Early Detection of Summer Crops Using High Spatial Resolution Optical Image Time Series
Abstract
:1. Introduction
2. Materials
2.1. The Study Site
2.2. Satellite Images
2.3. Meteorological Data
2.4. Land Use Reference Data
2.4.1. Topographical Land-Parcel Information System
2.4.2. In Situ Data
3. Methodology
3.1. Study of Crop Phenology and Surface State
3.2. NDVI Thresholding
3.3. Selection of the Optimal Temporal Window
4. Results and Discussion
4.1. Multi-Year and Multi-Sensor Performance
4.2. Chronological Addition of Dates
4.3. Performance Per Crop Type
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
NDVI | Normalized Difference Vegetation Index |
RPG | Registre Parcellaire Graphique |
References
- Jones, P.D.; Lister, D.H.; Osborn, T.J.; Harpham, C.; Salmon, M.; Morice, C.P. Hemispheric and large-scale land-surface air temperature variations: An extensive revision and an update to 2010. J. Geophys. Res. 2012, 117, 2156–2202. [Google Scholar] [CrossRef]
- Dore, M.H.I. Climate change and changes in global precipitation patterns: What do we know? Environ. Int. 2005, 31, 1167–1181. [Google Scholar] [CrossRef] [PubMed]
- Vertès, F.; Jeuffroy, M.-H.; Justes, E.; Thiébeau, P.; Corson, M. Connaître et maximiser les bénéfices environnementaux liés à l’azote chez les légumineuses, à l’échelle de la culture, de la rotation et de l’exploitation. Innov. Agron. 2010, 11, 25–44. [Google Scholar]
- Jensen, C.R.; Orum, J.E.; Pedersen, S.M.; Andersen, M.N.; Plauborg, F.; Liu, F.; Jacobsen, S.E. A short overview of measures for securing water resources for irrigated crop production. J. Agron. Crop Sci. 2014, 200, 333–343. [Google Scholar] [CrossRef]
- Houet, T.; Corgne, S.; Hubert-Moy, L.; Marchand, J.P. Approche systémique du fonctionnement d’un territoire agricole bocager. L’Espace Géogr. 2008, 37, 270–286. [Google Scholar]
- McNairn, H.; Kross, A.; Lapen, D.; Caves, R.; Shang, J. Early season monitoring of corn and soybeans with TerraSAR-X and Radarsat-2. Int. J. Appl. Earth Obs. Geoinform. 2014, 28, 252–259. [Google Scholar] [CrossRef]
- McNairn, H.; Champagne, C.; Shang, J.; Holmstrom, D.; Reichert, G. Integration of optical and synthetic aperture radar SAR imagery for delivering operational annual crop inventories. ISPRS J. Photogramm. Remote Sens. 2009, 64, 434–449. [Google Scholar] [CrossRef]
- Waldner, F.; Lambert, M.J.; Li, W.; Weiss, M.; Demarez, V.; Morin, D.; Marais Sicre, C.; Hagolle, O.; Baret, F.; Pierre Defourny, P. Land cover and crop type classification along the season based on biophysical variables retrieved from multi-sensor high resolution time-series. Remote Sens. 2015, 7, 10400–10424. [Google Scholar] [CrossRef]
- Bastiaanssen, W.G.M.; Molden, D.J.; Makin, I.W. Remote sensing for irrigated agriculture: Examples from research and possible applications. Agric. Water Manag. 2000, 46, 137–155. [Google Scholar] [CrossRef]
- Seelan, S.K.; Laguette, S.; Casady, G.M.; Seielstad, G.A. Remote sensing applications for precision agriculture: A learning community approach. Remote Sens. Environ. 2003, 88, 157–169. [Google Scholar] [CrossRef]
- Hadria, R.; Duchemin, B.; Baup, F.; le Toan, T.; Bouvet, A.; Dedieu, G.; le Page, M. Combined use of optical and radar satellite data for the detection of tillage and irrigation operations: Case study in central Morocco. Agric. Water Manag. 2009, 96, 1120–1127. [Google Scholar] [CrossRef] [Green Version]
