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Abstract: Satellite images and aerial images with high spatial resolution have improved visual
interpretation capabilities. The use of high-resolution images has rapidly grown and has been
extended to various fields, such as military surveillance, disaster monitoring, and cartography.
However, many problems were encountered in which one object has a variety of spectral properties
and different objects have similar spectral characteristics in terms of land cover. The problems are
quite noticeable, especially for building objects in urban environments. In the land cover classification
process, these issues directly decrease the classification accuracy by causing misclassification of
single objects as well as between objects. This study proposes a method of increasing the accuracy of
land cover classification by addressing the problem of misclassifying building objects through the
output-level fusion of aerial images and airborne Light Detection and Ranging (LiDAR) data. The new
method consists of the following three steps: (1) generation of the segmented image via a process that
performs adaptive dynamic range linear stretching and modified seeded region growth algorithms;
(2) extraction of building information from airborne LiDAR data using a planar filter and binary
supervised classification; and (3) generation of a land cover map using the output-level fusion of two
results and object-based classification. The new method was tested at four experimental sites with
the Min-Max method and the SSI-nDSM method followed by a visual assessment and a quantitative
accuracy assessment through comparison with reference data. In the accuracy assessment, the
new method exhibits various advantages, including reduced noise and more precise classification
results. Additionally, the new method improved the overall accuracy by more than 5% over the
comparative evaluation methods. The high and low patterns between the overall and building
accuracies were similar. Thus, the new method is judged to have successfully solved the inaccuracy
problem of classification that is often produced by high-resolution images of urban environments
through an output-level fusion technique.

Keywords: aerial images; LiDAR; output-level fusion; land cover; building; urban environment

1. Introduction

Recently, it has become possible to obtain optical images, Synthetic Aperture Radar images,
aerial images, and airborne Light Detection and Ranging (LiDAR) data with different resolutions
and characteristics using a variety of platforms. Because each data type includes different amounts
of information and characteristics, a greater synergistic effect might be produced by their fusion [1].
For example, a better-quality land cover map can be produced by the combined use of an optical image
and other data with different characteristics. Airborne LiDAR data in various spatial datasets have the
advantage of being used to efficiently address the problems arising in the generation process of land
cover classification using only high-resolution images in an urban area. Airborne LiDAR is composed
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of a laser scanner, the Global Navigation Satellite System, and the Inertial Navigation System and
acquires height information of the terrain and objects on the surface at a high speed. This tool is
suitable for the detection of buildings using height information and is used in a wide variety of fields,
such as modeling, constructing 3D city models, urban planning, vegetation monitoring, and disaster
management [2]. Thus, many studies on the generation of land cover maps through the data fusion of
optical images and airborne LiDAR data using height information have been performed.

Data fusion is a process that takes data and information from multiple sources to produce refined
and improved information for decision making. Depending on the level of fusion, this process
can be divided into pixel-level fusion, feature-level fusion, output-level fusion, and decision-level
fusion [3]. The pixel-level fusion, as a most basic fusion step, performs the fusion using the original
data without performing data processing, such as for textures or segmentations. The pixel-level
fusion of optical images and airborne LiDAR data is performed to improve classification and detection
accuracy of objects with similar spectral characteristics in an optical image. Airborne LiDAR data
are primarily employed as an additional band [4–6]. In contrast to pixel-level fusion, feature-level
fusion refers to the process that fuses image data and airborne LiDAR data after generating meaningful
information via primary processes. Features are the information generated by primary processes.
Features extracted from the optical image or airborne LiDAR data typically include the vegetation
index, texture information, and spatial object information. These data have been primarily used to
improve the separability of vegetation and non-vegetation or roads and buildings, as well as for
species classification [7–10]. This feature-level fusion can utilize more information compared with
pixel-level fusion by utilizing new features [11]. Output-level fusion is a method that utilizes fusion
by reusing results, such as the extraction results or the classification results, for a particular object.
It can be used when one data type has strengths in a particular process [12]. Output-level fusion may
have certain characteristics in which the accuracy of the intermediate step affects that of the final
step because results extracted through the primary application are used [13]. Decision-level fusion
is a method that uses a variety of input data types, such as pixels, features, outputs, and thresholds.
In the decision-level fusion between aerial images and airborne LiDAR data, the normalized difference
vegetation index (NDVI), shape size index (SSI), and normalized digital surface model (nDSM) have
primarily been used as the input information [14–17].

