the ground truth from the
HR data. More information about the experimental datasets is provided in the following section.

3.1. Experimental Design and Datasets

The first experimental dataset (simulated image) with 400 ˆ 400 pixels and 50 bands, as shown
in Figure 4a, was generated using the USGS spectral library following the methodology in [13]. This
dataset consists of four typical land-cover classes: water, tree, agricultural field, and impervious layer.
Figure 4b displays the true subpixel mapping image, acting as the reference image. In addition, a
spectral unmixing algorithm was used with the low-resolution hyperspectral images (LR), which were
acquired via a 4 ˆ 4 mean filter from the original high-resolution simulated hyperspectral image, to
obtain the fractional abundance images, as shown in Figure 4c. The subpixel scale factor (s) was set
to 4 in this dataset.

Two synthetic hyperspectral remote sensing images were also used to test the performance of the
different subpixel mapping algorithms. The first image was the Washington DC Mall Hyperspectral
Digital Imagery Collection Experiment (HYDICE) image, with 200 ˆ 300 pixels and 191 bands (as
shown in Figure 5a), which has four classes of land cover, i.e., water, grass, tree, and road. The other
image with more classes was the HYDICE Urban image with 300ˆ 300 pixels and 187 bands, as shown
in Figure 6a, which is displayed in false color. The area used in the experiment consisted of six major
classes of roof1, tree, concrete road, roof/shadow, grass, and asphalt road.
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The classification maps for the evaluation of these two synthetic datasets were obtained from
the original hyperspectral images with the SVM hard classification algorithm, and the reference
classification images for the two datasets are shown in Figures 5c and 6c. In addition, the results
of the classification with the SVM algorithm were also tested with the ROIs selected manually, as
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shown in Figures 5b and 6b, and the accuracies were 97.12% [32] and 97.03% for the OA values,
corresponding to the Washington DC Mall HYDICE image (shown in Table 1) and the HYDICE Urban
image (shown in Table 2), respectively. These accuracies were also considered to be sufficient for
the subpixel mapping experiments. To simulate the coarse-resolution hyperspectral remote sensing
images, a 4 ˆ 4 mean filter was utilized for the downsampling, and the fractional abundances were
obtained with the spectral unmixing algorithm, as shown in Figures 5d and 6d, as inputs. In these two
experiments, the subpixel mapping scale factor (s) was set to 4.

Table 1. Accuracy of the classification method for the Washington DC Mall HYDICE image.

Method Class Water Grass Tree Road

SVM

Water 3206 0 0 0
Grass 0 2685 20 116
Tree 0 162 3030 1
Road 0 0 5 1318

OA = 97.12% Kappa = 0.961

Table 2. Accuracy of the classification method for the HYDICE Urban image.

Method Class Roof1 Tree Concrete Road Roof2 Grass Asphalt Road

SVM

Roof1 787 0 0 0 0 0
Tree 0 1037 0 0 49 0

Concrete road 0 0 685 0 0 0
Roof2 0 98 0 442 0 1
Grass 0 19 0 0 1620 0

Asphalt road 0 10 6 0 0 1401
OA = 97.03% Kappa = 0.963
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Figure 7. Nuance dataset. (a) Original Nuance hyperspectral image (50 × 50); (b) fractional 
abundances (50 × 50); (c) original HR color image (150 × 150); (d) the ROIs; and (e) the reference 
classification map. 

  

withered vegetable fresh vegetable background

Figure 7. Nuance dataset. (a) Original Nuance hyperspectral image (50ˆ 50); (b) fractional abundances
(50 ˆ 50); (c) original HR color image (150 ˆ 150); (d) the ROIs; and (e) the reference classification map.

