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Abstract: Remote sensing systems based on consumer-grade cameras have been increasingly used in
scientific research and remote sensing applications because of their low cost and ease of use. However,
the performance of consumer-grade cameras for practical applications has not been well documented
in related studies. The objective of this research was to apply three commonly-used classification
methods (unsupervised, supervised, and object-based) to three-band imagery with RGB (red, green,
and blue bands) and four-band imagery with RGB and near-infrared (NIR) bands to evaluate the
performance of a dual-camera imaging system for crop identification. Airborne images were acquired
from a cropping area in Texas and mosaicked and georeferenced. The mosaicked imagery was
classified using the three classification methods to assess the usefulness of NIR imagery for crop
identification and to evaluate performance differences between the object-based and pixel-based
methods. Image classification and accuracy assessment showed that the additional NIR band imagery
improved crop classification accuracy over the RGB imagery and that the object-based method
achieved better results with additional non-spectral image features. The results from this study
indicate that the airborne imaging system based on two consumer-grade cameras used in this study
can be useful for crop identification and other agricultural applications.

Keywords: consumer-grade camera; crop identification; RGB; near-infrared; pixel-based
classification; object-based classification

1. Introduction

Remote sensing has played a key role in precision agriculture and other agricultural
applications [1]. It provides a very efficient and convenient way to capture and analyze agricultural
information. As early as 1972, the Multispectral Scanner System (MSS) sensors were used for accurate
identification of agricultural crops [2]. Since then, numerous commercial satellite and custom-built
airborne imaging systems have been developed for remote sensing applications with agriculture being
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one of the major application fields. Remote sensing is very mysterious for most people who usually
perceive it as complex designs and sophisticated sensors on satellites and other platforms. This is
true for quite a long time, especially for the scientific-grade remote sensing systems on satellites and
manned aircraft. However, with the advances of electronic imaging technology, remote sensing sensors
have significant breakthroughs, including digitalization, miniaturization, ease of use, high resolution,
and affordability. Recently, more and more imaging systems based on consumer-grade cameras have
been designed as remote sensing platforms [3–6].

As early as in the 2000s, consumer-grade cameras with 35 mm film were mounted on a unmanned
aerial vehicle (UAV) platform to acquire imagery in a small area for range and resource managers [7].
Remote sensing systems with consumer-grade cameras have such advantages over scientific-grade
platforms as low cost with high spatial resolution [8,9] and easy deployment [7]. There are two
main types of consumer-grade cameras: non-modified and modified. The non-modified cameras
capturing visual light with R, G, and B channels have been commonly used since the early periods of
consumer-grade cameras for remote sensing [7,10,11]. Additionally, this type of cameras have been
commonly used for aerial photogrammetric surveys [12]. However, most scientific-grade remote
sensing sensors include near-infrared (NIR) detection capabilities due to its sensitivity for plants, water
and other cover types [13]. Therefore, using modified cameras to capture NIR light with different
modifying methods is becoming popular.

Modified NIR cameras are generally obtained by replacing the NIR-blocking filter in front of
the complementary metal-oxide-semiconductor (CMOS) or the charge-coupled device (CCD) with a
long-pass NIR filter. A dual-camera imaging system is a common choice with one camera for normal
color imaging and the other for NIR imaging [14,15]. With a dual-camera configuration, four-band
imagery with RGB and NIR sensitivities can be captured simultaneously. Some consumer-grade
cameras have been modified to capture this imagery by this method [10]. The other method is to
remove the internal NIR-blocking filter and replace it with a blue-blocking [16] or a red-blocking
filter [17]. This method can capture three-band imagery, including the NIR band and two visible bands,
with just one single camera.

Both methods can be implemented, but both still have some issues [16]. The separate RGB and
NIR images from dual cameras need to be registered for dual cameras. The NIR light may influence
the other two bands for the single camera when capturing the NIR band. In other words, extensive
post-processing is required to get the desired imagery. Therefore, it is necessary to decide if a simple
unmodified RGB camera or a relatively complex dual-camera system with the NIR band should be
selected. Many remote sensing imaging systems based on unmodified single cameras have been used
for some agricultural applications to achieve satisfying results [9,14,18]. Consumer-grade cameras
cannot capture very detail spectral information, but most of them can obtain very high or ultra-high
ground resolution because these cameras can be carried on such low-flying platforms as UAV, airplanes
and balloons. Moreover, with the rapid advancement of object-based image analysis (OBIA) methods,
imagery with abundant shape, texture and context information could usually improve classification
performance for practical applications [19,20]. Therefore, to choose pixel-based or object-based image
processing methods is another question that needs to be considered.

Despite some shortcomings, consumer-grade cameras with the attributes of low cost and easy
deployment have been gradually used in different application fields in the last decade, in particular
for agricultural applications, such as crop identification [10], monitoring [11,14,21], mapping [9], pest
detection [18], species invasion [17] and crop phenotyping [6,22]. It is becoming a reality for farmers to
use these consumer-grade cameras for crop production and protection. Therefore, it is important to
evaluate and compare the performances of normal RGB cameras and modified NIR cameras using
different image processing methods.

Scientists at the Aerial Application Technology Research Unit at the U.S. Department of
Agriculture-Agricultural Research Service’s Southern Plains Agricultural Research Center in College
Station, Texas has assembled a dual-camera imaging system with both visible and NIR sensitivities
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using two consumer-grade cameras. The overall goal of the study was to evaluate the performance
of RGB imagery alone and RGB combined with NIR imagery for crop identification. The specific
objectives were to: (1) compare the differences between the three-band imagery and four-band imagery
for crop identification; (2) assess the performance on image classification between the object-based and
pixel-based analysis methods; and (3) make recommendations for the selection of imaging systems
and imagery processing methods for practical applications.

2. Materials and Methods

2.1. Study Area

This study was conducted at the Brazos River Valley near College Station, Texas, in July 2015
within a cropping area of 21.5 km2 (Figure 1). This area is located at the lower part of the Brazos River
(the “Brazos Bottom”) with humid subtropical climate.
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period of crop discrimination, based on the crop calendars for this study area. However, this type of 
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Figure 1. The study area: (a) Geographic map of the study area, which is located in the bottom of
Brazos basin and near College Station, Texas; and (b) image map of the study area from Google Earth.

