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Abstract: Monitoring the dynamics in wheat crops requires near-term observations with high spatial
resolution due to the complex factors influencing wheat growth variability. We studied the prospects
for monitoring the biophysical parameters and nitrogen status in wheat crops with low-cost imagery
acquired from unmanned aerial vehicles (UAV) over an 11 ha field. Flight missions were conducted
at approximately 50 m in altitude with a commercial copter and camera system—three missions
were performed between booting and maturing of the wheat plants and one mission after tillage.
Ultra-high resolution orthoimages of 1.2 cm·px−1 and surface models were generated for each mission
from the standard red, green and blue (RGB) aerial images. The image variables were extracted from
image tone and surface models, e.g., RGB ratios, crop coverage and plant height. During each mission,
20 plots within the wheat canopy with 1× 1 m2 sample support were selected in the field, and the leaf
area index, plant height, fresh and dry biomass and nitrogen concentrations were measured. From
the generated UAV imagery, we were able to follow the changes in early senescence at the individual
plant level in the wheat crops. Changes in the pattern of the wheat canopy varied drastically from
one mission to the next, which supported the need for instantaneous observations, as delivered by
UAV imagery. The correlations between the biophysical parameters and image variables were highly
significant during each mission, and the regression models calculated with the principal components
of the image variables yielded R2 values between 0.70 and 0.97. In contrast, the models of the nitrogen
concentrations yielded low R2 values with the best model obtained at flowering (R2 = 0.65). The
nitrogen nutrition index was calculated with an accuracy of 0.10 to 0.11 NNI for each mission. For
all models, information about the surface models and image tone was important. We conclude that
low-cost RGB UAV imagery will strongly aid farmers in observing biophysical characteristics, but it
is limited for observing the nitrogen status within wheat crops.

Keywords: unmanned aerial vehicle; leaf area index; biomass; nitrogen; NNI; crop surface model;
precision agriculture; remote sensing

1. Introduction

Recently, unmanned aerial vehicles (UAVs) have been introduced into agricultural research to
monitoring crops [1]. In contrast to satellite imagery and aircraft-based remote sensing, UAVs can
be used frequently during the entire growth period. The main benefits are simple mission planning,
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instantaneous operation with low man power and imaging below cloud cover [2]. By carrying low-cost
commercial camera systems, UAVs provide ultra-high resolution images of the crop canopy due
to the low flight altitude. Current developments in photogrammetric algorithms are specifically
adapted to the needs of UAV imagery. Thousands of images can be nearly automatically processed via
ready-to-use software to produce orthoimages or surface models. Because wheat is the crop grown with
the highest acreage [3] there is a strong interest in obtaining spatial and temporal information about
the wheat canopy in high resolution, e.g., to adapt nitrogen and pesticide application site-specifically
to improve production efficiency [4–6].

The periodic monitoring of the canopy biophysical parameters, such as biomass, leaf area
index (LAI) and plant height (PHT), is essential to understanding crop development, variations in
canopy reflectance and net ecosystem exchange or nitrogen and pesticide demand during the growth
season [7–9]. These parameters and derivatives are important for precision agriculture, remote sensing,
crop modeling, ecosystem modeling and climate modeling. Crop growth models use a wide range of
biophysical parameters to estimate future yield as input and validation [10,11]. Biophysical parameters
may further deliver vital information about the specific infection situation with fungal diseases to make
field-specific decisions on plant protection [12]. The availability of this information at the field scale
would enable a new generation of decision support systems that can optimize fungicide application in
winter wheat, e.g., the prototype “proPlant expert” precisely recommends maximum application rates
for up to three management zones within a field according to the yield expectation [7].

The monitoring of nitrogen (N) is an essential tool for investigating many metabolic and
structural processes in maturing wheat plants, such as yield formation and health status. Because
N is not immobilized in soils and an abundant reservoir of plant-available N is not present, it is
important for optimal crop production to supply N by applying fertilizer throughout plant growth.
However, excessive use of fertilizer eventually leads to unwanted N-leaching into groundwater or
N-contamination of surface run-off water, contributing to environmental pollution, which is to be
avoided [13]. The N status cannot be estimated from the leaf nitrogen content alone but biophysical
parameters of the wheat canopy should also be taken into account. For example, the nitrogen nutrition
index (NNI), i.e., the ratio between the actual N concentration (Nt) observed in the plants and the
critical N concentration related to dry biomass (Nct), has been used to reliably characterize the
N status of wheat crops during the vegetative period [14]. NNI values >1 indicate excessive N
supply (over-fertilization), whereas suboptimal N supply is indicated by values <1. Especially during
flowering and the grain-filling growth stage, NNI is a good indicator of N deficiency affecting grain
yield and grain protein [14,15].