The real experimental dataset was acquired by a Nuance NIR imaging spectrometer, as
shown in Figure 7a, and consisted of 46 bands, with 50 ˆ 50 pixels. The spectral unmixing
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algorithm was applied to undertake the unmixing and obtain the fractional abundances, as shown
in Figure 7b. To assess the performance of the different subpixel mapping algorithms, the HR image
(Figure 7c)—150 ˆ 150 pixels and three bands—was also collected for the same area using a digital
camera at the same time. To verify the subpixel mapping results, the reference classification map
was then obtained by the SVM algorithm, with the ROIs selected manually, as shown in Figure 7d,e,
respectively. Furthermore, the accuracy of the SVM classification method for the Nuance image was
also determined, as shown in Table 3. The OA was 99.27%, which confirmed that the result was
suitable for testing the other subpixel mapping methods. In addition, the subpixel mapping scale
factor (s) was set to three for the Nuance dataset.

Table 3. Accuracy of the classification method for the Nuance dataset.

Method Class Withered Vegetable Fresh Vegetable Background

SVM
Withered vegetable 2012 0 0

Fresh vegetable 1 731 2
Background 0 25 1087

OA = 99.27% Kappa = 0.988

3.2. Experimental Results and Analysis

Figures 8–11 show the subpixel mapping results using SASM, PSSM, GASM, GSM, TVSM, and the
proposed NLTVSM for the simulated image, the Washington DC Mall HYDICE image, the HYDICE
Urban image, and the Nuance image, respectively. The visual comparisons in Figures 8–11 show the
varying performances of the different subpixel mapping methods.
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The subpixel mapping results for the simulated image are shown in Figure 8b–g. For convenience,
the true subpixel mapping image is also shown in Figure 8a. It can be observed that the results obtained
by SASM, PSSM, GASM, and TVSM display similar distributions to the true subpixel mapping image,
but the result of GSM exhibits a great difference, especially for the simulated impervious layer of
the linear feature in red. However, the NLTVSM algorithm performs the best in this simulated
dataset, especially in the transverse line in the top of the image, wiping off the wrong mapping at
the subpixel scale. Since the nonlocal total variation spatial operator can obtain more spatial prior
information according to the larger nonlocal searching window, the proposed NLTVSM achieves an
improved performance.

To evaluate the different performances quantitatively, Table 4 provides the quantitative assessment
results of the above subpixel mapping methods for the simulated image. It can be seen that the OA
and Kappa are the same for SASM, PSSM, and GASM. The performance of GSM is not as good,
at only 89.04% for the OA and 0.84 for Kappa. For the spatial regularization subpixel mapping
algorithms—TVSM and NLTVSM—they both obtain competitive accuracies. Owing to the nonlocal
searching strategy considering more spatial information in the nonlocal neighborhood, which can
find more similar spatial distribution patterns in a larger neighborhood, NLTVSM obtains the best
quantitative performance.

Table 4. Accuracy of the different algorithms with the simulated image.

Methods
Producer’s Accuracy (%)

OA (%) Kappa
Simulated

Water
Simulated

Tree
Agricultural

Field
Impervious

Layer

SASM 98.09 85.03 93.82 81.33 92.18 0.88
PSSM 98.09 85.03 93.82 81.33 92.18 0.88
GASM 98.09 85.03 93.82 81.33 92.18 0.88
GSM 96.75 75.29 94.90 77.10 89.04 0.84

TVSM 99.25 90.15 95.21 86.92 94.86 0.92
NLTVSM 99.28 91.11 96.01 86.21 95.10 0.93

Note: The highest accuracies in the table are marked with bold and underlined.
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For the two synthetic hyperspectral images, the clear advantage of the proposed NLTVSM
algorithm can be seen. For the results of the Washington DC Mall HYDICE image shown in Figure 9, it
can be observed that the result of NLTVSM exhibits less salt-and-pepper noise, compared with the other
methods, and the edge of the meadow and the lake line in the top-left corner show clear boundaries.

The quantitative results in Table 5 allow the same conclusion to be made. The proposed NLTVSM
algorithm obtains a higher accuracy than the traditional methods and the state-of-the-art ones. For
instance, the OA value of NLTVSM is 78.11% and the Kappa is 0.69 for the Washington DC Mall
dataset. This is an improvement of 1.15% and 0.02 in the subpixel mapping accuracy (OA and Kappa
coefficient, respectively) compared with the TVSM approach.

