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Abstract: Cropland productivity is impacted by climate. Knowledge on spatial-temporal patterns
of the impacts at the regional scale is extremely important for improving crop management under
limiting climatic factors. The aim of this study was to investigate the effects of climate variability on
cropland productivity in the Canadian Prairies between 2000 and 2013 based on time series of MODIS
(Moderate Resolution Imaging Spectroradiometer) FAPAR (Fraction of Absorbed Photosynthetically
Active Radiation) product. Key phenological metrics, including the start (SOS) and end of growing
season (EOS), and the cumulative FAPAR (CFAPAR) during the growing season (between SOS
and EOS), were extracted and calculated from the FAPAR time series with the Parametric Double
Hyperbolic Tangent (PDHT) method. The Mann-Kendall test was employed to assess the trends
of cropland productivity and climatic variables, and partial correlation analysis was conducted to
explore the potential links between climate variability and cropland productivity. An assessment
using crop yield statistical data showed that CFAPAR can be taken as a surrogate of cropland
productivity in the Canadian Prairies. Cropland productivity showed an increasing trend in most
areas of Canadian Prairies, in general, during the period from 2000 to 2013. Interannual variability in
cropland productivity on the Canadian Prairies was influenced positively by rainfall variation and
negatively by mean air temperature.
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1. Introduction

Canada is one of the largest food producers and exporters in the global market
(www.grainscanada.gc.ca). In addition to cultivar turnover and changes in agronomic management,
variations of crop growth and productivity are mainly driven by climate variability [1–4]. Studies
indicate that the climate is changing in Canada [5–9], and that it has a profound impact on crop
production in the agriculture regions [2,3,5,10,11], especially in the Canadian Prairies that account for
around 85% of Canada’s cropland area (http://www.statcan.gc.ca/). A better understanding of the
impact of climate variables on cropland productivity can help improve crop management practices and
the accuracy of crop production prediction, which is urgently needed with the increasing worldwide
demand for food [12,13].

In the past few decades, two main approaches—statistical approach and crop model
simulation—have been employed to investigate the influence of climatic variability on crop growth
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and productivity on the Canadian Prairies [3,8,10,14–17]. Based on long-term climate datasets,
Qian et al. [5,11] analyzed the long-term variation of agro-climatic indices which are important for
agricultural planning and management. They observed significant trends in agro-climatic indices
(e.g., earlier start and delayed end of growing season) in Canada. Of all the agro-climatic factors,
water-related factors or drought indices have played the most important role in variability in crop
growth and productivity in the Canadian Prairies [2,3,8,18,19]. For instance, Mkhabela et al. [19] found
that drought indices, especially water demand (evapotranspiration, ET) and the water balance index,
can explain between 27% and 74% of the variation of wheat yield (p < 0.05) in the Canadian Prairies
over the period 2003–2006. In addition, efforts to explore crop yield variation under future climate
scenarios have been made using crop models and climate models [16,20,21]. Although these studies
have greatly improved our understanding of the impact of climate change on crop growth, most of
them were conducted based on data from sparse meteorological stations and annual surveyed crop
yield. The results were unable to demonstrate the spatial heterogeneity associated with the relationship
between climate indices and cropland productivity [22].

Vegetation indices and biophysical variables derived from remote sensing data, such as the
Normalized Difference Vegetation index (NDVI) and the Fraction of Absorbed Photosynthetically
Active Radiation (FAPAR), show a strong capability to monitor spatial-temporal variation of crop
growth status and assess cropland productivity at the regional or global scale [4,12,13,23]. Over the
past decades, a few long-term earth observation datasets have been made available, such as the
TM/ETM+/OLI from the Landsat series satellites, the Advanced Very High Resolution Radiometer
(AVHRR) from the NOAA satellites, the Moderate Resolution Imaging Spectroradiometer (MODIS)
from the Terra/Aqua satellites, and the VEGETATION from the SPOT satellites [24,25]. These long-term
datasets are useful in exploring how cropland productivity responds to climate variation (e.g., rainfall
and temperature) and management practices [23,26]. For instance, Meroni et al. [4] found that crop
biomass showed a strong positive correlation with growing season length (GSL) and a negative
correlation with delays at the start of season (SOS) in Sahel. Based on time series NDVI, Tottrup and
Rasmussen [26] suggested that the trend of crop yield in Senegal was not only affected by rainfall but
was also significantly influenced by changes in land cover and land use. Milesi et al. [22] observed a
declining trend in the relative growth rate of grain production in water-limited tropic countries (e.g.,
India) using the annual sum of the 12 monthly values of maximum NDVI. These studies indicated
that long-term satellite data with their good spatial coverage could be useful in investigating the
relationship between crop growth and climate variability. To date, in Canada, most studies have
focused on estimating crop yield using remote sensing technology [12,13,27–29], while few studies
have paid attention to the crop yield variation analysis using time series of remote sensing observations.