Various studies have applied fusion techniques to identical data to determine the optimum fusion
method [18,19]. Huang et al. (2011) [20] compared the classification accuracy produced by the fusion of
different levels after extracting the mean height values of a segment, Grey-Level Co-occurrence Matrix
(GLCM), variance, and Max-Min features from aerial images and airborne LiDAR data. The results
showed that the output-level fusion using the Max-Min features and soft Support Vector Machine
(SVM) classification results of aerial images generates classification results with the highest accuracy.
Many studies have actively analyzed the fusion of data with different properties and its ability
to improve classification accuracy. These studies have demonstrated that it is possible to derive
a classification result with good quality through data fusion rather than through the use of a single data
type [9,10,16,20]. However, infrared aerial images and the near-infrared satellite images have been used
in most studies that performed a fusion of optical images and airborne LiDAR data. Therefore, there is
a problem that these methodologies could be applied only when near-infrared information is provided.
Also, there is a difficulty in applying this method to the land cover classification of urban environments
because these methodologies have focused on the extraction of species classifications and parameters
of forests.

In this study, we propose a method to increase the accuracy of land cover classification by
developing an output-level fusion technique using aerial images and airborne LiDAR data and
evaluating the effectiveness of the new method by applying it to four experimental areas. In Section 2,
the segmentation of aerial images, digital terrain model (DTM) creation and building detection, as well
as the methodology for object-based classification through fusion are described. In Sections 3 and 4,
the utilized data and experimental sites are explained, the new method is applied, and the results are
analyzed. Section 4 also presents the conclusions about the methodology proposed in this study.
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2. Materials and Methods

The new method is composed of the following three stages: image segmentation, building
extraction, and classification after fusion. Figure 1 is a flowchart of the technique used to improve
the classification accuracy through the fusion proposed in this study. The first step is to expand the
image contrast by applying adaptive dynamic range linear stretching (ADRLS) image enhancement
techniques to aerial images. Then, we apply a modified seeded region growing (MSRG) image
segmentation technique to produce a segmented image. In the second step, a DTM is created by
applying a mean planar filter (MPF) and an area-based filter (ABF) to the airborne LiDAR data, and
a binary supervised classification is performed with the aerial image data to extract the building areas
from the airborne LiDAR data. In the third step, buildings in the aerial images are extracted through
the output-level fusion. Then, the SVM classification of non-building areas is conducted to generate
the final object-based classification map. Finally, we select a comparison technique and perform
a quantitative evaluation of the accuracy to verify the effectiveness of the new method.
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2.1. Image Segmentation of Aerial Image

2.1.1. Adaptive Dynamic Range Linear Stretching Image Enhancement

The histogram splitting technique proposed by Abdullah-Al-Wadud et al. (2007) [21] detects
a local minimum in the histogram of an input image, and the section between two local minima with
a normal distribution is generated in one of the sub-histograms. The local minimum is composed
of the start value, end value, and the inflection point in the histogram. The histogram between
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two sub-local minima is reallocated in proportion to the number of pixels belonging to that range.
The dynamic range relocation procedure of the sub-histogram is defined by Equation (1).

new rangei “ pL´ 1q ˆ
CDFi
CDF

(1)

L: radiometric resolution
CDF: the total number of pixels in the sub-histogram
CDFi: the total number of pixels in the i-th sub-histogram

However, brightness values having a low frequency will have a relatively low contrast after the
transformation because brightness values in the image with a high frequency occupy a large dynamic
range in the conversion process. It is possible to minimize the dynamic range compression problem
caused by the prevalence of the brightness values through the adaptive scale factor. The adaptive scale
factor proposed by Park et al. (2008) [22] serves to readjust the dynamic range. The adjustment range
of the theoretical sub-histogram r is defined by Equations (2) and (3). The adaptive scale factor has
a range of (0, 1), and in this study, the value of the scale factor is set to a median of 0.5.

r “
L
k

(2)

L: radiometric resolution
k: split value (the number of sub-histograms).