In this area, the main crops were cotton, corn, sorghum, soybean and watermelon in the 2015
growing season. Cotton was the main crop with the largest cultivated area, and it had very diverse
growing conditions due to different planting dates and management conditions. Most cornfields
were near physiological maturity with very few green leaves, and most of sorghum fields were in the
generative phase reflected by beginning senescence at the imaging time. Especially corn was drying in
fields for harvest. Soybean and watermelon were at the vegetative growth stages. Due to cloudy and
rainy weather in much of May and June, aerial imagery was not acquired during the optimum period
of crop discrimination, based on the crop calendars for this study area. However, this type of weather
conditions is probably a common dilemma for agricultural remote sensing.

2.2. Imaging System and Airborne Image Acquisition

2.2.1. Imaging System and Platform

The dual-camera imaging system used in this study consisted primarily of two Nikon D90
digital CMOS cameras with Nikon AF Nikkor 24mm f/2.8D lenses (Nikon, Inc., Melville, NY, USA).
One camera was used to capture three-band RGB images. The other camera was modified to capture
NIR images after the infrared-blocking filter installed in front of the CMOS of the camera was replaced
by a 720 nm long-pass filter (Life Pixel Infrared, Mukilteo, WA, USA). The other components of the
system included two GPS receivers, a video monitor and a wireless remote trigger as shown in Figure 2.
The detailed description of this system can be found in a single-camera imaging system described by
Yang et al. [18]. The difference between the two imaging systems was that the single-camera system
contained only one Nikon D90 camera for taking RGB images, while the dual-camera system had a the
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RGB camera and a modified camera for NIR imaging necessary for this study. This dual-camera imaging
system was attached via a camera mount box on to an Air Tractor AT-402B as shown in Figure 2.Remote Sens. 2016, 8, 257 4 of 24 
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cameras in the box. 
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Figure 2. Imaging system and platform: (a) Components of the imaging system (two Nikon D90
cameras with Nikkor 24 mm lenses, two Nikon GP-1A GPS receiver, a 7-inch portable LCD video
monitor, a wireless remote shutter release); (b) cameras mounted on the right step of an Air Tractor
AT-402B; (c) close-up picture showing the custom-made camera box; and (d) close-up picture of the
cameras in the box.

2.2.2. Spectral Characteristics of the Cameras

The spectral sensitivity of the two cameras was measured in the laboratory through a
monochromator (Optical Building Blocks, Inc., Edison, NJ, USA) and a calibrated photodiode. The two
cameras were spectrally calibrated with the lenses by taking photographs of monochromatic light from
the monochromator projected onto a white panel. A calibrated photodiode was positioned at the same
distance of the camera to measure the light intensity. The relative spectral response of one channel
could be calculated for a given wavelength λ and a given channel (RGB) as shown in Equation (1) [23].

R pλ, nq “
C pλ, nq ´ Cdark

I pλq
, n “ r, g, b; λ “ 400´ 1000 nm (1)

where R pλ, nq is the spectral response of channel n “ r, g, b at λ wavelength. I pλq is the light intensity
measured with the photodiode at λ wavelength. C(λ, n) is the digital count corresponding to channel
n “ r, g, b at λ wavelength. Cdark is the mean digital count of the dark background of channel n “ r, g, b
at λ wavelength. Wavelength ranged from 400 to 1000 nm, and the measurement wavelength interval
was 20 nm. The average digital count for each channel was determined for the center of the projected
light beam using image-processing software (MATLAB R2015a, MathWorks, Inc., Natick, MA, USA).
In addition, the images were recorded by the raw camera format.

From the normalized spectral sensitivity of the two cameras (Figure 3), the sensitivity varied
from 400 to 700 nm for the non-modified camera and from 680 to 1000 nm for the modified camera.
With the 720 nm long-pass filter, the spectral response rose from 0 at 680 nm to maximum at 720 nm.
It can be seen that the spectral sensitivity curves have some overlaps among the channels of each
camera. This is very common in consumer-grade cameras, and is also one of the reasons that this type
of cameras had not been commonly used for most scientific applications in the past. For the modified
camera, the red channel had a much stronger response than the other two channels (blue and green)
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and the monochrome imaging mode in the NIR range. Thus, the red channel was chosen as the NIR
image for remote sensing applications.
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Figure 3. Normalized spectral sensitivity of two Nikon D90 cameras and relative reflectance of 10 land
use and land cover (LULC) classes. The dotted lines represent different channels of the RGB camera
(Nikon-color-r, Nikon-color-g, and Nikon-color-b) and the modified NIR camera (Nikon-nir-r, Nikon-nir-g,
Nikon-nir-b, and Nikon-nir-mono). The solid lines represent the relative reflectance of 10 LULC classes.

2.3. Image Acquisition and Pre-Processing

2.3.1. Airborne Image Acquisition

Airborne images were taken from the study area at altitudes of 1524 m (5000 ft.) above ground
level (AGL) with a ground speed of 225 km/h (140 mph) on 15 July 2015 under sunny conditions.
The spatial resolution was 0.35 m at this height. In order to achieve at least 50% overlaps along and
between the flight lines, images were acquired at 5-s intervals. Both cameras simultaneously and
independently captured 144 images each over the study. Moreover, each image was recorded in both
12-bit RAW format for processing and JPG format for viewing and checking.

2.3.2. Image Pre-Processing

Vignetting and geometric distortion problems are the inherent issues of most cameras which
usually cause some inaccuracy in image analysis results, especially for modified cameras [21,24].
Therefore, the free Capture NX-D 1.2.1 software (Nikon, Inc., Tokyo, Japan) provided with the camera
manufacturer was used to correct the vignetting and geometric distortion in the images. The corrected
images were saved in 16-bit TIFF format to preserve image quality.