The main objectives of this study were: (1) to analyze the spatial and temporal variation of
cropland productivity on the Canadian Prairies from 2000 to 2013 using satellite data; and (2) to
explore the effects of growing season climate variables including temperature, precipitation, and
radiation on the cropland productivity derived from satellite data.

2. Materials and Methods

2.1. FAPAR Product

FAPAR is a biophysical variable indicative of vegetation photosynthetic status [30–33]. It is
directly related to primary productivity and is widely used in vegetation productivity modeling
based on the light use efficiency theory [30,31]. Different from vegetation indices (VI), FAPAR has a
clearer physical meaning [34], although some VIs (e.g., the enhanced vegetation index and the wide
dynamic range vegetation index) have been found to have strong correlation with crop instantaneous
productivity (e.g., GPP and NPP) [35,36]. Several studies have also demonstrated that cropland
productivity is related more to FAPAR than to NDVI or leaf area index (LAI) [32,37,38]. FAPAR
is also a critical component of the land-surface radiation budget that is useful in investigating the
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impact of climate variability on vegetation dynamics and has been recognized as one of the Essential
Climate Variables (ECV) in the Global Terrestrial Observing System (GTOS) [39]. In this study, time
series FAPAR from the MODIS FAPAR/LAI product (MOD15A2, collection 5) was employed to
extract phenological metrics and derive cropland productivity. MODIS FAPAR is derived using
physical models as the main algorithm and empirical relationships between NDVI and FAPAR as
a backup algorithm when the physical models fail [40]. The product has a spatial resolution of
1 km with 8 days’ temporal composition to reduce cloud contamination. Validation studies have
shown that it is sufficient for agricultural monitoring and cropland productivity estimation [41,42].
A total of 14 years’ MOD15A2 data from 2000 to 2013 were downloaded from the MODIS website
(http://modis.gsfc.nasa.gov/). The product was processed using the MODIS re-projection tool (MRT,
https://lpdaac.usgs.gov/tools/modis_reprojection_tool) to mosaic and extract FAPAR data.

2.2. Cropland Mask

To derive a general cropland mask for the period of 2000–2013, MODIS Collection 5 annual
land cover product (MCD12Q1) from 2001 to 2012 was obtained from the MODIS website
(http://modis.gsfc.nasa.gov/). The classification accuracy of the cropland type around the world
was greater than 70% [43], which is satisfactory for the analyses of this study. In order to create an
annual crop mask, two land cover types were extracted from the land cover type 1 based on the
IGBP global vegetation classification scheme; cropland (code = 12) and cropland/natural vegetation
mosaic (code = 14). The general cropland mask for the period of 2000–2013 was created by using
any pixel that belonged to either code 12 or 14 in all years. As the resolution of MCD12Q1 is 500 m,
the general cropland mask was resampled using the NEAREST method of the ArcGIS software to
the same resolution as MODIS FAPAR. The cropland mask for Alberta (AB), Saskatchewan (SK) and
Manitoba (MB) is shown in Figure 1a. The Canadian Prairie Provinces consists of the largest crop area
in Canada and accounts for about 85% of the national total harvested area (http://www.statcan.gc.ca/).
In general, the croplands on the Canadian Prairies are predominantly rainfed [44]. Canola, spring
wheat, barley, and oats are the four major annual crops in this region [44]. The region is covered by three
agro-climate zones; the sub-humid zone, the semi-arid zone and the arid zone (Figure 1b) [19]. The
soils are dominated by Brown Chernozems in the arid zone, Dark-Brown Chernozems in the semi-arid
zone and Black and Dark Gray Chernozems and Gray Luvisols in the sub-humid zone [13,45,46].
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Figure 1. The general cropland mask extracted from the MODIS land cover product (MCD12Q1) (a)
and agro-climatic zones (b) on the Canadian Prairies.

2.3. Climate Data

To assess the effects of climate factors on cropland productivity variation on the Canadian
Prairies, two climate datasets were used: a daily 10-km gridded climate dataset generated by Natural
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Resources Canada (http://cfs.nrcan.gc.ca/projects/3/1), and the Modern Era Retrospective analysis
for Research and Applications (MERRA) dataset from NASA (http://disc.sci.gsfc.nasa.gov/mdisc/).
The 10-km gridded dataset contains daily maximum air temperature (˝C), minimum air temperature
(˝C), and precipitation (mm) for the Canadian landmass south of 60˝N between 2000 and 2013. The
10-km gridded data was previously interpolated from daily Environment Canada climate station
observations using a thin plate smoothing spline surface fitting method implemented by ANUsplin
V4.3 [17]. Daily mean temperature was calculated as the average of daily maximum and minimum
temperatures. The MERRA dataset is a NASA 30-year (1979–present) reanalysis product using
the Goddard Earth Observing System Data Assimilation System, Version 5 (GEOS-5), from which
surface incident shortwave flux was obtained. Validations show good agreement between various
meteorological factors (e.g., temperature, radiation, humidity, and energy balance) in the MERRA
reanalysis dataset and surface meteorological data at the global scale [47,48]. The spatial resolution is
0.5˝ latitude by 0.67˝ longitude, and temporal resolution is three-hours.