The dynamic range of the final sub-histogram is defined by Equation (3).

Final rangei “ new rangei `αˆ pr´ new rangeiq (3)

α: scale factor.

After the dynamic range of the sub-histograms is reset, a linear enhancement technique is applied
to each sub-histogram unit. The linear enhancement technique is defined in Equation (4), as follows:

Yn “ f pxq “ aXn ` b (4)

Xn: The n-th pixel brightness values of the input image histogram
Yn: Output pixel value of Xn
a: Radiometric resolution/use range of the input image
b: Horizontal translation variables

where a serves to extend the brightness range of the input image as the transformation coefficient, and
b serves as a horizontal translation variable that is used to translate the output pixel value. Contrast of
an image is increased through this image enhancement algorithm and separability between objects is
improved in image segmentation because boundaries of the objects are clearer.

2.1.2. Modified Seeded Region Growing (MSRG)

The MSRG algorithm performs image processing using a multi-valued anisotropic diffusion
technique that can improve the multi-spectral image while protecting the edge information. Then, the
edge information, which integrates the band information of multi-spectral images, is extracted using
an entropy-based edge detection operator proposed by Shiozaki (1986) [23]. The entropy measurement
of a particular window mask region in a single band is defined in Equation (5).

E “
n
ÿ

i“1

pi
logpi

log pn` 1q
, pi “

ai
řn

j“1 aj
(5)
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n: total number of neighboring pixels;
ai: arbitrary pixel value in the window;
aj: represents the j-th neighboring pixel value where j = 1 to n;
pi: the ratio of an arbitrary pixel value over the summation of all pixel values

The integrated entropy measurements containing the contrast information of individual bands
can be expressed as a linear combination of individual entropy measurements, as in Equation (6).

H “

N
ÿ

k“1

qkEk, qk “ bk{

N
ÿ

k“1

bk (6)

N: total number of bands;
qk: the ratio of arbitrary pixel value over total pixel value;
bk: pixel value of the central pixel in the local window of the individual bands;
Ek: entropy measure of the central pixel in the local window of the individual bands.

H takes on large values in edge regions and small values in low contrast regions within the
range (0, 1). The local minimum is used to detect the seed point from these edge images. Each pixel
locates another pixel with the lowest gradient among the neighboring pixels and moves in that
direction. By repeatedly performing the same operation, a local minimum value is reached that cannot
be further adjusted. This local minimum is the seed point. The difference between the detected local
minimum values and the values of the eight directions around the adjacent points is calculated; if
a lower value than the threshold is found, then the re-spreading process is conducted to locate the
local minimum again.

The MSRG algorithm starts with the extracted seed point S1, S2, . . . , Sn, and attempts to aggregate
the unlabeled pixels T to one of the given seed regions [24], as shown in Equation (7).

T “
"

px, yq R
n
Y

i“1
si

ˇ

ˇ

ˇ

ˇ

N px, yq X
n
Y

i“1
si ‰ Φ

*

(7)

N(x, y): the set of nearest neighbor directions of 8 pixels for each area.
Individual elements of the set T are assigned to the nearest area for each step of the region growing

process. The values of the function Φ(x, y) are sorted in ascending order to determine the similarity
between all of the assigned elements and adjacent pixels, and then we select the priority of the region
growing process in the next step. The similarity decision function using multispectral edge information
is defined in Equation (8) where |||| and ‚ represent the vector norm and inner product, respectively.

φ px, yq “
Ñ
c ¨
Ñ
p

||
Ñ
p ||

2 ˆ
ˇ

ˇGc ´ Gp
ˇ

ˇ (8)

Ñ
c : spectral vector of each region;
Ñ
p : vector of adjacent neighboring pixel;
Gc: the mean edge strength of each region;
Gp: the edge magnitude of the multispectral edge map (H).

Figure 2 shows the results of applying the ADRLS and MSRG to obtain a high-resolution aerial
image. The ADRLS image enhancement algorithm strengthened the contrast of the original image.
The segmented image was produced by applying the MSRG algorithm.
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Figure 2. Image segmentation: (a) original image; (b) radiometric-enhanced image; and (c) segmented
image (red lines are segment boundaries).