- Moran, M.S.; Alonso, L.; Moreno, J.-F.; Mateo, M.P.C.; de la Cruz, D.F.; Montoro, A. A Radarsat-2 quad-polarized time series for monitoring crop and soil conditions in Barrax, Spain. IEEE Trans. Geosci. Remote Sens. 2012, 50, 1057–1070. [Google Scholar] [CrossRef]
- Fieuzal, R.; Duchemin, B.; Jarlan, L.; Zribi, M.; Baup, F.; Merlin, O.; Hagolle, O.; Garatuza-Payan, J. Combined use of optical and radar satellite data for the monitoring of irrigation and soil moisture of wheat crops. Hydrol. Earth Syst. Sci. 2011, 15, 1117–1129. [Google Scholar] [CrossRef]
- Marais Sicre, C.; Baup, F.; Fieuzal, R. Determination of the crop row orientations from Formosat-2 multi-temporal and panchromatic images. ISPRS J. Photogramm. Remote Sens. 2014, 94, 127–142. [Google Scholar] [CrossRef] [Green Version]
- Dabrowska-Zielinska, K.; Inoue, Y.; Kowalik, W.; Gruszczynska, M. Inferring the effect of plant and soil variables on C- and L-band SAR backscatter over agricultural fields, based on model analysis. Adv. Space Res. 2007, 39, 139–148. [Google Scholar] [CrossRef]
- Duchemin, B.; Hadria, R.; Erraki, S.; Boulet, G.; Maisongrande, P.; Chehbouni, A.; Escadafal, R.; Ezzahar, J.; Hoedjes, J.C.B.; Kharrou, M.H.; et al. Monitoring wheat phenology and irrigation in central Morocco: On the use of relationships between evapotranspiration, crops coefficients, leaf area index and remotely-sensed vegetation indices. Agric. Water Manag. 2006, 79, 1–27. [Google Scholar] [CrossRef]
- Claverie, M.; Demarez, V.; Duchemin, B.; Hagolle, O.; Ducrot, D.; Marais Sicre, C.; Dejoux, J.-F.; Huc, M.; Keravec, P.; Béziat, P.; et al. Maize and sunflower biomass estimation in southwest France using high spatial and temporal resolution remote sensing data. Remote Sens. Environ. 2012, 124, 844–857. [Google Scholar] [CrossRef] [Green Version]
- Duchemin, B.; Fieuzal, R.; Rivera, M.A.; Ezzahar, J.; Jarlan, L.; Rodriguez, J.C.; Hagolle, O.; Watts, C. Impact of sowing date on yield and water-use-efficiency of wheat analyzed through spatial modeling and Formosat-2 images. Remote Sens. 2015, 7, 5951–5979. [Google Scholar] [CrossRef]
- Fieuzal, R.; Baup, F. Estimation of sunflower yield using multi-spectral satellite data (optical or radar) in a simplified agro-meteorological model. In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015; pp. 4001–4004.
- Zhu, X.F.; Zhu, W.Q.; Zhang, J.S.; Pan, Y.Z. Mapping irrigated areas in China from remote sensing and statistical data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 4490–4504. [Google Scholar] [CrossRef]
- Pena-Arancibia, J.L.; McVicar, T.R.; Paydar, Z.; Li, L.T.; Guerschman, J.P.; Donohue, R.J.; Dutta, D.; Podger, G.M.; van Dijk, A.; Chiew, F.H.S. Dynamic identification of summer cropping irrigated areas in a large basin experiencing extreme climatic variability. Remote Sens. Environ. 2014, 154, 139–152. [Google Scholar] [CrossRef]
- Hill, M.J. Vegetation index suites as indicators of vegetation state in grassland and savanna: An analysis with simulated Sentinel 2 data for a North American transect. Remote Sens. Environ. 2013, 137, 94–111. [Google Scholar] [CrossRef]