Table 5. Accuracy of the different algorithms with the Washington DC Mall image.

Methods
Producer’s Accuracy (%)

OA (%) Kappa
Water Grass Tree Road

SASM 93.13 77.08 66.38 38.18 70.16 0.58
PSSM 93.25 77.01 65.65 37.64 69.81 0.58
GASM 93.27 77.46 66.36 38.13 70.30 0.58
GSM 93.35 74.40 76.07 37.63 72.69 0.61

TVSM 96.49 85.39 73.93 42.94 76.96 0.67
NLTVSM 97.07 85.71 77.80 39.77 78.11 0.69

Note: The highest accuracies in the table are marked with bold and underlined.

The results for the HYDICE Urban image are presented in Figure 10b–g, and a detailed verification
of the results is provided in Table 6. Here, it can be observed that all the algorithms display different
performances. It can be seen that the flat zones, such as grass or asphalt road, consist of lots of scatter,
perhaps due to the fraction errors derived from the spectral unmixing process. Compared with the
SASM, PSSM, and GASM methods, the GSM, TVSM, and NLTVSM approaches exhibit smoother
visual results, benefiting from the consideration of the spatial information. Table 6 shows consistent
results. Compared with the SASM, PSSM, and GASM methods, GSM, TVSM, and NLTVSM possess
obvious advantages, and show an improvement of at least 4.63% in the OA and 0.05 in Kappa. The
NLTVSM algorithm obtains the best accuracy among these algorithms by a narrow margin: 70.12% for
the OA and 0.62 for Kappa, an OA improvement of 2.09% compared with TVSM. The experimental
results show that NLTVSM is better than TVSM for more complex images with more classes.

Table 6. Accuracy of the different algorithms with the HYDICE Urban image.

Methods
Producer’s Accuracy (%)

OA (%) Kappa
Roof1 Tree Concrete

Road
Roof2/

Shadow Grass Asphalt
Road

SASM 71.37 67.22 61.06 44.87 55.46 57.25 59.32 0.49
PSSM 71.14 67.01 59.71 44.63 54.93 56.69 58.82 0.48
GASM 71.28 67.75 61.38 45.02 55.56 57.02 59.50 0.49
GSM 70.06 65.74 59.96 46.38 67.45 62.82 63.40 0.54

TVSM 75.95 78.88 71.61 51.85 61.85 65.90 68.03 0.59
NLTVSM 79.48 78.21 61.63 49.45 70.26 71.40 70.12 0.62

Note: The highest accuracies in the table are marked with bold and underlined.

In the real hyperspectral data experiment, the eight algorithms all obtain similar results for the
withered vegetable class, as shown in Figure 11. The subpixel mapping results of the SASM, PSSM,
and GASM algorithms with fraction constraints are poor, with significant salt-and-pepper noise. The
other three subpixel mapping algorithms—GSM, TVSM, and the proposed NLTVSM—obtain better
results with smoother and more continuous land-cover distributions. These algorithms relax the
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constraint of the fraction values, and can decrease the errors in the spectral unmixing. For the fresh
vegetable and the background classes in particular, the subpixel mapping result of the NLTVSM
method is better than the traditional algorithms. Comparing the proposed NLTVSM with the GSM
and TVSM algorithms, although they all consider the spatial information as prior knowledge in the
process of subpixel mapping, NLTVSM obtains a better result by utilizing the nonlocal total variation
regularization operator, which can take advantage of the high degree of redundancy in the nonlocal
spatial information of the image to predict more fine structure and details, and can suppress most of
the salt-and-pepper noise, e.g., for the withered vegetable class.