There were 144 images to be mosaicked for each camera. The Pix4D Mapper software (Pix4D, Inc.,
Lausanne, Switzerland) was selected, which is a software package for automatic image mosaicking
with high accuracy [25]. To improve the positional accuracy of the mosaicked image, some white
plastic square panels with a side of 1 m were placed across the study area. A Trimble GPS Pathfinder
ProXRT receiver (Trimble Navigation Limited, Sunnyvale, CA, USA), which provided a 0.2-m average
horizontal position accuracy with the real-time OmniSTAR satellite correction, was used to collect
the coordinates from these panels. Fifteen ground control points (GCP) as shown in Figure 1 were
used for geo-referencing. As shown in Figure 4, the spatial resolutions were 0.399 and 0.394 m for the
mosaicked RGB and NIR images. The absolute horizontal position accuracy was 0.470 and 0.701 m for
the respective mosaicked images. These positional errors were well within 1 to 3 times of the ground
sampling distance (GSD) or spatial resolution [26].
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four-band image, band 1 = blue, band 2 = green, band 3 = red and band 4 = NIR.
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To generate a mosaicked four-band image, the mosaicked RGB and NIR images were registered
to each other using the AutoSync module in ERDAS Imagine (Intergraph Corporation, Madison,
AL, USA). The RGB image was chosen as the reference image as it had better image quality than
the NIR image. Several tie control points were chosen manually before the automatic registration.
Thousands of tie points were generated by AutoSync and a third-order polynomial geometric model as
recommended with the number of tie points was used [27]. The root mean square (RMS) error for the
registration was 0.49 pixels or 0.2 m. The combined image was resampled to 0.4-m spatial resolution.
The color-infrared (CIR) composite of the four-band image is shown in Figure 4.

2.4. Crop Identification

Selection of different band combinations and classification methods generally influence
classification results. To quantify and analyze these effects on crop identification results, three typical
and general image classification methods (unsupervised, supervised and object-based) were selected.
Meanwhile, to examine how numbers of LULC classes affect the classification results, six different
class groupings were defined as shown in Table 1. It should be noted that the three-band or four-band
image was first classified into 10 classes and then the classification results were regrouped into six,
five, four, three and two classes. For the ten-class grouping, the impervious class mainly included solid
roads and buildings. Bare soil and fallow were grouped in one class and the water class included river,
ponds, and pools. Considering soybeans and watermelon accounted for only a small portion of the
study area, they were treated as non-crop vegetation with grass and forest in the five-class grouping
and as non-crop in the four- and three-class groupings.

Table 1. Definition of six different class groupings for image classification.

1 
 

Table 1. Definition of six different class groupings for image classification. 

Ten-Class Six-Class Five-Class Four-Class Three-class Two-Class
impervious 

non-crop 

non-crop  
(non-vegetation) 

non-crop  
(with soybean and 

watermelon) 

non-crop  
(with soybean 

and watermelon) 

non-crop 
bare soil and fallow 

water 
grass 

non-crop  
(vegetation) 

forest 
soybean soybean 

crop 
watermelon watermelon 

corn corn corn corn 
grain 

sorghum sorghum sorghum sorghum 
cotton cotton cotton cotton cotton 

 
2.4.1. Pixel-Based Classification

The unsupervised Iterative Self-Organizing Data (ISODATA) and the supervised maximum
likelihood classification were chosen as pixel-based methods in this study. Given the diversity and
complexity of the land cover in the study area, the number of clusters was set to ten times of the
number of land cover classes. The number of maximum interactions was set to 20 and the convergence
threshold to 0.95. Then all of the clusters were assigned to the 10 land cover classes. For the supervised
maximum likelihood classification, each class was further divided into 3 to 10 subclasses due to the
variability within each of the land cover classes. After supervised classification, these subclasses were
merged. For each subclass, 5 to 15 training samples were selected and the total number of training
samples was almost equal to the number of clusters in ISODATA. The same training samples were
used for supervised classification for both the three-band and four-band images.

2.4.2. Object-Based Classification

OBIA has been recognized to have outstanding classification performance for high-resolution
imagery. Segmentation and definition of classification rules are the main steps of object-based



Remote Sens. 2016, 8, 257 8 of 23

classification. In order to show a transparent process and obtain an objective result, the estimation
of scale parameter (ESP) tool was used for chosing segmentation parameters [28] and the classifier
known as classification and regression tree (CART) was used for generating classification rules.

Segmentation for object-based classification was performed using the commercial software
eCognition Developer (Trimble Inc., Munich, Germany). The segmentation processing that integrates
spectral, shape and compactness factors is very important for the subsequent classification [29], but
standardized or widely accepted methods are lacking to determine the optimal scale for different
types of imagery or applications [30]. To minimize the influence of contrived factors in this step, some
reference segmentation scales can be estimated by the estimation of scale parameter (ESP) tool [28],
which evaluates variation in heterogeneity of image objects that are iteratively generated at multiple
scale levels to obtain the most appropriate scales. For this study, a scale step of 50 was set to find some
optimal segmentation scales from 0 to 10,000 with the ESP tool, and three segmentation parameters
(SP) (1900, 4550 and 9200) had been estimated. To simplify the processing, the SP 4550 was used for
image segmentation, which is suitable for most of land cover classes without over-segmentation or
under-segmentation. To further improve the segmentation results, spectral difference segmentation
with a scale of 1000 was performed to merge neighboring objects with similar spectral values. The
three-band and four-band image segmentation produced 970 and 950 image objects, respectively, as
shown in Figure 5.
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Figure 5. Image segmentation results: (a) three-band image segmentation with 970 image objects; and
(b) four-band image segmentation with 950 image objects.

The classification pattern of object-based classification like eCongnition is mainly based on a
series of rules from several features. User knowledge and past experience could be transferred to
some constraint rules for classification [31]. However, it is very unreliable and highly individualized.
Therefore, the CART algorithm was used for the training of object-based classification rules [32].
Because it is a non-parametric rule-based classifier and has a “white box” workflow [30], the structure
and terminal nodes of a decision tree is easy to interpret, allowing the user to know the mechanism of
the object-based classification method and evaluate it.

The CART classifier included in eCongnition could create the decision-tree model based on some
features from training samples. In order to minimize the impact by the selection of different sample
sets, the sample sets used in the supervised classification was also used. The difference was that the
samples were turned into image objects. Then these image objects containing the class information
were used as the training samples for the object-based classification. There were three main feature
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types used for modeling: layer spectral features including some vegetation indices (VIs), shape features,
and texture features (Table 2) [33–45].

Table 2. List of object features for decision tree modeling.

Source Feature Types Feature Name For
Three-Band

For
Four-Band

References VI

(1) 1 Normalized Difference Vegetation index (NDVI) = (NIR ´ R)/(NIR + R) [33] ˆ
‘

(2) Ratio Vegetation index (RVI) = NIR/R [34] ˆ
‘

(3) Difference Vegetation index (DVI) = NIR ´ R [35] ˆ
‘

(4) Renormalized Difference Vegetation Index(RDVI) =
?