2.2. Extraction of Building Information from Airborne LiDAR Data

2.2.1. Generation of DTM

The pre-processing of airborne LiDAR data includes raster conversion and the removal of outliers.
The airborne LiDAR data based on point clouds are rasterized for fusion with the optical data based on
the raster, such as satellite images or aerial images. In this study, the point cloud data of the airborne
LiDAR are transformed to raster data through the triangular irregular network (TIN) and nearest
neighborhood interpolation for generating DSM (Digital Surface Model). Then, a histogram based
on height values is used to find and remove outliers causing errors, such as negative values and
positive values that are much higher than other values. The TIN interpolates the regularly distributed
points as well as the irregularly distributed points; this network can reduce the data redundancy of the
interpolation process for steep slopes and complicated terrains.

The Mean Planar Filter (MPF) segments the LiDAR data into planar surfaces and non-planar
surfaces by detecting the boundary points using a simple 3 ˆ 3 kernel. The MPF creates a mean plane
with a size of 3ˆ 3 using nine height values, as in Equation (9). Then, the center of the kernel is defined
as a non-planar pixel if there is at least one value whose distance from the mean plane is greater than
a given threshold. This process is conducted across the entire image. The threshold is dependent on
the size of the grid, and it is determined by the ratio of 5:3. For example, the threshold is set to 0.3 m
for the case in which the grid size is 0.5 m [25].

Mij “ mean

»

—

–

DSM pi´ 1, j´ 1q , DSM pi´ 1, jq , DSM pi´ 1, j` 1q ,
DSM pi, j´ 1q , DSM pi, jq , DSM pi, j` 1q

DSM pi` 1, j´ 1q , DSM pi` 1, jq , DSM pi` 1, j` 1q

fi

ffi

fl

(9)

Mij: mean plane created by the mean value of kernelij;
DSMij: height value of location (i, j).

Planar surfaces extracted by the MPF include ground points as well as the flat roofs of a building.
Therefore, planar surfaces composed of a flat roof should be removed to extract only the ground
points. The ABF algorithm proposed by Ma (2005) [26] can be used to solve this problem. The ABF
algorithm using the area of the largest roof segment in the segmented image, extracts the segment
composed of only the ground points by removing the flat segment having a smaller area than the
largest roof segment. The largest roof segment is selected manually in the segmented image. The ABF
algorithm can effectively perform the extraction process for ground points because ground points
with connectivity have a large surface area relative to other objects in the binary image segmentation.
Therefore, only ground points are extracted. A temporary DTM is generated using these ground points.

Refinement of the DTM involves repeatedly comparing the DSM with the temporary DTM
generated in the previous step. This process repeatedly generates an accurate and detailed DTM with
additional detected ground points when the height difference between the DSM and the temporary
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DTM is less than 0.3 m. The threshold difference is based on the vertical accuracy (˘0.15 m) of LiDAR,
and there is only a slight change in the ground points after three repetitions of the refinement process.
Details of the refinement can be found in [26].

2.2.2. Building Detection

nDSM can be created by subtracting a DTM from a DSM, giving the height of the object from
the ground [27]. Tall objects, such as buildings and trees, in airborne LiDAR data can be extracted by
applying a threshold to the nDSM. Regardless of the shape and spectral properties of the building roof,
this process has the advantage that it can be applied easily because it uses only the height element
of an object. The height threshold in this study is set to 2 m, the minimum height of a building, and
the process extracts all objects having a height that is greater than the threshold. These extracted
objects include buildings, tree canopies, and various facilities. Therefore, it is necessary to remove
non-building objects to detect only building objects. To extract the buildings, binary supervised
classification with aerial images and nDSM provides a good performance.