The quantitative comparison using the OA and Kappa provided in Table 7 also allows the same
observation to be made. As shown in Table 7, GSM, TVSM, and the proposed NLTVSM show a
great improvement in subpixel mapping accuracy over the traditional subpixel mapping approaches.
Compared with GSM and TVSM, NLTVSM obtains the highest subpixel mapping accuracies in Table 7.
The OA and Kappa of NLTVSM are equal to 76.60% and 0.64%, respectively, for the real Nuance image.
The main reason for the higher accuracy of the NLTVSM algorithm is as follows. TVSM only accounts
for the spatial homogeneity of the first-order pixel neighborhood system. However, NLTVSM tries
to make full use of the potential nonlocal spatial information by utilizing all possible self-similarities
existing in the image. Based on the above analysis, the NLTVSM algorithm provides an effective option
to perform the task of subpixel mapping for hyperspectral remote sensing imagery.

Table 7. Accuracy of the different algorithms with the Nuance dataset.

Methods
Producer’s Accuracy (%)

OA (%) Kappa
Withered Vegetable Fresh Vegetable Background

SASM 89.80 66.80 59.03 71.60 0.57
PSSM 89.31 65.66 57.22 70.48 0.55
GASM 89.74 67.11 59.05 71.73 0.57
GSM 87.54 70.72 62.26 73.34 0.59

TVSM 89.59 71.44 69.37 76.32 0.64
NLTVSM 89.56 71.96 69.62 76.60 0.64

Note: The highest accuracies in the table are marked with bold and underlined.

3.3. Sensitivity Analysis

(1) Discussion on sensitivity analysis for the spatial regularization parameter

In the optimization problem of the NLTVSM algorithm, there is an important parameter, λ—the
spatial regularization parameter—which controls the balance of the data fidelity and regularization
terms, and significantly influences the final subpixel mapping results. Figure 12 analyzes the effect of
this parameter for the Washington DC Mall and Nuance images.
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Figure 12. Sensitivity analysis for the spatial regularization parameter λ. (a) Washington DC Mall
image; and (b) real Nuance image.
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As shown in Figure 12, it can be seen that the best subpixel mapping result is acquired when
the value of λ is equal to 0.05 and 0.5 for the two images, respectively. To achieve a good result
and effectively exploit the useful nonlocal spatial information, appropriate regularization parameters
should be found according to the different images or land-cover classes.

(2) The effect of different spectral unmixing approaches on NLTVSM

In this paper, the fractional abundances, derived from the spectral unmixing, act as the input
of the subpixel mapping. Since uncertainty exists for the different spectral unmixing methods, and
different unmixing results lead to different subpixel mapping outputs, the sensitivity of the different
spectral unmixing approaches is discussed in this part. As an example, the Washington DC Mall image
is used for analyzing the sensitivity of the unmixing results for the subpixel mapping, and the spectral
unmixing algorithms adopted for comparison are FCLS, FCLS, and P-SVM, and a sparse regression
method, sparse unmixing via variable splitting, and augmented Lagrangian (SUnSAL) [50]. Figure 13
shows the final subpixel mapping results.
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Figure 13. The NLTVSM results based on different fractional abundance images. (a) Reference
classification image; (b) SUnSAL (OA = 73.63%, Kappa = 0.62); (c) FCLS (OA = 73.77%, Kappa = 0.63);
and (d) FCLS and P-SVM (OA = 78.11%, Kappa = 0.69).

It can be seen that different spectral unmixing results lead to different subpixel mapping outputs.
FCLS, which is one of the classical linear spectral unmixing approaches, and is widely used for its
robustness and tractability, leads to a satisfactory subpixel mapping result. For the sparse unmixing
method, SUnSAL obtains a similar subpixel mapping result, although the spectral unmixing result
evaluated by the signal-to-reconstruction error (SRE) value [50] of SUnSAL with 5.15 dB is a little
higher than FCLS with 4.96 dB. The possible reason for this is the spatial consideration in the nonlocal
total variation subpixel mapping method, which results in the unmixing difference being reduced.
The spectral unmixing methods adopted in this paper, FCLS and P-SVM, obtain the best subpixel
mapping results.