2.4. Phenological Metrics

The Parametric Double Hyperbolic Tangent (PDHT) method, a model-fitting approach [4], was
employed to derive the start (SOS) and the end of growing season (EOS) in this study. This approach
is based on fitting the temporal profile of FAPAR with a mathematical model, and is useful in reducing
the high-frequency noise induced by interference factors. The fitted time series of FAPAR was then
used to derive SOS and EOS pixel by pixel on the cropland. SOS was defined as the day of year (DOY)
at the local maxima of the second derivative from the rising side of the fitted curve, and EOS was
defined as the DOY at the local maxima of the second derivative from the declining side of the fitted
curve [49]. Cumulative FAPAR (CFAPAR) was calculated as the integration of the fitted daily FAPAR
between SOS and EOS. To analyze the effect of climate variables on cropland productivity variation,
the CFAPAR was resampled to 10-km spatial sampling interval to match that of the climate variables,
using the NEAREST method of the ArcGIS software.

2.5. Crop Yield Statistics

Annual crop yield, harvest area and production data for the Canadian Prairies from 2000
to 2013 were obtained from Statistics Canada's socioeconomic database CANSIM (http://www5.
statcan.gc.ca/cansim/). The crop data were collected through an annual farm sample survey program
and are reported at the Census Agricultural Region (CAR) level for each crop type. CARs without
complete yield records in each year were excluded from this study. The yield of barely, wheat, canola
and oats in each CAR were then converted into net primary production (NPP, gC¨m´2¨ yr´1) based on
the method provided by Prince, et al. [50] as follows,

NPP “ ppYieldˆ fmassq {HI ˆ p1` RSqq ˆ fdry ˆ fcarbon (1)

where Yield is the crop yield obtained from the statistical data, HI is the harvest index, RS is the root
to shoot ratio used to estimate the total biomass of the crop, fmass is a factor to convert the yield in
reporting units to a standard unit, fdry is a factor to convert the mass to dry biomass, and fcarbon is a
factor to convert the dry biomass to carbon (450 g¨ kg´1). The conversion factors in different crop types
were referenced from the study of Prince, et al. [50].

The final NPP integrated with different crop in each CAR was calculated on a unit per area basis
(NPPCAR, g¨C¨m´2) with the following equation:

NPPCAR “
ÿ

n
i“0NPP piq ˆ Area piq

M

ÿ

n
i“0 Area piq (2)

At the same time, the derived CFAPAR was averaged into FAPAR at the CAR level
(FAPARCAR) based on the area of the cropland mask of the CAR. The correlation analysis between
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NPPCAR and FAPARCAR was then conducted to evaluate the representativeness of CFAPAR for
cropland productivity.

2.6. Statistical Analysis

2.6.1. Mann-Kendall Trend Analysis

In order to investigate the trend of cropland productivity and climate variables, the Mann-Kendall
test (M-K test) [51], a non-parametric approach, was employed in this study. The M-K test has been
widely used in vegetation trend analysis [52–55], and it is suitable for time series data of small sample
size with occasional missing data and an assumption of normal distribution [51]. Two indictors—the
M-K z-score and the median slope—were used. The z-score above or below 0 represents an increasing
or decreasing trend, respectively. If there is a significant trend at the significant level of 0.05 (|z-score|
ě1.96), the rate of trend is then calculated by using the Theil-Sen’s slope [56]. More detailed information
about the M-K test can be found in Neeti and Eastman [51].

2.6.2. Partial Correlation Analysis

Simple linear regression has been widely used for correlation analysis assuming dependent
variables are independent of each other. However, climate factors are often found to be correlated with
each other [2]. In order to detect how cropland productivity is driven by each climate factor at the
temporal scale, a partial correlation analysis between climate variables and cropland productivity was
performed. This analyzes the linear relationship between crop productivity and each climate factor
after excluding the effect of other factors. A partial correlation coefficient (r) was calculated using
Equation (3) to Equation (5) [57]. The value of r varies between ´1 and 1 and shows the strength of the
relationship between cropland productivity and a climate variable.

rxy “
ÿ

n
i“1 rpxi ´ xq pyi ´ yqs {

c

ÿ

n
i“1

”

pxi ´ xq2 pyi ´ yq2
ı

(3)

rxy,z “
`

rxy ´ rxzryz
˘

{

c

`

1´ r2
xz
˘

´

1´ r2
yz

¯

(4)

rxy,zq “
`

rxy,z ´ rxq,zryq,z
˘

{

c

´

1´ r2
xq,z

¯´

1´ r2
yq,z

¯

(5)

t “ rxy,za{

c

´

1´ r2
xy,za

¯

{ pn´m´ 1q (6)

where, x, y, z, and a are the independent factors; rxy is the zero order coefficient calculated
using a simple linear regression between two variables (x and y); rxy,z is the first order coefficient
of the linear relationship between x and y after excluding the effect of z on x and y; rxy,zq is the second
order co-efficient of the linear relationship between x and y after excluding the effect of z and q on x
and y, respectively.