Due to the complex interrelationship between many environmental factors, such as soil
heterogeneity, cultivation and land surface, the parameters described above show high spatial and
temporal variability so that a high measurement density would be needed to reflect their spatial
patterns within the field [16]. It has been shown that site-specific management strategies in the context
of precision farming increase management efficiency [4]. However, accurate measurements of these
parameters are time consuming or destructive. For example, the calculation of the NNI involves the
cutting of fresh biomass, subsequent drying and the determination of Nt using the Dumas or Kjeldahl
method in the laboratory [17].

To become more efficient, indirect methods using sensors for estimating those parameters have
been proposed and implemented. At the plot scale, sensor principles are available that enable on-spot
measurements without destructing the canopy, mostly with direct contact to wheat plants. For example,
leaf chlorophyll meters relate the light transmittance or fluorescence on leaf parts to chlorophyll content
and, by using certain indices, to leaf Nt [18]. The LAI can be modeled by devices measuring sunlight
interception in the wheat canopy using radiative transfer models [19]. Most of these principles involve
time-demanding measurements or sophisticated measurement protocols that can only be performed
manually in a stop-and-go mode. Their use for online or high-throughput measurements was discussed
only very recently in research, e.g., mobile LAI determination by sunlight interception [20].
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For the real-time determination of biophysical parameters and N status, many active sensing
approaches have been studied, such as LiDAR, optical sensors and ultra-sound sensors [21–24],
in addition to more refined solutions, e.g., the pendulum operating measurement principle
Crop-Meter [25,26]. These sensors are mainly installed within or up to two meters above the
canopy and are bound to a ground-driven vehicle such as a tractor. They have the advantage
that they deliver information about the wheat canopy immediately and in high resolution. Optical
sensors mostly use specific spectral vegetation indices (SVI) in the visual and infrared part of the
spectrum. The GreenSeeker® (Trimble, Sunnyvale, CA, USA) detect the reflection between 656 nm (VIS)
and 774 nm (NIR), whereas the CropCircle® (Holland Scientific Inc., Lincoln, NE, USA) allows for
more freedom in the choice of wavelengths by using different filters [23]. To map larger areas, spectral
vegetation indices (SVI) from satellite-based and aircraft-based remote sensing imagery have been
related to those parameters [27,28]. In contrast to proximal sensing, these data have lower spatial and
temporal resolution. UAV imagery might be able to close the gap between the plot scale, covered by
manual sensors and proximal sensors, and the regional scale, covered by traditional remote sensing,
because of their high spatial resolution and almost instantaneous availability for practitioners and
experts in agriculture. Most studies have investigated the relationship between biophysical parameters
and UAV imagery, e.g., biomass [29–33], LAI [34–38], plant height [30] and grain yield [39], whereas
fewer studies have shown the relationship between nitrogen and UAV imagery [31,35,40,41] in wheat
crops, so far. We summarized existing research studies relating UAV imagery with some agronomic
parameters of wheat crops in Table S1. Only Pölönen, et al. [31] investigated dry biomass and total
nitrogen content in combination with UAV hyperspectral imagery, which allowed them to calculate the
under or over nourishment of the wheat plants during crop growth using the NNI. To the best of our
knowledge, low cost UAV imagery has not been tried for estimating NNI in cereal crops. Moreover,
many studies examined only fields or parts of fields with sizes smaller than 3 ha.

The objective of our work was therefore to study the prospects of low cost UAV imagery for
monitoring biophysical plant parameters, N-content and NNI of wheat crops from a more practical
viewpoint closer to agricultural routines. Three UAV missions were carried out between booting
and maturity over an 11 ha field under soil-induced water deficit conditions and we acquired a large
set of aerial images with a consumer level camera. Based on that, ultra-high resoluted orthoimages
and surface models were computed through photogrammetric processing. We demonstrated the
applicability of UAV imagery for recognizing the spatio-temporal patterns of the wheat canopy
development, as observed in this field. Furthermore, we investigated the relationship of biophysical
parameters, i.e., plant height, LAI and biomass, as well as, nitrogen status, with the image variables
that were derived from the UAV imagery at specific dates. Regarding this relationship, we determined
its strength to model the spatial variability of those parameters with linear regression in order to fulfil
precision agricultural needs. This is important in order to establish a monitoring system for crop
variability that allows fast production of maps for end users such as farmers or agricultural services
adopting precision agriculture. This may improve typical applications of precision agriculture such as
variable rate fertilization or precision plant protection.