NDVIˆDVI [36] ˆ
‘

(5) NDWI = (G ´ NIR)/(G + NIR) [37] ˆ
‘

(6) Optimization of Soil-adjusted Vegetation Index (OSAVI) =
pNIR´Rq { pNIR`R` 0.16q [38] ˆ

‘

(7) Soil Adjusted Vegetation Index (SAVI) = 1.5ˆ pNIR´Rq { pNIR`R` 0.5q [39] ˆ
‘

(8) Soil Brightness Index (SBI) =
c

´

NIR2 `R2
¯

[40] ˆ
‘

(9) B* = B/(B + G + R), (10) G* = G/(B + G + R), (11) R* = R/(B + G + R)
(12) Excess Green (ExG) = 2G* ´ R* ´ B* [41], (13) Excess Red (ExR) = 1.4R* ´ G* [42],
(14) ExG ´ ExR [43]

‘ ‘

(15) CIVE = 0.441R ´ 0.811G + 0.385B + 18.78745 [44]
‘ ‘

(16) Normalized Difference index (NDI) = (G ´ R)/(G + R) [45]
‘ ‘

eCognition

Layer

Mean of (17) B,(18) G,(19) R and (20) Brightness
‘ ‘

Mean of (21) NIR
‘ ‘

Standard deviation of (22) B,(23) G,(24) R
‘ ‘

(25) Standard deviation of NIR
‘ ‘

HIS((26) Hue, (27) Saturation, (28) Intensity)
‘ ‘

Geometry (29) Area, (30) Border length
‘ ‘

(31) Asymmetry, (32) Compactness, (33) Density, (34) Shape index
‘ ‘

Texture GLMC ((35) Homogeneity, (36) Contract, (37) Dissimilarity, (38) Entropy,
(39) Ang.2nd moment, (40) Mean, (41) StdDev, (42) Correlation)

‘ ‘

Total Number of Features 32 42

1 (n) is the number for each feature, ranging from (1) to (42).

2.5. Accuracy Assessment

For accuracy assessment, 200 random points were generated and assigned to each class in a
stratified random pattern based on each classification map. At least 10 points were generated for each
class. For this study, three classification methods were applied to two types of images, so there were six
classification maps. A total of 1200 points were used for accuracy assessment of the six classification
maps [30]. The number of points and percentages by class type are given in Table 3. Ground verification
of all the points for the LULC classes was performed shortly after image acquisition for this study
area. If one or more points fell within a field, the field was checked. Overall accuracy [46], confusion
matrix [47], and kappa coefficient [48] were calculated. In order to evaluate the performance of the
image types and methods, average kappa coefficients were calculated by class and by method.

Table 3. Count and percentage by class type for 1200 reference points.

Class Type Count Percentage Class Type Count Percentage

Impervious 55 4.6% Soybean 29 2.4%
Bare Soil and Fallow 186 15.6% Watermelon 49 4.1%

Grass 162 13.5% Corn 100 8.3%
Forest 106 8.8% Sorghum 115 9.6%
Water 69 5.8% Cotton 329 27.3%

3. Results

3.1. Classification Results

Figure 6 shows the ten-class classification maps based on the three methods applied to the
three-band and four-band images, including unsupervised classification for the three-band image
(3US), unsupervised classification for the four-band image (4US), supervised classification for the
three-band image (3S), supervised classification for the four-band image (4S), object-based classification
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for the three-band image (3OB), and object-based classification for the four-band image (4OB).
To compare the actual differences between the pixel-based and object-based methods directly [29], no
such post-processing operations as clump, sieve, and eliminate were perfomed for the pixel-based
classification maps and no generalization was applied to the object-based classification maps either.Remote Sens. 2016, 8, 257 11 of 24 
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(3US); (b) unsupervised classification for four-band image (4US), (c) supervised classification for three-
band image (3S); (d) supervised classification for four-band image (4S); (e) object-based classification for 
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Figure 6. Image classification results (ten-class): (a) unsupervised classification for three-band
image (3US); (b) unsupervised classification for four-band image (4US), (c) supervised classification
for three-band image (3S); (d) supervised classification for four-band image (4S); (e) object-based
classification for three-band image (3OB); and (f) object-based classification for three-band image (4OB).
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Most of the classification maps appear to distinguish different land cover types reasonably
well. From a visual perspective, the “salt-and-pepper” effect on the pixel-based maps is the obvious
difference with the object-based maps. The object-based maps present a very good visual effect as
different cover types are shown by the homogenous image objects. Without considering the accuracy of
the maps, the object-based classification maps look cleaner and more appropriate to produce thematic
maps. Visually, it is difficult to evaluate the differences between the unsupervised and supervised
methods or between the three-band and four-band images.

Specifically, the classification results of water and impervious had high consistence. Because
of the lack of NIR band, some water areas in the three-band image was classified as bare soil and
fallow for all the methods. Sorghum and corn were difficult to distinguish because both crops were
at their late growth stages with reduced green leaf area. Corn was close to physiological maturity
and above ground biomass was fully senescent, whereas sorghum was in the generative phase and
started senescence, but still had significant green leaf material. Although late growth stages casued a
reduction in canopy NDVI values for both corn and sorghum, the background weeds and soil exposure
also affected the overall NDVI values. All crops and cover types show varying degrees of confusion
among themselves. This problem also occurred in the object-based maps, but it does not appear to be
as obvious as in the pixel-based maps.

3.2. Accuracy Assessment

Table 4 summarizes the accuracy assessment results for the ten-class and two-class classification
maps for the three methods applied to the two images. The accuracy assessment results for the other
groupings are discussed and compared with the ten-class and two-class results in Section 4.3. Overall
accuracy for the ten-class classification maps ranged from 58% for 3US to 78% for 4OB and overall
kappa from 0.51 for 3US to 0.74 for 4OB. As expected, the overall accuracy and kappa were higher for
the four-band image than for the three-band image for all the three methods. Among the three methods,
the object-based method performed better than the two pixel-based methods, and the supervised
method was slightly better than the unsupervised method.

For the individual classes, the non-plant classes such as water, impervious, and bare soil and
fallow had better and stable accuracy results for all the six scenarios with an average kappa of 0.85, 0.82
and 0.74, respectively. Due to variable growing stages and management conditions, the main crop class
cotton had a relatively low accuracy with an average kappa of 0.47 for all the scenarios. Although at
later growing stages, sorghum and corn had a relatively good accuracy with an average kappa of 0.67
and 0.62, respectively. The main reason was that both crops were at senescence and had less green leaf
material, so they could easily be distinguished with other vegetation. Soybean and watermelon had
unstable accuracy results among the six scenarios, but their differentiation was significantly improved
with the object-based method. The grass and forest in the study area were difficult to distinguish using
the pixel-based methods, but they were more accurately separated with the object-based method.