The significance of the partial correlation coefficient was also evaluated with the Student’s t-test
statistic (Equation (4)). A correlation was presented at three significance levels 0.01 (p-value, p = 0.01),
0.05 (p = 0.05) and 0.1 (p = 0.1), with decreasing strength of correlation, respectively.

3. Results

3.1. Assessment of CFAPAR for Cropland Productivity

To evaluate how well CFAPAR represents cropland productivity, it was necessary to investigate
its relationship with cropland productivity. Figure 2 shows a reasonably good linear correlation
between crop NPP (NPPCAR) and CFAPAR at the CAR level (CFAPARCAR) on the Canadian Prairies.
The correlation coefficient (r) is 0.60 (p < 0.01, n = 513). The result indicated that CFAPAR could
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be considered as a reasonable surrogate of cropland productivity, in agreement with some other
studies [4,58].
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Figure 2. Correlation between the cropland Net Primary Production at the CAR level (NPPCAR) derived
from crop (barely, wheat, canola and oats) yield reports of Statistics Canada and cumulative FAPAR at
CAR level (CFAPARCAR).

3.2. Spatial Patterns of Cropland Productivity and Climate Indices

As discussed above, CFAPARCAR was used as a surrogate for cropland productivity to assess the
variation of cropland productivity during 2000–2013. The spatial patterns of average annual CFAPAR
from 2000 to 2013 on the Canadian Prairies are shown in Figure 3. In general, the spatial patterns of
CFAPAR were in conformity with the distributions of agro-climatic zones (Figure 1b). The average
annual CFAPAR in the sub-humid region is the highest among the three agro-climatic zones (~75),
followed by the semi-arid region (~56) and the arid region (~50) (Figure 3). At the provincial level, MB
had the highest CFAPAR (~85) among the three provinces, followed by AB (~80) and SK (~65).
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The spatial distributions of climate indices, including cumulative rainfall, daily mean temperature
and cumulative daily radiation during a growing season, are shown in Figure 4. In general, their spatial
distribution patterns are consistent with the distribution of agro-climatic zones. The growing season
cumulative rainfall in the prairie region was generally less than 450 mm (Figure 4a), and decreases
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from the sub-humid area to the arid area. The sub-humid area received the highest amount of rainfall
in each growing season (~273 mm), especially in the area along the western and eastern borders of the
region (>350 mm). The cumulative rainfall was higher in the semi-arid area (~205 mm) than in the
arid zone (~183 mm). The growing season mean temperature generally decreased from the sub-humid
to the arid region (Figure 4b). The pattern of temperature distribution in the sub-humid region was
more complex than in the other two regions as the temperature in AB was lower than that in SK and
MB. The cumulative radiation during a growing season showed an opposite order of distribution
compared with that of daily average temperature (Figure 4c). The highest value of radiation occurred
in the western portion of the sub-humid region in the province of AB.
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cumulative rainfall (mm) (a); growing season mean temperature (˝C) (b); and cumulative short wave
radiation (MJ¨ m´2) (c), respectively.

By comparing the spatial patterns of cropland productivity in Figure 3 and climate indices in
Figure 4, we observed that the spatial patterns of the climate variables over the growing season were
very similar to that of cropland productivity. One of the factors that contributed to these spatial
patterns was the duration of the growing season length, which was determined by SOS and EOS, as
discussed by Meroni et al. [4]. The overall correlation between average annual CFAPAR and climate
variables are shown in Figure 5. Both cumulative rainfall (r = 0.79, p < 0.01) and cumulative radiation
(r = 0.76, p < 0.01) were positively correlated to cropland productivity, while the growing season mean
temperature showed a negative relationship (r = ´0.73, p < 0.01) with cropland productivity. Partial
correlation analysis (Table 1) demonstrated that spatial patterns of the annual CFAPAR was mostly
affected by the cumulative rainfall (r = 0.60, p < 0.01) and the growing season mean temperature
(r = ´0.46, p < 0.05), and not by cumulative radiation (r = 0.00, p > 0.1).
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Figure 5. The overall relationship between average annual CFAPAR and average annual cumulative
rainfall (a); growing season mean temperature (b); and average annual cumulative short wave radiation
during 2000–2013 (c). Samples located inside cropland mask were randomly selected using the Create
Random Points tool of ArcGIS software.

Table 1. Partial Correlation Matrix, a partial correlation analysis was conducted between average
annual CFAPAR and average annual cumulative rainfall, average annual growing season mean
temperature and average annual cumulative short wave radiation during 2000–2013. The dataset
is shown in Figure 5.