The following three processes are a prerequisite for binary supervised classification using SVM:

1 Perform supervised classification only for areas with tall objects
2 Use nDSM as an additional band to the RGB bands of aerial images
3 Classify into vegetation and non-vegetation

The binary supervised classification process uses only areas with the tallest objects, rather than
using the full area of the aerial image. Thus, if only areas with tall objects are used to perform
supervised classification, misclassification between objects, such as trees and grass, having similar
spectral characteristics is decreased. Further, in the classification process, the separability between
vegetation and non-vegetation is improved using nDSM because objects having similar spectral
characteristics with different heights remain [28,29]. Building objects and small objects, such as
a bench and sculpture, remain after removing the vegetation area in the results of binary supervised
classification. Finally, the threshold is set to 60 m2 as a minimum criterion of the residential area,
and the ABF algorithm is performed [30]. Objects with an area that is smaller than the threshold
are removed through the ABF, and the remaining building objects in the airborne LiDAR data are
extracted. Figure 3 shows building information extracted from the airborne LiDAR data and aerial
images through the new method.
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2.3. Output-Level Fusion and Generation of Classification Maps

Segmented aerial images generated by the MSRG algorithm are composed of many segments
surrounded by boundaries not only between different objects but also within an object. Therefore, it is
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necessary to extract segments consisting of the building objects from the aerial image. Output-level
fusion plays a role in extracting the building segments from aerial images using building information
from airborne LiDAR data along with segment information from aerial images. The output-level fusion
proposed in this study does not require merging and matching processes to extract building objects.
Additionally, it can obtain more detailed and accurate areas compared with the building area obtained
using a simple overlay of the aerial image and airborne LiDAR data. The fusion process is conducted
using Equation (10). After overlaying the segments of the aerial image and the building area of the
airborne LiDAR data, the process calculates a ratio of the area occupied by buildings in the airborne
LiDAR data within each segment of the aerial image. The empirical threshold used to minimize the
commission error determines whether the segment is a building. If the ratio is greater than 50%, then
the segment is a building segment [31]. A number of building segments extracted by the output-level
fusion is reconstructed into a building by applying closing operations in the morphology filter.

#

RoSi “
Building area

Segmenti

I f RoSi ě 0.5, Segmenti “ Building segment
(10)

RoSi: ratio of the building area overlaid on the i-th segment;
Building area: building area overlaid on the i-th segment;
Segmenti: i-th segment area.

Building information extracted through the output-level fusion is used as a priori information for
the classification of aerial images. This can prevent misclassification caused by objects having spectral
characteristics similar to the building or the building having different spectral properties by assigning
previous building objects to the building class of the aerial image. The classification process is applied
to objects in the remaining region other than the pre-extracted building region. The segmentation
process applied to the aerial image does not need to be repeated because the segment region used
is the same as that of the segmented aerial image. Bands used for the classification are the nDSM
and RGB bands of the aerial image, and a SVM is used as a classifier. The final classification map is
generated by combining the object-based classification results for non-building areas and the building
class previously assigned. Figure 4 shows the building area and the non-building area on the aerial
image derived from the output-level fusion of the aerial image and airborne LiDAR data.
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3. Data Used and Experimental Sites

The aerial image used in this study was acquired in May 2005 (sites 3 and 4) and September 2009
(sites 1 and 2) using a Digital Mapping Camera. The image includes red, green, and blue bands of
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the visible region and has a spatial resolution of 0.25 m. Airborne LiDAR data were acquired using
an Optech ALTM 3070, and the point density was 4.3 points/m2. They were acquired together, and the
aerial image was ortho-rectified.

Experimental sites 1 and 2 have characteristics of urban and forest land cover near Independence
Hall in Cheonan, South Korea (36˝471111N, 127˝1312211E). They are composed of a number of large
buildings, forests, and grasslands, and the spectral properties of the building roofs and the roads are
similar. Thus, the sites are suitable for evaluating the performance of the new method for objects
having similar spectral properties, such as roads and buildings. Experimental sites 3 and 4 are in
Daejeon, South Korea (36˝211411N, 127˝2312511E), and most of the area is composed of land covers that
characterize urban environments, such as concrete and asphalt. Table 1 summarizes the characteristics
of each site, and Figure 5 shows their coverage through aerial images.
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Table 1. Characteristics of experimental sites.