- Inglada, J.; Arias, M.; Tardy, B.; Hagolle, O.; Valero, S.; Morin, D.; Dedieu, G.; Sepulcre, G.; Bontemps, S.; Defourny, P.; Koetz, B. Assessment of an operational system for crop type map production using high temporal and spatial resolution satellite optical imagery. Remote Sens. 2015, 7, 12356–12379. [Google Scholar] [CrossRef]
- Immitzer, M.; Francesco Vuolo, F.; Atzberger, C. First experience with Sentinel-2 data for crop and tree species classifications in central Europe. Remote Sens. 2016. [Google Scholar] [CrossRef]
- Inglada, J.; Vincent, A.; Arias, M.; Marais Sicre, C. Improved early crop type identification by joint use of high temporal resolution SAR And optical image time series. Remote Sens. 2016. [Google Scholar] [CrossRef]
- Schwartz, M.D. Phenology: An Integrative Environmental Science; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2003; pp. 3–7. [Google Scholar]
- Ward, P.R.; Flower, K.C.; Cordingley, N.; Weeks, C.; Micin, S.F. Soil water balance with cover crops and conservation agriculture in a mediterranean climate. Field Crops Res. 2012, 132, 33–39. [Google Scholar] [CrossRef]
- Fieuzal, R.; Baup, F.; Marais Sicre, C. Monitoring wheat and rapeseed by using synchronous optical and radar satellite data—From temporal signatures to crop parameters estimation. Adv. Remote Sens. 2013, 2, 162–180. [Google Scholar] [CrossRef]
- Homolova, L.; Malenovsky, Z.; Clevers, J.G.P.W.; Garcia-Santos, G.; Schaepman, M.E. Review of optical-based remote sensing for plant trait mapping. Ecol. Complex. 2013, 15, 1–16. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef]
- Prince, S.D. High temporal frequency remote sensing of primary production using NOAA AVHRR. Appl. Remote Sens. Agric. 1990. [Google Scholar] [CrossRef]
- Rembold, F.; Atzberger, C.; Savin, I.; Rojas, O. Using low resolution satellite imagery for yield prediction and yield anomaly detection. Remote Sens. 2013, 5, 1704–1733. [Google Scholar] [CrossRef] [Green Version]
- Latouche, R. Etudes médiévales: Le haut moyen age. La france de l’ouest. Des pyrenees aux alpes. Cah. Civilis. Méd. 1967, 10, 486. [Google Scholar]
- Durand, Y.; Brun, E.; Mérindol, L.; Guyomarch, G.; Lesaffre, B.; Martin, E. A meteorological estimation of relevant parameters for snow models. Ann. Glaciol. 1993, 18, 65–71. [Google Scholar]
- Boissard, P.; Pointel, J.G.; Tranchefort, J. Estimation of the ground cover ratio of a wheat canopy using radiometry. Int. J. Remote Sens. 1992, 13, 1681–1692. [Google Scholar] [CrossRef]
- Denoroy, P.; Justes, E.; Gosse, G. Measuring the rate of soil coverage to estimate the chief characteristics of a colza crop before plant emergence. OCL 2000, 7, 118–123. [Google Scholar]
- Chern, J.S.; Wu, A.M.; Lin, S.F. Lesson learned from Formosat-2 mission operations. Acta Astronaut. 2006, 59, 344–350. [Google Scholar] [CrossRef]
- Hagolle, O.; Sylvander, S.; Huc, M.; Claverie, M.; Clesse, D.; Dechoz, C.; Lonjou, V.; Poulain, V. Spot-4 (Take5): Simulation of Sentinel-2 time series on 45 large sites. Remote Sens. 2015, 7, 12242–12264. [Google Scholar] [CrossRef]
- Rabaute, T.; Tinel, C.; Marzocchi Polizzi, S.; de Boissezon, H. Kalidéos, des images pour la science: Un instrument au service des applications thématiques. Rev. Fr. Photogramm. Télédétec. 2012, 197, 3–9. [Google Scholar]
- Hagolle, O.; Huc, M.; Villa Pascual, D.; Dedieu, G. A multi-temporal and multi-spectral method to estimate aerosol optical thickness over land, for the atmospheric correction of Formosat-2, LandSat, VENμS and Sentinel-2 images. Remote Sens. 2015, 7, 2668–2691. [Google Scholar] [CrossRef]