CFAPAR Rainfall Temperature Radiation

CFAPAR ´1.00 0.60 ´0.46 0.00
Rainfall ´1.00 0.39 0.49

Temperature ´1.00 ´0.64
Radiation ´1.00

3.3. Trend of Cropland Productivity

To examine the spatial-temporal variation of cropland productivity, we conducted the trend
analysis using the M-K test at the pixel level. Figure 6a shows the trend of CFAPAR from 2000 through
2013 represented by the M-K z-score. Results show that the z-score in most crop areas is above zero
(Figure 6a), indicating a general increasing trend of cropland productivity from 2000 to 2013. The
z-score in some areas such as the southern and central regions of SK and AB was higher than in other
cropland areas. Some small areas such as the area in the northern part of MB and northwestern part
of AB, show a decreasing trend (z-score < 0). At the significance level of 0.05 (|z-score| ě 1.96), a
significant increasing trend of cropland productivity was observed in AB and SK, as seen from the
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Theil-Sen median slope (>0.10) in Figure 6b. A significant decreasing trend of cropland productivity at
the 0.05 level was observed in small areas scattered throughout MB (TS slope < ´0.05).Remote Sens. 2016, 8, 281 9 of 18 

 

Figure 6. Spatial patterns of crop productivity trends from 2000 to 2013 using MK method; Mann–Kendall 
Z-score (a) and the Theil-Sen median slope of the trend in CFAPAR significant at p < 0.05 (b). 

To further analyze the trend of annual cropland productivity at larger scales, the M-K test was 
also performed at the provincial level and for agro-climatic zones. Figure 7 shows the trends of 
cropland productivity in the three provinces. Cropland productivity showed a strong increasing 
trend in AB (Z-score = 2.08 > 1.96, slope = 0.91 year−1, Figure 7a) and SK (Z-score = 2.85 > 1.96, slope = 0.96 
year−1, Figure 7b). No significant trend was observed for cropland productivity in MB at the 0.05 
significance level. Figure 8 shows that cropland productivity had a significant increasing trend in the 
sub-humid zone (Z-score = 2.74 > 1.96, slope = 0.71 year−1), the semi-arid zone (Z-score = 2.63 > 1.96, 
slope = 1.23 year−1) and the arid zone (Z-score = 2.52 > 1.96, slope = 1.20 year−1), with the largest 
increase in the semi-arid zone and the smallest in the semi-humid zone. This indicates a general 
increasing trend of cropland productivity in the Canadian Prairies. Figure 8 also shows that cropland 
productivity in the sub-humid zone is always higher than that in the other two zones. By comparing 
Figures 7 and 8, it is apparent that trends in cropland productivity were more clearly observed when 
evaluated using the climatological districts than using the administrative boundaries. 

(a) (b)

Figure 7. Cont. 

  

60.0

65.0

70.0

75.0

80.0

85.0

90.0

95.0

2000 2002 2004 2006 2008 2010 2012

A
lb

er
ta

 C
FA

PA
R

Year

CFAPAR
Sen's estimate
95 % conf. min
95 % conf. max

Z-score = 2.08
Slope = 0.91 year−1

50.0

55.0

60.0

65.0

70.0

75.0

80.0

2000 2002 2004 2006 2008 2010 2012

Sa
sk

at
ch

ew
an

 C
FA

PA
R

Year

Z-score = 2.85
Slope = 0.96 year−1

Figure 6. Spatial patterns of crop productivity trends from 2000 to 2013 using MK method;
Mann–Kendall Z-score (a) and the Theil-Sen median slope of the trend in CFAPAR significant at
p < 0.05 (b).

To further analyze the trend of annual cropland productivity at larger scales, the M-K test
was also performed at the provincial level and for agro-climatic zones. Figure 7 shows the trends
of cropland productivity in the three provinces. Cropland productivity showed a strong increasing
trend in AB (Z-score = 2.08 > 1.96, slope = 0.91 year´1, Figure 7a) and SK (Z-score = 2.85 > 1.96,
slope = 0.96 year´1, Figure 7b). No significant trend was observed for cropland productivity in
MB at the 0.05 significance level. Figure 8 shows that cropland productivity had a significant
increasing trend in the sub-humid zone (Z-score = 2.74 > 1.96, slope = 0.71 year´1), the semi-arid zone
(Z-score = 2.63 > 1.96, slope = 1.23 year´1) and the arid zone (Z-score = 2.52 > 1.96, slope = 1.20 year´1),
with the largest increase in the semi-arid zone and the smallest in the semi-humid zone. This indicates
a general increasing trend of cropland productivity in the Canadian Prairies. Figure 8 also shows
that cropland productivity in the sub-humid zone is always higher than that in the other two zones.
By comparing Figures 7 and 8 it is apparent that trends in cropland productivity were more clearly
observed when evaluated using the climatological districts than using the administrative boundaries.