Site Coverage Range of Height Characteristics

1 425 ˆ 425 m 0~58.8 m Mixed area
2 625 ˆ 625 m 0~63.4 m Mixed area
3 450 ˆ 160 m 0~53.2 m Apartment area
4 200 ˆ 225 m 0~74.1 m Building area

4. Results and Discussion

4.1. Methods for Comparison

Huang (2011) et al. [20] conducted a study to derive the optimal classification results by applying
various fusion techniques for aerial images and airborne LiDAR data. The classification results were
obtained by feature-level, output-level, and decision-level fusion using the height difference, the
variance of the height difference, and GLCM extracted from airborne LiDAR data. The classification
results of the Max-Min output-level fusion showed the highest accuracy for many results, and the size
of the utilized filter was 13 ˆ 13, with a spatial resolution of 0.4 m. However, in this study, to compare
the methods under similar conditions, an 11 ˆ 11 filter was applied to the four experimental areas,
considering the spatial resolution of the aerial image.

In contrast to the existing methods that specify the initial seed point, the region growing method
proposed by Han et al. (2012) [17] sequentially assigns the initial seed point for all of the pixels. The SSI
of the segments extracted through the region growing method serves to improve the separability
between the building and road objects. The SSI is defined by Equation (11), as follows:

SSI “
Perimeter

Areaw , pw ě 0q (11)

where Perimeter is the perimeter of a segment, Area is the area of a segment, and w is the weight.
The greater the weight w is, the greater is the influence of the area on the classification result.

In this study, the similarity parameter was set to 30, and the weight parameter was set to 1 through
the tests with different parameters. For comparison under the same conditions, the same segment
areas were used in the classification process. In addition to the red, green, and blue bands of the aerial
image, SSI and nDSM were used in the SVM supervised classification as an additional band.

4.2. Accuracy Assessment

The final classification results of the new method and the compared methods for site 1 can be
observed in Figure 6. For the Max-Min classification method in Figure 6b, the use of the height value
in the airborne LiDAR data improved the separability between pavement and building objects and
increased the classification accuracy. However, there are misclassifications between the building
roof surface and pavement pixels resulting from the pixel-based classification method. Further, the
buildings on the right side of the site were classified as the pavement class. In the object-based
classification using SSI-nDSM, the salt-and-pepper noise that occurred in the classification results
produced by the Max-Min method did not occur in the object-based classification. Therefore, it is
visually confirmed that the classification accuracy of the building class is improved in Figure 6c.
However, misclassifications of building objects on the right side of the site also occurred in the results
using the SSI and nDSM together. In the case of the new method of Figure 6d, problems that occurred
using the comparative evaluation methods were solved using the object-based classification and the
building information extracted from airborne LiDAR data.

The results of the new method and the comparative methods for site 2 can be found in Figure 7.
For site 2, misclassifications between building and pavement objects originated from the classification
results of the Max-Min process, similar to site 1. The building located to the left of site 2 was misclassified
as the pavement class, and the pavement located at the top was misclassified as the building class.
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In the object-based classification results using SSI and nDSM, the separability between building and
pavement and forest and grass was improved, and misclassifications were significantly reduced
compared with the results using the Max-Min method. However, the results contained many errors for
the building class, e.g., a black ginseng field located at the center of the site was misclassified as the
building class. This is because a black ginseng field with similar spectral characteristics was recognized
in the same building object because of using the roof surface of the navy as training data for the
building object. This result might be a good example of reducing the separability if the height between
different objects is similar, even though the SSI and nDSM are used as an additional band. However,
the new method showed the results of improving the misclassification accuracy between building
and pavement objects by classifying the building objects in advance. Additionally, misclassification
between forest and grass objects was significantly reduced. However, we observed an error in which
the bare soil object is classified as the building class on the bottom right of the site. We confirmed that
the distortion generated during DTM generation propagates to the building detection process, and the
errors affect the final classification results.
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The classification results for site 3, consisting of apartment buildings, are shown in Figure 8. Site 3
shows misclassification between building and pavement objects having similar spectral characteristics
because there are many roof surfaces composed of concrete compared with the other sites. Although
the Max-Min method in Figure 8b is a pixel-based algorithm, it was confirmed that apartment objects
are well classified as the building class. However, we observe a problem in which the pavement
objects are misclassified as the building class. In the object-based classification results using SSI and
nDSM shown in Figure 8c, omission errors in which an apartment roof was classified as the bare soil
class were found more often in site 3 than in sites 1 and 2, possibly because of similar SSIs at site 3.
When using the new method, the objects are correctly extracted, although small omission errors of the
apartment located on the left side were observed. This can be confirmed by Figure 8d as an effect of
output-level fusion.
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The results for objects in site 4, having similar spectral characteristics, such as for building roof
surfaces and road surfaces, can be observed in Figure 9. The classification results using the Max-Min
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method produced errors between building and pavement objects and provided a low classification
performance. The method using SSI and nDSM effectively reduced the occurrence of misclassifications
among the building, pavement, and concrete objects using the Max-Min method. However, omission
errors occurred in which certain buildings were classified as the bare soil class, and building roof
surfaces in shadows were classified as the shadow class. The new method demonstrated a benefit
because it is not affected by shadows, although a building boundary that is not properly extracted
in the segmentation process when applied to the aerial image causes missing errors. Vehicles on the
ground were observed due to the high spatial resolution of the aerial image, and black vehicles were
classified as shadows.
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Taken together, the new method does not require the process of acquiring training data for each of
the building roof colors, unlike comparative methods, because building objects were previously
assigned. Additionally, the method provides an advantage that it reduces commission errors
of other classes and generates high-quality classification results. Specifically, it has the effect of
considerably reducing the misclassification of building and pavement objects. It was confirmed that
the separability of objects having similar spectral properties is further improved using nDSM at the
four experimental sites.