- Pan, Z.; Huang, J.; Zhou, Q.; Wang, L.; Cheng, Y.; Zhang, H.; Blackburn, G.A.; Yan, J.; Liu, J. Mapping crop phenology using NDVI time-series derived from HJ-1 A/B data. Int. J. Appl. Earth Obs. Geoinform. 2015, 34, 188–197. [Google Scholar] [CrossRef]
- Congalton, R.G. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ. 1991, 37, 35–46. [Google Scholar] [CrossRef]
January | February | March | April | May | June | July | August | September | October | November | December | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
2006 | − | 2 | 1 | 1 | 2 | 2 | 5 | 2 | 2 | 1 | 2 | − |
2007 | − | 1 | − | 1 | 1 | 1 | 1 | 2 | 2 | 1 | − | − |
2009 | − | 1 | 3 | − | 1 | 2 | 3 | 4 | 2 | 1 | − | − |
2010 | 2 | 1 | 2 | 3 | 2 | 2 | 5 | 3 | 4 | 1 | − | − |
2011 | 1 | 1 | 1 | 3 | 1 | − | 1 | 1 | 2 | − | − | − |
2012 | − | 1 | 1 | − | 1 | 1 | − | − | − | − | − | − |
2013 | − | 2 | 1 | 1 | − | 2 | − | − | − | − | − | − |
Years | 2006 Formosat-2 | 2007 Formosat-2 | 2009 Formosat-2 | 2010 Formosat-2 | 2010 Spot 5 | 2011 Spot 4 | 2012 Spot 5 | 2013 Spot 4 |
---|---|---|---|---|---|---|---|---|
Resolution [m] | 8 | 8 | 8 | 8 | 10 | 20 | 10 | 20 |
Dates of images | Mar-14 | Feb-23 | Mar-30 | Mar-2 | Mar-26 | Apr-8 | Feb-21 | Mar-4 |
May-2 | Apr-20 | May-3 | Apr-27 | Apr-10 | Apr-30 | Mar-24 | Apr-13 | |
May-27 | May-30 | Jun-6 | May-21 | May-23 | May-21 | May-3 | Jun-12 |
Years | 2006 Formosat-2 | 2007 Formosat-2 | 2009 Formosat-2 | 2010 Formosat-2 | 2010 Spot 5 | 2011 Spot 4 | 2012 Spot 5 | 2013 Spot 4 |
---|---|---|---|---|---|---|---|---|
Precision [%] | 97.12 | 95.17 | 98.32 | 96.72 | 94.61 | 96.60 | 99.04 | 90.01 |
False positive rate [%] | 1.23 | 2.78 | 6.68 | 3.63 | 5.10 | 1.83 | 0.52 | 4.61 |
Years | Dates | Precision [%] | False Positive Rate [%] |
---|---|---|---|
2007 | Feb-23 | 64.38 | 16.06 |
Feb-23/Apr-20 | 82.04 | 8.88 | |
Feb-23/Apr-20/May-30 | 95.17 | 2.78 | |
2009 | Mar-30/May-3 | 88.75 | 9.81 |
Mar-30/May-3 | 92.83 | 6.49 | |
Mar-30/May-3/Jun-6 | 98.32 | 6.68 | |
2013 | Mar-4 | 69.8 | 13.16 |
Mar-4/Apr-13 | 80.64 | 10.53 | |
Mar-4/Apr-13/Jun-12 | 90.01 | 4.61 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marais Sicre, C.; Inglada, J.; Fieuzal, R.; Baup, F.; Valero, S.; Cros, J.; Huc, M.; Demarez, V. Early Detection of Summer Crops Using High Spatial Resolution Optical Image Time Series. Remote Sens. 2016, 8, 591. https://doi.org/10.3390/rs8070591
Marais Sicre C, Inglada J, Fieuzal R, Baup F, Valero S, Cros J, Huc M, Demarez V. Early Detection of Summer Crops Using High Spatial Resolution Optical Image Time Series. Remote Sensing. 2016; 8(7):591. https://doi.org/10.3390/rs8070591
Chicago/Turabian StyleMarais Sicre, Claire, Jordi Inglada, Rémy Fieuzal, Frédéric Baup, Silvia Valero, Jérôme Cros, Mireille Huc, and Valérie Demarez. 2016. "Early Detection of Summer Crops Using High Spatial Resolution Optical Image Time Series" Remote Sensing 8, no. 7: 591. https://doi.org/10.3390/rs8070591
APA StyleMarais Sicre, C., Inglada, J., Fieuzal, R., Baup, F., Valero, S., Cros, J., Huc, M., & Demarez, V. (2016). Early Detection of Summer Crops Using High Spatial Resolution Optical Image Time Series. Remote Sensing, 8(7), 591. https://doi.org/10.3390/rs8070591