Remote Sens. 2016, 8, 281 9 of 18 

 

Figure 6. Spatial patterns of crop productivity trends from 2000 to 2013 using MK method; Mann–Kendall 
Z-score (a) and the Theil-Sen median slope of the trend in CFAPAR significant at p < 0.05 (b). 

To further analyze the trend of annual cropland productivity at larger scales, the M-K test was 
also performed at the provincial level and for agro-climatic zones. Figure 7 shows the trends of 
cropland productivity in the three provinces. Cropland productivity showed a strong increasing 
trend in AB (Z-score = 2.08 > 1.96, slope = 0.91 year−1, Figure 7a) and SK (Z-score = 2.85 > 1.96, slope = 0.96 
year−1, Figure 7b). No significant trend was observed for cropland productivity in MB at the 0.05 
significance level. Figure 8 shows that cropland productivity had a significant increasing trend in the 
sub-humid zone (Z-score = 2.74 > 1.96, slope = 0.71 year−1), the semi-arid zone (Z-score = 2.63 > 1.96, 
slope = 1.23 year−1) and the arid zone (Z-score = 2.52 > 1.96, slope = 1.20 year−1), with the largest 
increase in the semi-arid zone and the smallest in the semi-humid zone. This indicates a general 
increasing trend of cropland productivity in the Canadian Prairies. Figure 8 also shows that cropland 
productivity in the sub-humid zone is always higher than that in the other two zones. By comparing 
Figures 7 and 8, it is apparent that trends in cropland productivity were more clearly observed when 
evaluated using the climatological districts than using the administrative boundaries. 

(a) (b)

Figure 7. Cont. 

  

60.0

65.0

70.0

75.0

80.0

85.0

90.0

95.0

2000 2002 2004 2006 2008 2010 2012

A
lb

er
ta

 C
FA

PA
R

Year

CFAPAR
Sen's estimate
95 % conf. min
95 % conf. max

Z-score = 2.08
Slope = 0.91 year−1

50.0

55.0

60.0

65.0

70.0

75.0

80.0

2000 2002 2004 2006 2008 2010 2012

Sa
sk

at
ch

ew
an

 C
FA

PA
R

Year

Z-score = 2.85
Slope = 0.96 year−1

Figure 7. Cont.



Remote Sens. 2016, 8, 281 10 of 18
Remote Sens. 2016, 8, 281 10 of 18 

 

(c)

Figure 7. Temporal trends of annual CFPAR in Alberta (AB) (a); Saskatchewan (SK) (b); and Manitoba 
(MB) (c); respectively. 

(a) (b)

(c)

Figure 8. Temporal trends of annual CFPAR in three agro-climatic zones in the Canadian Prairies, 
sub-humid zone (a); semi-arid zone (b); and arid zone (c); respectively. 

3.4. The Relationships between Cropland Productivity and Climatic Variables 

The spatial patterns of average annual CFAPAR from 2000 to 2013 in Section 3.2 highlighted the 
potential connections between cropland productivity and climate variability. Figure 9 shows the 
partial correlation coefficients of the three climatic variables with annual cropland productivity from 
2000 to 2013. 

75.0

80.0

85.0

90.0

95.0

2000 2002 2004 2006 2008 2010 2012

M
an

ito
ba

 C
FA

PA
R

Year

Z-score = 1.20
Slope = 0.22 year−1

60.0

65.0

70.0

75.0

80.0

85.0

2000 2002 2004 2006 2008 2010 2012

Su
b-

hu
m

id
 Z

on
e 

C
FA

PA
R

Year

CFAPAR
Sen's estimate
95 % conf. min
95 % conf. max

Z-score = 2.74
Slope = 0.71 year−1

35.0

40.0

45.0

50.0

55.0

60.0

65.0

70.0

75.0

2000 2002 2004 2006 2008 2010 2012

Se
m

i-a
ri

d 
 zo

ne
 C

FA
PA

R

Year

Z-score = 2.63
Slope = 1.23 year−1

30.0

35.0

40.0

45.0

50.0

55.0

60.0

65.0

70.0

2000 2002 2004 2006 2008 2010 2012

A
ri

d 
Zo

ne
 C

FA
PA

R

Year

Z-score = 2.52
Slope = 1.20 year−1

Figure 7. Temporal trends of annual CFPAR in Alberta (AB) (a); Saskatchewan (SK) (b); and Manitoba
(MB) (c); respectively.
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Figure 8. Temporal trends of annual CFPAR in three agro-climatic zones in the Canadian Prairies,
sub-humid zone (a); semi-arid zone (b); and arid zone (c); respectively.