To conduct a quantitative assessment, reference data were obtained for building, pavement, forest,
grass, and bare soil land types from aerial images as point types. We obtained 1455 points in site 1,
1863 points in site 2, 582 points in site 3, and 522 points in site 4 through the random sampling method.
Then, the overall accuracy was calculated by configuring the confusion matrix for a comparison of the
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classification results. Figure 10 shows the overall accuracy of the classification results when applying
the three classification techniques to the four experimental areas in the graph, and Table 2 summarizes
the measurements of the improved overall accuracy obtained using the new method.
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Table 2. Improved accuracies of the new method over the other methods.

Max-Min (%) SSI-nDSM (%)

Site 1 9.2 3
Site 2 6 ´0.9
Site 3 5.7 8.8
Site 4 24.8 4.8

In site 1, the new method achieved additional accuracy improvements of 3% and 9.2% over
the compared methods. The classification results using the Max-Min method included many
misclassifications between buildings and pavement or forests and grasslands, which led to a decreased
overall accuracy, while the classification results using SSI and the new method exhibited a high
classification accuracy for all of the classes. Although the new method showed an improvement of
6% compared with the accuracy of the Max-min method for site 2, it provided a 0.9% lower accuracy
than the classification using nDSM and SSI. The new method caused an error in which the bare soil
located on the bottom right was detected as a building area in the building detection process, reducing
the accuracy of the final producer for building class detection. In the Max-Min results, misclassifications
between building and pavement objects in site 1 were not observed. The three methods applied to site
2 exhibited a lower accuracy compared with the other three sites because of site 2’s characteristics.
This is because site 2 is primarily composed of a tree canopy and grass objects having similar spectral
information, and the accuracy of the DTM generation and building detection processes is reduced
in areas next to building and tree canopy objects. In site 3, the SSI and nDSM method produced
misclassifications between apartment roof and bare soil objects and building and pavement objects,
in contrast to sites 1 and 2. The Max-Min method exhibited a problem in which a parking line was
classified as the building class, and the accuracy of the building class is higher than that for other sites.
The new method had increased accuracies of 5.7% and 8.8% over the Max-Min and SSI-nDSM methods,
respectively, because it effectively decreases misclassifications between building and pavement objects
in the classification process through the previous assignment of the building class. In site 4, the
Min-Max method provided a lower accuracy compared with the other two methods, indicating that
the separability between building and pavement objects with similar spectral characteristics is not
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markedly improved using the Max-Min method. The SSI-nDSM method exhibited a problem in which
a shadow object on a building roof was not classified as either the building class or the shadow class.
This is because the spectral characteristics of the shadow affected the classification process more
strongly than did the SSI and nDSM characteristics of the pixels. However, the new method has an
advantage whereby the problem caused by the shadow is not observed because this method uses the
building information extracted from airborne LiDAR data. The new method showed a slightly lower
accuracy for the asphalt class, but it provides a higher classification accuracy than that provided by
comparable methods for other classes. Additionally, the new method showed improved accuracies of
24.8% and 4.8% over the Max-Min and SSI-nDSM methods, respectively.