2. Materials and Methods

2.1. Test Site

The study was conducted within a field in Eastern Germany during the spring season in 2015
(51◦49′N, 12◦42′E). The soil development in the field was influenced by recent flood plain deposits of
the Elbe River. The main soil type is a fluvic cambisol and the soil texture varies between sand, loamy
sand and sandy loam. The crop grown was winter wheat (Triticum aestivum L. var. ‘Linus’). The seed
row distance was 0.12 m, and the average crop density was between 440 and 480 ears·m−2.
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2.2. UAV System and Flight Missions

We used a hexacopter (P-Y6, Hexapilots, Dresden, Germany) to carry a commercial camera system
to acquire the aerial images for this study (Figure 1). The hexacopter consisted of six propellers aligned
in a three arm mounting with two propellers attached to each arm using the push/pull principle for
failure safety. The navigation control system was a DJI Wookong M (DJI Innovations, Shenzhen, China)
with an integrated GNSS receiver, which enabled user-defined waypoint tracking. Power supply was
ensured with lithium polymer batteries (10,000 mAh/5 s). With this setup, including the camera,
approximately 15 min flight duration was achieved.
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Figure 1. Hexacopter P-Y6 with Sony Nex 7 used during the flight missions.

For image acquisition, we used a Sony Nex 7 point and shoot camera with the following
specifications: 24 megapixels, 23.5 × 15.4 mm sensor and E16 mm F2.8 fixed lens (Sony Corporation,
Tokyo, Japan). The camera was mounted onto a gimbal underneath the copter. The DJI software
triggered image capturing, and the position of the copter was recorded by a GPS device.

The flight missions were planned to cover approximately 13 ha of ground area. The orthoimages
and surface models were later clipped to 11 ha to correspond to the study area. Parallel tracks were
flown with a between-track distance of 11 m at an altitude of 50 m which is a side-lap of 60%. The
frequency of image capture was set to correspond to 60% image overlap. All images were taken from
near nadir position with a ground resolution of approximately 0.012 m·px−1.

2.3. Ground Truthing

Three flight missions (M1-3) were conducted over the wheat canopy during crop growth from
booting of the wheat plants until mature growth stages. An additional flight mission (M4) was
performed after tillage to yield a UAV image of the ground surface. Mission dates, weather conditions
and objectives of the flight missions are enlisted in Table 1.

Table 1. Flight mission objectives and environmental conditions during overflight.

Mission
Objective Processed Item ID Date Growth Stage Cloud Cover

[okta]
Wind Speed

[ms−1]

Crop canopy Orthoimage/Surface model M1 05-18-2015 BBCH * 41–47
(Booting) 8 2–3

Crop canopy Orthoimage/Surface model M2 06-04-2015 BBCH 61–71
(Flowering) 5 1–2

Crop canopy Orthoimage/Surface model M3 06-16-2015 BBCH 73–83
(Grain filling) 7 4

Ground model Surface model M4 07-31-2015 After tillage 8 4

Note: * Biologische Bundesanstalt, Bundessortenamt und Chemische Industrie (BBCH).
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For each mission, 20 locations were chosen with respect to the wheat variability observed at that
date. These locations were selected along the tractor lanes by eye. Locations were at least 2 m distance
from the tractor lane in order to be non-influenced by the clearing. At each plot, the ground area
spanned by 1 × 1 m2 was taken as the sample size. For georeferencing the UAV images, 20 panels were
laid out along a regular grid over the field within the tractor lanes with good visibility from above
before the flight missions. Panels and plots were located using the differential GPS HiPer Pro system
(Topcon Positioning Systems, Inc., Livermore, CA, USA) having a relative horizontal and vertical
accuracy of 3 mm and 5 mm.

At each plot, the plant height (PHT), LAI, fresh biomass (FBM), dry biomass (DBM) and Nt were
determined as agronomic reference measurements. The descriptive statistics and the abbreviations
used in this paper are summarized in Table 2. Wheat plants were classified according to the BBCH
growth stages code of Lancashire et al. [42]. Measurements of PHT were integrated by the measured
heights of the wheat plants using a folding yardstick at 10 random locations within the plot. LAI
was measured using the SunScan Canopy Analysis System type SS1 (Delta-T Devices, Cambridge,
UK). The LAI probe was positioned at 45◦ to the direction of the seed rows under the canopy, and
the reference sensor was in immediate proximity above the canopy without disturbing the incoming
sunlight. The LAI measurement was taken as an average of 10 individual measurements with the
probe repositioned each time within the plot. All wheat plants within the plot area were then cut
directly above the ground using a short reaping hook. FBM was determined immediately after cutting.
DBM was measured by drying biomass samples at 60 ◦C for 48 h in a compartment drier. The dry
plant material was milled and analyzed for Nt following the dry combustion method of Dumas [43]
using an elemental analyzer (Vario MAX CN Elemental Analyser, Elementar, Hanau, Germany).