3.4. The Relationships between Cropland Productivity and Climatic Variables

The spatial patterns of average annual CFAPAR from 2000 to 2013 in Section 3.2 highlighted the
potential connections between cropland productivity and climate variability. Figure 9 shows the partial
correlation coefficients of the three climatic variables with annual cropland productivity from 2000
to 2013.
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Figure 9. Spatial patterns of the partial correlation coefficient (r) between CFAPAR and climatic
variables during the crop growing season; cumulative rainfall (a); growing season mean (b) temperature;
and cumulative radiation (c), respectively.

For cumulative rainfall in a growing season (Figure 9a), the variability of cropland productivity is
generally sensitive to rainfall variability with a positive relationship in more than 70% of the study
areas (Figure 9a). The partial correlation coefficient (r) over most cropland areas in the Canadian
Prairies was higher than 0.55, especially in AB and SK. Cropland productivity in most areas was
negatively affected by growing season mean temperature (Figure 9b); however, except for areas in
the arid zone located mainly in southern SK and southeast AB, the effect was not significant. For
the cumulative radiation during the growing season (Figure 9c), there was no significant correlation
between cropland productivity and radiation at the 0.05 level in most areas, indicating that cropland
productivity in these areas was not normally limited by radiation. However, cropland productivity in
some localized croplands of central AB and northeast SK was sensitive to radiation with a positive
partial correlation coefficient greater than 0.55 (p < 0.01, n = 14). For AB and SK, it could be observed
that rainfall played the most important role in variation of cropland productivity with a positive
relationship, followed by temperature variability and radiation variability (Figure 9). The variation
of cropland productivity in MB was more affected by the temperature variability (p < 0.10) and the
limiting factors were more complicated than that in AB and SK. In summary, the analysis in this section
demonstrated that cropland productivity variability in most areas of the Canadian Prairies was mainly
driven by the amount of rainfall.
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To further determine the trend of cumulative rainfall during observed years, the analysis
was conducted using the M-K test and the results are shown in Figure 10. Areas with a positive
z-score, indicating an increasing trend, were distributed in most areas of the Canadian Prairie region.
However, the increasing trend was not significant at the level of 0.05 (|Z-score| ď1.96) except in some
localized areas.
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To further evaluate the relationship between cropland productivity and rainfall, the spatial
distribution of the coefficient of variation (CV) of rainfall is shown in Figure 11 and compared with
that of cropland productivity. Although there was no apparent trend for rainfall, the CV of rainfall
showed strong fluctuation. Rainfall variability ranged from 40% to 60% across the three agro-climatic
zones, with a higher variability in the semi-arid zone than in the sub-humid zone. The CV distribution
of cropland productivity (Figure 12) shows a consistent pattern as in Chipanshi, et al. [12], and
has a similar spatial pattern to that of rainfall (Figure 11). A strong and positive linear correlation
between the CV of CFAPAR and that of rainfall (r = 0.66, n = 593, p < 0.01) was observed (Figure 13).
Hence, these results indicate that the cropland productivity variability was partly determined by the
rainfall variability. These results also further explain why the cropland productivity showed positive
correlation to rainfall variability in most areas of the Canadian Prairies.
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Figure 13. Linear relationship between the coefficient of variation (CV) of CFAPAR and that of rainfall.
Samples located inside cropland mask were randomly selected using the Create Random Points tool of
ArcGIS software.

4. Discussion

Our results show that CFAPAR, a seasonal indictor of green area formation [38], has a strong
linear correlation with the cropland NPP (r = 0.60, p < 0.01, n = 513). This is consistent with literature
studies [4,32,38,59]. For example, Meroni et al. [4] found that the correlation coefficient (r) between the
measured herbaceous dry biomass in Senegal and the CFAPAR retrieved from the SPOT-VEGETATION
was 0.58, and López-Lozano, et al. [38] found that CFAPAR had a stronger correlation with official
yields under water-limited conditions than that of non-water-limited areas. The main reason is that
FAPAR plays an important role in photosynthetic process [30,31,38]. Thus, CFAPAR, which has a
much higher spatial resolution than that of crop yield statistics, could be used to demonstrate the
influence of climate variables on cropland productivity at different spatial-temporal scales. However, a
larger portion of the NPP variability was accounted for by the accuracy of CFAPAR. The contribution
factors to CFAPAR variability may include, but are not limited to, (a) the uncertainties in MODIS
FAPAR product caused by mixed pixels and retrieval algorithm [32,42,60]; (b) a general cropland mask
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obtained from the MODIS land cover product [43]; (c) the uncertainties in the extracted phenological
metrics [4]; and the modeling errors in converting census crop yield to NPP [37,50], especially the
former two factors.