The producer’s and user’s accuracies for the building class are shown in the graph in Figure 11.
A key point of this study is to improve the overall accuracy by mitigating the misclassification of
building objects. The improved value was calculated using the average value of the producer’s and
user’s accuracies. The results of the new method showed classification accuracies higher than 90% at
all of the experimental sites. It improved the accuracy from 9.31% to 24.26% over the Max-Min method
and from 4.55% to 12.4% over the SSI-nDSM method, indicating that the Max-Min method cannot
effectively use the height information of airborne LiDAR data for the experimental sites. The SSI-nDSM
method has an accuracy that is similar to that of the new method for the building class, except for the
misclassifications as bare soil in site 3. The new method improved the classification accuracy by solving
the misclassification problem among building, pavement, and shadow objects in the classification
process by performing output-level fusion.
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When analyzing the tendencies of the accuracies in Figures 10 and 11, we can confirm that the
total and building accuracies have a high correlation. This indicates that the classification accuracy
for buildings had a significant effect on the overall accuracy, which is more evident in areas with



Remote Sens. 2016, 8, 521 17 of 19

urban characteristics, such as sites 3 and 4. Specifically, in the classification of high-resolution optical
images, the accuracy for building objects directly affects the overall accuracy. Particularly, it greatly
affects the quality of the classification in the case of urban environments, which primarily include
building objects.

Consequently, the new method showed good performance in the quantitative accuracy assessment,
especially in terms of its strong ability to improve the accuracy by pre-assigning the building objects.
However, it is necessary to consider the following points when applying the new method. First, the
new method exhibits a good performance in urban areas, where buildings are often densely distributed,
whereas its effect is limited in forest areas and sub-urban areas that include sparse distributions of
buildings because the new method improves the classification accuracy by pre-assigning the building
class. Second, as observed in the final classification result, errors that occur in the DTM generation,
building detection, and output-level fusion processes can affect subsequent steps. They continuously
propagate and affect the final object-based classification results. Finally, objects such as automobiles,
sculptures, and benches in the high-resolution aerial images used in this study have been identified.
These objects can be generated with an error that is assigned to any category. Therefore, it is necessary
to consider an “assign them to any class” category. For example, this can be determined by a majority
filter that can be used as a replacement for the major class surrounding the objects.

5. Conclusions

High-resolution optical images suffer from a problem in which different objects have similar
spectral characteristics or the same object has different spectral characteristics. These problems are
more severe in urban environments and are exhibited most prominently by building objects. This study,
through the output-level fusion of data, presents an attempt to solve these problems by minimizing the
misclassification of building objects in high-resolution optical images. Therefore, the problems caused
by various spectral characteristics of building objects were addressed by applying information about
the building extracted from the airborne LiDAR data, which provides three-dimensional information
to the classification process that is applied to the aerial image.

The output-level-fusion-based classification method for aerial images and airborne LiDAR data
proposed in this study was applied to four experimental sites, and a comparative evaluation with
the Max-Min method and the SSI-nDSM method was performed. The new method, the Max-Min
method, and the SSI-nDSM method showed high precision, and the new method was found to improve
the overall accuracy typically by more than 5% compared with the comparative evaluation methods.
Additionally, the high and low patterns exhibited by the overall and building accuracies were similar.
This strengthens the theory that the classification accuracy of buildings has a significant effect on the
overall accuracy, which is more evident in areas with urban characteristics.

This study confirmed that the additional use of airborne LiDAR data is effective for the
classification of high-resolution optical images; particularly, it contributes to increasing the overall
accuracy and the accuracy of building classification. However, certain problems, such as the decrease
in DTM accuracy for mixed land cover areas and class allocation of small objects, were identified.
Therefore, we plan to conduct research to solve these problems in the future.
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