For the two broad classes (crop and non-crop), overall accuracy ranged from 76% for 3US to 91%
for 4OB and overall kappa from 0.51 for 3US to 0.82 for 4OB. Clearly, overall accuracy and kappa were
generally higher for the two-class maps than for the ten-class maps. The two-class classification maps
will be useful for some appliccations when total cropping area information is needed.
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Table 4. (a–f) Accuracy assessment results.

(a) Unsupervised Classification for Three-Band Image (3US)

Ten-class 2 Two-class

CD 4
RD 3 Pa 5 Ua 6

Kp 7
Pa Ua Kp

IM BF GA FE WA SB WM CO SG CT % % % %

Non-crop

IM 44 1 11 0 0 0 0 0 0 0 0 80 80 0.79
BF 9 143 12 1 3 0 5 13 7 49 77 59 0.71
GA 0 2 71 7 1 0 9 0 9 17 44 61 0.38 75 75 0.51
FE 0 0 1 57 1 24 0 0 0 13 54 59 0.50

WA 0 9 0 0 61 0 1 0 0 1 88 85 0.88

crop

SB 0 0 0 0 0 0 0 0 0 0 0 NaN 0.0
WM 0 0 14 9 0 0 9 0 0 0 18 28 0.16
CO 0 16 7 0 2 1 6 72 15 29 72 49 0.68 76 77 0.51
SG 0 2 35 4 0 2 17 13 79 62 69 37 0.62
CT 2 3 22 28 1 2 2 2 5 158 48 70 0.36

Overall kappa=0.51 Overall kappa=0.51
Overall accuracy=58% Overall accuracy=76%

(b) Supervised Classification for Three-Band Image (3S)

Ten-class Two-class

CD
RD Pa Ua

Kp
Pa Ua Kp

IM BF GA FE WA SB WM CO SG CT % % % %

Non-crop

IM 37 3 0 0 0 0 0 0 0 0 67 93 0.66
BF 12 152 7 1 6 1 2 8 5 32 82 67 0.77
GA 4 4 83 20 0 0 19 4 12 14 51 52 0.44 77 80 0.58
FE 1 0 5 51 1 0 0 0 0 11 48 74 0.45

WA 0 4 0 0 56 0 1 0 1 0 81 90 0.80
SB 0 0 0 1 0 19 0 0 0 3 66 83 0.65

WM 0 3 10 3 0 0 9 1 2 2 18 30 0.16
crop CO 0 9 10 0 4 0 6 63 13 35 63 45 0.58 82 80 0.62

SG 1 8 19 0 0 1 9 12 69 48 60 41 0.54
CT 0 3 28 30 2 8 3 12 13 184 56 65 0.42

Overall kappa=0.53 Overall kappa=0.60
Overall accuracy=60% Overall accuracy=80%
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Table 4. Cont.

(c) Object-Based Classification For Three-Band Image (3OB)

Ten-class Two-class

CD
RD Pa Ua Kp Pa Ua Kp

IM BF GA FE WA SB WM CO SG CT % % % %

Non-crop

IM 51 7 0 0 1 0 0 0 1 0 93 85 0.92
BF 2 142 2 1 10 1 0 3 7 28 76 72 0.72
GA 1 3 91 5 2 2 0 0 13 15 56 69 0.51 87 87 0.75
FE 0 2 25 96 3 1 0 0 1 1 91 74 0.89

WA 0 7 1 0 50 0 0 0 0 1 72 85 0.71

crop

SB 0 0 0 0 0 21 0 0 0 21 72 50 0.71
WM 0 7 5 0 0 0 46 0 0 9 94 69 0.94
CO 1 14 3 1 3 0 0 84 9 17 84 64 0.82 88 88 0.75
SG 0 1 5 0 0 0 0 13 80 29 70 63 0.66
CT 0 3 30 3 0 4 3 0 4 208 63 82 0.53

Overall kappa=0.68 Overall kappa=0.75
Overall accuracy=72% Overall accuracy=88%

(d) Unsupervised Classification for Four-Band Image (4US)

Ten-class Two-class

CD
RD Pa Ua Kp Pa Ua Kp

IM BF GA FE WA SB WM CO SG CT % % % %

Non-crop

IM 50 28 0 0 1 0 0 0 0 0 91 63 0.90
BF 4 141 11 1 1 0 6 12 6 34 76 65 0.71
GA 0 1 56 2 0 1 7 5 17 17 35 53 0.28 70 79 0.48
FE 0 0 1 44 1 0 0 0 0 0 42 96 0.39

WA 0 0 0 0 64 0 0 0 0 0 93 100 0.92

crop

SB 0 0 0 11 0 22 0 0 0 11 76 50 0.75
WM 0 0 6 13 1 0 15 0 0 12 31 32 0.28
CO 0 4 6 0 0 0 3 58 9 17 58 60 0.54 83 75 0.60
SG 1 4 22 2 1 2 1 15 62 38 54 42 0.47
CT 0 8 60 33 0 4 17 10 21 200 61 57 0.44

Overall kappa=0.52 Overall kappa=0.54
Overall accuracy=59% Overall accuracy= 77%
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Table 4. Cont.