The results in this study also showed that cropland productivity had an increasing trend,
especially in AB and SK (Figures 6 and 7). This increasing trend has been attributed to the
contribution of technology improvement [12]. Furthermore, the influence of cropland variability
on cropland productivity was negligible in this study as the crop area data from Statistics Canada
(http://www.statcan.gc.ca/start-debut-eng.html) showed that the variability of total cropland area
on the Canadian Prairies was quite stable from 2000 to 2013. For the cropland productivity variation
analysis, cropland productivity located in the semi-arid and arid zones showed strong variation
(Figure 12). Our results are consistent with Chipanshi, et al. [12] who analyzed the variation of the
surveyed yield from Statistics Canada over 1985–2012 at the CAR level. Further analyses about the
relationships between CFAPAR and climate variables suggest that rainfall has played a key role in
the interannual spatial-temporal variation of cropland productivity. Rainfall had a smaller effect
on cropland productivity variation in MB than in AB and SK (Figures 9 and 11). A major reason
is that annual cumulative rainfall in MB is usually ample (Figure 4a) and its variation is smaller
(Figure 12) than that in the other two provinces. The analysis of the spatial relationships between
cropland productivity and rainfall suggest that rainfall could account for about 50% of the cropland
productivity variation. Thus, it can be concluded that higher cropland productivity variation in the
Canadian Prairies is often accompanied by higher variability in rainfall. Cropland productivity was
also observed to be negatively affected by temperature in some areas of the Canadian Prairies, which
is consistent with results of other researchers, who have indicated that water stress is one of the
major yield limiting factors in the Canadian Prairies [2,3,6,8,15]. This also further confirms why the
CFAPAR in the Canadian Prairies in the years of 2001, 2003, 2006, 2009 and 2012 were below the
corresponding trend line (Figures 7 and 8). Specifically, following the severe drought in 2001 (Fang et
al., 2014; Hanesiak et al. 2011), cropland productivity in AB and SK (Figure 7a,b) dropped to the lowest
level during the observed period. Cropland productivity in these areas was continuously influenced
by the drought in the following two years and then began to recover in 2004. In 2009, Canada
experienced the driest year of the past 70, and comparable to the drought year of 2002 (Canada’s
Top Ten Weather Stories for 2009, https://ec.gc.ca/meteo-weather/), most cropland in central and
eastern Canada was severely affected by the drought and cropland productivity in AB, SK, and MB
was below the normal level of yield. In 2012, crop conditions were severely affected by a drought
again and cropland productivity was below average (Canada’s Top Ten Weather Stories for 2012,
http://www.ec.gc.ca/meteo-weather/).

Although the results from this study are encouraging, several uncertainty factors other than
those investigated in this study are worth noting. The first uncertainty is from the MODIS land cover
product, which has an accuracy of about 80% in identifying croplands globally [43]. SOS and EOS
extracted from MODIS product may be affected by pixel mixing effect. This is inevitable when using
coarse resolution MODIS products; however, the impact should be limited to the Canadian Prairies
agricultural region as it is cropping intensive and major crops have roughly a similar phenology cycle.
At the same time, the identification of crop SOS and EOS from remote sensing may be different from
dates identified from field measurement or crop model simulation [61]. Therefore, the uncertainties
in the assessment of the trend of cropland productivity and the influences of climate variables on
cropland productivity in this area may also be affected by the length of growing season derived from
MODIS FAPAR.

It should be acknowledged that our analyses were focused solely on the influence of cumulative
climatic conditions, such as cumulative daily rainfall during the growing season, on cropland
productivity variation. Therefore, our study provides an annual synoptic view of the climatic impact
on cropland productivity in the Canadian Prairies. In reality, cropland productivity is impacted by
climatic condition in a more complex manner and finer spatial-temporal scale than that used in this
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study. Climatic conditions may have different impacts on the final yield at different growth stages,
and the impacts may also be significantly different in different regions [3,19,62]. For instance, spring
wheat could benefit from a slight water stress at the heading-soft dough stage in Manitoba [2], whereas
canola yield in Saskatchewan could be negatively impacted by low rainfall and high temperatures
at the early stage of flowering [62]. Further studies assessing the effect of climate variables on crop
growth stage and final yield at finer spatial scale using remote sensing are needed.

5. Conclusions

In this study, spatial patterns and temporal trends of cropland productivity and their relationships
with climate variables from 2000 to 2013 in the Canadian Prairies were analyzed based on time series
of MODIS-derived FAPAR and gridded climate datasets. The results effectively revealed the effects
of climate variability on cropland productivity variation based on remote sensing observations in
the Canadian Prairies with a better spatial coverage than using traditional in-situ data. The main
conclusions can be summarized as follows:

(1) The cumulative FAPAR during the growing season can be presented as a proxy of
cropland productivity;

(2) There was, in general, an increasing trend in cropland productivity during the period from 2000
to 2013 over most of the cropland area of the Canadian Prairies.

(3) Temporal and spatial variabilities in cropland productivity are both connected to rainfall
variability, with temperature being a negative factor in arid regions. The trend towards increasing
cropland productivity was somewhat greater in the more arid regions of the Canadian Prairies.

This technique shows how FAPAR can be used to evaluate productivity trends on large spatial
scales in response to climate and other stressors for crop production, in particular in areas where sparse
information is available from other data sources on productivity or yield.
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