(3) Discussion on the effect of adding a shade endmember

In this paper, most of the final subpixel mapping results consist of a set of typical materials. For
example, water, grass, tree, road, roof, etc. Shade is usually not considered as a typical endmember
or land-cover component [51,52], but is treated as a variant of the brightness of other endmembers.
However, it is interesting to discuss the effect of adding a shade endmember in the experiments,
especially as water and shade have similar spectra. In this part, we discuss the effect of adding a shade
endmember to the Washington DC Mall image. The comparison results are shown in Figure 14.
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Figure 14. The subpixel mapping results for the Washington DC Mall HYDICE image with a shade
endmember in the fraction image. (a) Reference classification image; (b) SASM; (c) PSSM; (d) GASM;
(e) GSM; (f) TVSM; and (g) NLTVSM.

From Figure 14, it can be seen that adding the shade endmember has removed most of the
misclassification between water/shade and water/tree. As shown in Table 8, TVSM and NLTVSM
with the shade endmember acquire relatively satisfactory results since the spatial consideration can
make full use of the prior knowledge in the image itself. Furthermore, NLTVSM shows a slight
improvement over TVSM. It can be observed that both the OA and Kappa in Table 8 are lower than
the corresponding result with the same method without the shade endmember (as shown in Table 5).
The possible reason for this is that the difficulty of the spectral unmixing is increased when the shade
endmember is added, as the shade is similar to the water component, and some trees are in the shade
of other trees. It should be stressed that distinguishing shade from the other land-cover endmembers,
such as water and trees, in this Washington DC Mall image, is a very challenging task.

Table 8. Accuracy of the different algorithms with a shade endmember for the Washington DC
Mall image.

Method SASM PSSM GASM GSM TVSM NLTVSM

OA(%) 63.57 63.33 63.85 60.94 72.16 72.19
Kappa 0.50 0.50 0.51 0.47 0.61 0.61
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3.4. Running Times of the Different Models for Different Images

The running times of the different models for the two synthetic images were tested on a PC with an
Intel Core i3-2100 CPU @ 3.1 GHz and 8 GB RAM, using MATLAB R2011b. Since the different strategies
used in the algorithms may lead to different running times, especially on the MATLAB platform, we
just compared the algorithms proposed by our research group, i.e., TVSM and the proposed NLTVSM.
All of the parameters and the iteration times were set to obtain the optimal results. The running times
of the different models are listed in Table 9.

Table 9. Running times of the different models for the different images.

Number of
Pixels

Number of
Classes

Scale
Factor TVSM NLTVSM

Washington DC 50 ˆ 75 4 4 65.30 s 61.95 s
HYDICE Urban 75 ˆ 75 6 4 193.63 s 110.04 s

It can be observed from Table 9 that the running time of the proposed method, NLTVSM, is a
little less than the other algorithm, TVSM, owing to the fact that the core process of NLTVSM is coded
in Visual C++ 6.0. Furthermore, the use of fast Fourier transform (FFT) enhances the computational
efficiency of TVSM, and it also greatly improves the efficiency of TVSM.

4. Conclusions

In this paper, the nonlocal total variation subpixel mapping algorithm, namely NLTVSM, has been
proposed for hyperspectral remote sensing imagery. In NLTVSM, a nonlocal total variation model
is designed as the spatial regularization term to utilize the nonlocal spatial information. Differing
from the previous spatial regularization subpixel mapping algorithm based on total variation (TVSM),
NLTVSM extracts the nonlocal spatial information by the use of a variational framework based nonlocal
operator averaging the set of subpixels in a certain size of sliding window in the image. This combines
the nonlocal spatial information of the whole image and the total variation framework, and utilizes
all possible self-predictions in the subpixel mapping images to take advantage of the high degree of
redundancy of the image. Experimental results using a simulated image, two synthetic hyperspectral
remote sensing images, and a real hyperspectral image demonstrate that the proposed NLTVSM
performs better than the traditional subpixel mapping algorithms and the latest TVSM algorithm.
NLTVSM can obtain a higher subpixel mapping precision, a more accurate distribution map with less
salt-and-pepper effect at the subpixel scale, and is also efficient. Hence, it provides a new option to
perform the task of subpixel mapping for hyperspectral remote sensing imagery. In our future work,
an adaptive parameter selection method will be studied.
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