(e) Supervised Classification for Four-Band Image (4S)

Ten-class Two-class

CD
RD Pa Ua

Kp
Pa Ua Kp

IM BF GA FE WA SB WM CO SG CT % % % %

Non-crop

IM 38 2 0 0 0 0 0 0 0 0 69 95 0.68
BF 10 141 10 2 1 0 3 7 5 36 76 66 0.71
GA 2 8 86 18 3 0 6 1 4 20 53 58 0.46 79 82 0.61
FE 1 0 3 67 1 1 0 0 0 18 63 74 0.60

WA 0 0 0 0 64 0 0 0 0 0 93 100 0.92

crop

SB 0 0 0 0 0 19 0 0 0 2 66 90 0.65
WM 0 5 15 4 0 0 23 0 4 1 47 44 0.45
CO 0 14 15 0 0 1 4 69 16 27 69 47 0.65 84 81 0.65
SG 0 10 13 1 0 1 2 12 71 29 62 51 0.57
CT 4 6 20 14 0 7 11 11 15 196 60 69 0.47

Overall kappa =0.59 Overall kappa=0.63
Overall accuracy=65% Overall accuracy=82%

(f) Object-Based Classification for Four-Band Image (4OB)

Ten-class Two-class

CD
RD Pa Ua

Kp
Pa Ua Kp

IM BF GA FE WA SB WM CO SG CT % % % %

Non-crop

IM 51 4 0 0 0 0 0 0 0 0 93 93 0.92
BF 1 153 2 0 4 1 2 3 3 21 82 81 0.79
GA 1 8 103 7 0 1 1 2 2 13 64 75 0.59 90 91 0.80
FE 1 0 23 92 3 0 0 0 0 1 87 77 0.85

WA 1 0 0 3 61 0 0 0 0 0 88 94 0.88

crop

SB 0 0 0 0 0 23 0 0 0 17 79 58 0.79
WM 0 6 0 0 0 0 44 0 0 0 90 88 0.89
CO 0 7 3 1 0 0 1 74 7 11 74 71 0.72 92 91 0.83
SG 0 0 9 0 0 1 0 20 103 38 90 60 0.88
CT 0 8 22 3 1 3 1 1 0 228 69 85 0.61

Overall kappa=0.74 Overall kappa=0.82
Overall accuracy=78% Overall accuracy=91%

1 Bold values correspond to number of points correctly classified. 2 IM = impervious, BF = bare soil and fallow, GA = grass, FE = forest, WA = water, SB = soybean, WM = watermelon,
CO = corn, SG = sorghum, CT = cotton. 3 RD = reference data. 4 CD = classification data. 5 Pa = producer’s accuracy, 6 Ua = user’s accuracy. 7 Kp = kappa coefficient.
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4. Discussion

4.1. Importance of NIR Band

To analyze the importance of the NIR band, some kappa coefficients from Table 4 were rearranged
and the average coefficients by image (AKp1) and by method (AKp2) were calculated (Table 5).

Table 5. Results of kappa analysis by three methods and two images for (a) Crop and (b) Non-crop.

(a) Crop
Three-Band (Kappa) Four-Band (Kappa)

3US 3S 3OB AKp1 4US 4S 4OB AKp1
SB 1 0.00 0.65 0.71 0.45 0.75 0.65 0.79 0.73
WM 0.16 0.16 0.94 0.42 0.28 0.45 0.89 0.54
CO 0.68 0.58 0.82 0.69 0.54 0.65 0.72 0.64
SG 0.62 0.54 0.66 0.61 0.47 0.57 0.88 0.64
CT 0.36 0.42 0.53 0.44 0.44 0.47 0.61 0.51

AKp2 0.36 0.47 0.73 0.50 0.56 0.78

(b) Non-crop
Three-band (Kappa) Four-band (Kappa)

3US 3S 3OB AKp1 4US 4S 4OB AKp1
IM 0.79 0.66 0.92 0.79 0.90 0.68 0.92 0.83
BF 0.71 0.77 0.72 0.73 0.71 0.71 0.79 0.74
GA 0.38 0.44 0.51 0.44 0.28 0.46 0.59 0.44
FE 0.50 0.45 0.89 0.61 0.39 0.60 0.85 0.61

WA 0.88 0.80 0.71 0.80 0.92 0.92 0.88 0.91
AKp2 0.65 0.62 0.75 0.64 0.68 0.81

1 IM = impervious, BF = bare soil and fallow, GA = grass, FE = forest, WA = water, SB = soybean, WM =
watermelon, CO = corn, SG = sorghum, CT = cotton, AKp1 = Average kappa coefficient among the three
methods for each class with the same image, and AKp2 = Average kappa coefficient among the crop classes or
non-crop classes with the same classification methods.

It can be seen from Table 5 that the NIR band improved the kappa coefficients for four of the
five crops and for three of the five non-crop classes. The net increases in AKp1 for the four crops
were 0.28 for soybean, 0.12 for watermelon, 0.07 for cotton and 0.03 for sorghum, while the decrease
in AKp1 for corn was 0.05. Although the classification for soybean was greatly improved, soybean
only acounted for a very small portion of the study area which was less than 2.5%. Due to its small
area and misclassification, there were unstable classification results for soybean as shown by the
unique zero kappa value in Table 4. The contribution of the improvement for watermelon was mainly
due to the object-based classification method. The classification for corn got worse mainly due to
its later growth stage. Corn had low chlorophyll contents as shown by its flat RGB and reduced
water contens as indicated by the relatively low NIR reflectance compared to the other vegetation
classes. These observations could be confirmed by the spectral curves shown in Figure 3, which were
derived by calculating the average spectral values from each class using the training samples for the
supervised classification. The spectral curve of corn had the lowest reflectance at the NIR band among
the vegetation classes. In other words, the NIR band was not sensitive to corn at this stage, which had
a similar NIR response to the bare soil and fallow fields. In fact, the bare soil and fallow class was one
of the main classes for misclassification with corn as shown in Table 4.

For the non-crop classes, the NIR band improved the classification for the water, impervious and
bare soil classes. This result conforms with the general knowledge that NIR is effective at distinguishing
water and impervious. The classes of grass and forest also benefited from the NIR band with the
supervised method.

To compare the differences between the three-band and four-band images by classification method,
average kappa coefficients (AKp2) increased for each of the three methods for the combined crop
class and for two of the three methods for the combined no-crop class. If AKp3 is the average of the
AKp2 values for the three methods, AKp3 increased from 0.52 for the three-band image to 0.61 for the
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four-band image for the crop class, and from 0.67 for the three-band image to 0.71 for the four-band
image for the non-crop class. The crop class benefited from the NIR band more than the non-crop class.

If AKp4 is the average of the AKp3 values for the two general classes, AKp4 increased from 0.6
for the three-band image to 0.66 for the four-band image. Therefore, the addition of NIR improved the
classification results over the normal RGB image.

To illustrate the classification results and explain the misclassification between some classes,
spectral separability between any two classes in terms of Euclidean distance was calculated by ERDAS.
To facilitate discussion, the Euclidean distance was normalized by the following formula:

x1 “ px´ x0q {max |px´ x0q| (2)

where x is the absolute Euclidean distance any two classes based on the training samples, and x0

is the average of all the two-class Euclidean distances for either the three-band or four-band image,
and x1 is the normalized spectral distance ranging from ´1 for the worse separability to 1 for the
best separability.Remote Sens. 2016, 8, x 17 of 24 
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From the normalized Euclidean distance results shown in Figure 7, the forest and impervious
classes had the best separation, while soybean and cotton had the worse separation for both the
three-band and four-band images. These results should clearly explain why some of the classes had
higher classification accuracy and kappa values than others. In general, the non-crop classes such
as forest, water and impervious had high separability with crop classes, while the crop classes had
relatively low separability among themselves. Since corn and sorghum are near the bottom of the list,
it explains in another way why they were difficult to separate. There are more class pairs above the
average spectral separability for the four-band than for the three-band, indicating that the NIR band is
a useful for crop identification, especially for plants at their vegetative growth periods.

4.2. Importance of Object-Based Method

As can be seen from Tables 4 and 5 the selection of the classification methods had a great effect
on classification results. To clearly see this effect, the kappa analysis results were rearranged by the
classification methods as shown in Table 6.

The average kappa coefficients between the three-band and four-band images (AKp5) were
calculated for all the crop and non-crop classes for each of the three classification methods. For all the
crop classes, the object-based method performed best with the highest AKp5 values, followed by the
supervised and unsupervised methods. Moreover, the object-based method performed better than the
other two methods for all the no-crop classes except for water, for which the unsupervised method
was the best. Similarly, if AKp6 is the average of the AKp5 values for the five crop classes, the AKp6
values for the crop class were 0.43, 0.51 and 0.76 for the unsupervised, supervised and object-based
methods, respectively. The AKp6 values for the non-crop class were 0.65, 0.65 and 0.78 for the three
respective classification methods.

Clearly, the object-based method was superior to the pixel-based methods. This was because the
object-based method used many shape and texture features as shown in Table 2 to create homogeneous
image objects as the processing units during the classification, while the pixel-based classification
methods only used spectral information in each pixel during the classification. Figure 8 shows the
decision trees and the number of features involved in the image classification process using the
object-based method, which was created automatically by eCongnition.
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WM=watermelon, CO=corn, SG=sorghum, and CT=cotton. 1 (n) is the number ID of each feature,
ranging from (1) to (42), which is described in Table 2.
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Figure 9 shows the average kappa coefficients and differences for the crop and non-crop classes
for the three classification methods. The difference in AKp6 between the crop and non-crop classes
reduced from 0.22 for the unsupervised to 0.14 for the supervised and to 0.02 for the object-based
method. Evidently, non-crop had a better average kappa coefficient than crop for the pixel-based
methods because most of the non-crop classes such as water, impervious, and bare soil and fallow
classes had better spectral separability than the other classes. However, both crop and non-crop had
essentially the same average kappa coefficient for the object-based classification method.

Table 6. Kappa analysis results arranged by classification method for (a) Crop and (b) Non-crop.

(a) Crop
Unsupervised Supervised Object-Orient

3US 4US AKp5 3S 4S AKp5 3OB 4OB AKp5
SB 1 0.00 0.75 0.38 0.65 0.65 0.65 0.71 0.79 0.75
WM 0.16 0.28 0.22 0.16 0.45 0.31 0.94 0.89 0.92
CO 0.68 0.54 0.61 0.58 0.65 0.62 0.82 0.72 0.77
SG 0.62 0.47 0.55 0.54 0.57 0.56 0.66 0.88 0.77
CT 0.36 0.44 0.40 0.42 0.47 0.45 0.53 0.61 0.57

AKp6 0.43 0.51 0.76

(b) Non-crop
Unsupervised Supervised Object-orient

3US 4US AKp5 3S 4S AKp5 3OB 4OB AKp5
IM 0.79 0.90 0.85 0.66 0.68 0.67 0.92 0.92 0.92
BF 0.71 0.71 0.71 0.77 0.71 0.74 0.72 0.79 0.76
GA 0.38 0.28 0.33 0.44 0.46 0.45 0.51 0.59 0.55
FE 0.50 0.39 0.45 0.45 0.60 0.53 0.89 0.85 0.87

WA 0.88 0.92 0.90 0.80 0.92 0.86 0.71 0.88 0.80

AKp6 0.65 0.65 0.78
1 IM=impervious, BF=bare soil and fallow, GA=grass, FE=forest, WA=water, SB=soybean, WM=watermelon,
CO=corn, SG=sorghum, CT=cotton, AKp5=Average kappa coefficient for each class between the three-band
and four-band images, and AKp6=Average of the AKp5 values for the crop or non-crop classes.
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To explain the reason for this, the statistical results for the decision tree models used in the
object-based classification method are summarized in Table 7. It can be seen from Figure 8 and Table 7,
the three-band image used more non-spectral features at a higher frequency than the four-band image,
which could compensate for the lacking of the NIR band in the normal RGB image. Most of the
branches of three-band or four-band image decision tree models for classification used the shape and
texture features (95% for the three-band and 82% for the four-band). These features were used more
than one time with an average of 1.62 times for the three-band and 1.15 times for the four-band image.
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All these showed the importance and advantage of the non-spectral features for image classification.
The non-spectral features are particularly important when there is no sufficient spectral information.

As shown in Table 6, the pixel-based methods performed better than object-based method for
distinguish water. This is because the spectral information was enough to distinguish water and
non-spectral features could cause a worse result with the object-based method. Thus, the four-band
image with the pixel-based methods achieved better classification results for water.

Table 7. Statistical results of decision tree models for object-based classification.

Properties Three-Band Four-Band

Number of end nodes (number of branches) 39 33
Maximum number of tree levels 10 10
First level to use non-spectral features 3 4
Number of branches that used non-spectral features 63 38
Average times non-spectral features were used for each branch 1.62 1.15
Ratio of branches that used non-spectral features (%) 95 82

4.3. Importance of Classification Groupings

Thus far, only the ten-class and two-class classification results shown in Table 4 have been
discussed. Figure 10 shows the overall accuracy and overall kappa for the six class groupings defined
in Table 1 based on the six classification types.Remote Sens. 2016, 8, x 20 of 24 

 

 
Figure 10. Overall accuracy (a) and overall kappa (b) for six class groupings based on six classification 
types. Classification methods were represented as unsupervised classification for three-band image 
(3US), unsupervised classification for four-band image (4US), supervised classification for three-band 
image (3S), supervised classification for four-band image (4S), object-based classification for three-
band image (3OB), and object-based classification for four-band image (4OB). 

The overall accuracy generally increased as the number of classes decreased. However, this was 
not necessarily the case for the overall kappa. The two-class, five-class and ten-class classifications 
had higher kappa values than the three-class, four-class and six-class classifications except that the 
two-class classification for the object-based method had slightly higher kappa values than the ten-
class classifications. Overall classification accuracy simply considers the probability of image pixels 
being correctly identified in the classification map. Kappa coefficient, by contrast, considers not only 
the correct classification but also the effect of omission and commission errors. By using the spectral 
separability shown in Figures 3 and 7, it could be found that class groupings with poor spectral 
separability between subclasses generally had higher kappa values. For example, the five-class 
classifications achieved the second highest kappa value for both the supervised and object-based 
methods. This particular class grouping combined four vegetation classes (grass, forest, soybean and 
watermelon) with similar spectral characteristics into one class. Approximately two-thirds of the 
spectral separability values between any two of the four classes were below the average level and 
these classes were very easy to become confused during the classification process. This confusion was 
eliminated when these classes were grouped into one class. Therefore, depending on the 
requirements of particular applications, all available classes can be regrouping based on their spectral 
characteristics into appropriate classes to improve classification results. With such a regrouping, the 
agronomical use of the classification map is practically reduced for relevant crops, but it could still 
be used for a LULC census. 

4.4. Implications for Selection of Imaging Platform and Classification Method 

From the above analysis, the additional NIR band and the object-based method both could 
improve the performance of image classification for crop identification. The imaging system used in 
this study included a modified camera to capture NIR information. The camera along with the lens, 
GPS, and modification fees was about $1300. Moreover, the images from the two cameras need to be 
aligned for analysis. The object-based classification method performed better than the pixel-based 
methods. However, the object-based method involves complex and time-consuming processing such 
as segmentation and rule training, and requires experienced operators to use the software. Therefore, 
how to weigh such factors as the cost, ease of use and acceptable classification results is a real and 
practical issue for users, especially for those without much remote sensing knowledge  
and experience. 

Based on the results from this study, some suggestions are provided for consideration. If users 
do not have much experience in image processing, a single RGB camera with pixel-based 

(a) (b) 

Figure 10. Overall accuracy (a) and overall kappa (b) for six class groupings based on six classification
types. Classification methods were represented as unsupervised classification for three-band image
(3US), unsupervised classification for four-band image (4US), supervised classification for three-band
image (3S), supervised classification for four-band image (4S), object-based classification for three-band
image (3OB), and object-based classification for four-band image (4OB).

The overall accuracy generally increased as the number of classes decreased. However, this was
not necessarily the case for the overall kappa. The two-class, five-class and ten-class classifications
had higher kappa values than the three-class, four-class and six-class classifications except that the
two-class classification for the object-based method had slightly higher kappa values than the ten-class
classifications. Overall classification accuracy simply considers the probability of image pixels being
correctly identified in the classification map. Kappa coefficient, by contrast, considers not only the
correct classification but also the effect of omission and commission errors. By using the spectral
separability shown in Figures 3 and 7 it could be found that class groupings with poor spectral
separability between subclasses generally had higher kappa values. For example, the five-class
classifications achieved the second highest kappa value for both the supervised and object-based
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methods. This particular class grouping combined four vegetation classes (grass, forest, soybean and
watermelon) with similar spectral characteristics into one class. Approximately two-thirds of the
spectral separability values between any two of the four classes were below the average level and
these classes were very easy to become confused during the classification process. This confusion was
eliminated when these classes were grouped into one class. Therefore, depending on the requirements
of particular applications, all available classes can be regrouping based on their spectral characteristics
into appropriate classes to improve classification results. With such a regrouping, the agronomical
use of the classification map is practically reduced for relevant crops, but it could still be used for a
LULC census.

4.4. Implications for Selection of Imaging Platform and Classification Method

From the above analysis, the additional NIR band and the object-based method both could
improve the performance of image classification for crop identification. The imaging system used in
this study included a modified camera to capture NIR information. The camera along with the lens,
GPS, and modification fees was about $1300. Moreover, the images from the two cameras need to be
aligned for analysis. The object-based classification method performed better than the pixel-based
methods. However, the object-based method involves complex and time-consuming processing such
as segmentation and rule training, and requires experienced operators to use the software. Therefore,
how to weigh such factors as the cost, ease of use and acceptable classification results is a real and
practical issue for users, especially for those without much remote sensing knowledge and experience.

Based on the results from this study, some suggestions are provided for consideration. If users do
not have much experience in image processing, a single RGB camera with pixel-based classification
can be used. For users with some image processing experience, a dual-camera system with the NIR
sensitivity and pixel-based classification methods may be a good combination. For users with sufficient
image processing experience, either a single RGB camera or a dual-camera system in conjunction with
object-based classification may be an appropriate choice. It is also possible to modify a single RGB
camera to have two visible bands and one NIR band [16,49]. This will eliminate the image alignment
involved with the dual-camera system.

5. Conclusions

This study addressed important and practical issues related to the use of consumer-grade
RGB cameras and modified NIR cameras for crop identification, which is a common remote
sensing application in agriculture. Through synthetically comparing the performance of the three
commonly-used classification methods with the three-band and four-band images over a relative large
cropping area, some interesting results have been found.

Firstly, the NIR image from the modified camera improved classification results from the normal
RGB alone. This finding is consistent with the common knowledge and results from scientific-grade
imaging systems. Moreover, the importance of the NIR band appears to be especially evident in the
classification results from pixel-based methods. Since pixel-based methods usually are easy to use by
users without much experience in remote sensing, imaging systems with more spectral information
should be used for these users.

Secondly, many non-spectral features such as shape and texture can be obtained from the image
to improve the accuracy of image classification. However, object-based methods are more complex
and time-consuming and require a better understanding of the classification process, so only advanced
users with much experience in image processing could use object-based methods to obtain good results
even with RGB images. Moreover, appropriately grouping classes with similar spectral response can
improve classification results if these classes do not need to be separated. All in all, the selection
of imaging systems, image processing methods, and class groupings needs to consider the budget,
application requirements and operating personnel’s experience. The results from this study have
demonstrated that the dual-camera imaging system is useful for crop identification and has the
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potential for other agricultural applications. More research is needed to evaluate this type of imaging
systems for crop monitoring and pest detection.
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