Table 2. Descriptive statistics of the crop parameters measured at the sample plots for M1, M2 and M3.

Variable Abbreviation Unit Min Mean Max Standard
Deviation Median

Mission 1
Fresh biomass FBM kg·m−2 1.64 3.07 4.72 0.959 2.66
Dry biomass DBM kg·m−2 0.63 0.87 1.07 0.128 0.88
Leaf area index LAI 1.77 3.08 4.81 0.956 2.59
Nitrogen Nt % 1.44 1.95 2.75 0.298 1.94
Plant height PHT m 0.44 0.58 0.7 0.076 0.58

Mission 2
Fresh biomass FBM kg·m−2 1.56 2.88 5.02 1.099 2.43
Dry biomass DBM kg·m−2 0.66 1.02 1.46 0.051 0.96
Leaf area index LAI 2.15 3.66 6.29 1.140 3.52
Nitrogen Nt % 1.47 1.77 2.06 0.205 1.78
Plant height PHT m 0.45 0.61 0.82 0.111 0.58

Mission 3
Fresh biomass FBM kg·m−2 0.90 3.04 5.64 1.340 2.99
Dry biomass DBM kg·m−2 0.47 1.23 1.76 0.375 1.27
Leaf area index LAI 1.07 2.77 5.42 1.069 2.57
Nitrogen Nt % 1.02 1.36 1.70 0.192 1.36
Plant height PHT m 0.30 0.62 0.80 0.154 0.67

2.4. Image Pre-Processing

All aerial images were recorded in RAW data format and lossless converted to the tagged image
file format (TIFF) in standard RGB color space. The full camera calibration matrix, including non-linear
distortion coefficients, was estimated for the camera sensor using the Agisoft Lens software (v. 0.4.2,
Agisoft LLC, St. Petersburg, Russia) by repetitively taking photographs of a checkerboard pattern. The
Agisoft Lens software uses a pinhole camera model for lens calibration, and the distortion correction
is modeled by Brown’s distortion model. We used a number of radiometric pre-processing steps to
improve the final UAV image mosaicking and the surface model generation results, as shown below.
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These algorithms were programmed in Matlab 2015b. To reduce colorimetric alterations, the following
corrections were conducted only on the value channel of the HSV transformed aerial images. The
corrected HSV images were then transformed back to RGB space.

To diminish the effect of brightness reduction from the image center to the borders due to
the sensor optics, all images were empirically corrected using the vignette correction algorithm
proposed by Zheng et al. [44]. This processing involved calculating a mean image from a selection of
homogeneous aerial images (n = 80). In our case, images were selected that depicted only the wheat
canopy without prominent features such as trees. The further pre-processing steps were performed on
the vignette-corrected images.

For better photogrammetric processing, contrast-enhanced images were produced from each aerial
image. This was achieved by contrast limited adaptive histogram equalization (CLAHE). Each image
was divided into eight tiles. Within each tile, the contrast was enhanced by histogram equalization
following the Gaussian distribution. To avoid artificial boundaries, the neighboring tiles were then
joined using bilinear interpolation. The images corrected by CLAHE were used during the mosaicking
process and surface model generation.

Different incidence and viewing angles may result in unwanted radiometric variations in the
aerial images related to the bidirectional reflectance distribution function (BRDF). This effect was
reduced following the empirical BRDF correction algorithm suggested by Lelong et al. [35]. In
short, each image was block-wise averaged to a smaller representation of the image by bilinear
interpolation, then smoothed by Gaussian filtering and finally over-sampled onto the original image
with bi-cubic interpolation. Then, the inverted, smoothed values were subtracted from the original
values. Specifically, all images were subdivided into 400 × 400 pixel blocks, and the Gaussian filter
size used was a 3 × 3 pixel window. The BRDF set of images was used for the final texturing of
the orthoimage.

2.5. Photogrammetric Processing

The vignette-corrected and CLAHE pre-processed images were used in the semi-automated
processing flow of the photogrammetry software Agisoft PhotoScan (v. 1.2.4, Agisoft LLC, St. Petersburg,
Russia) to generate orthoimages and surface models for M1-4. The software implements Structure
from Motion to estimate a 3D point cloud from the overlapping aerial images [45]. Using feature
detection and description algorithms, key points between overlapping images that bear geometrical
similarities in their immediate surroundings were selected. In the first step, a sparse 3D point cloud
was generated to align the images and estimate the exact camera positions. We used the options ‘high’
and ‘generic’. In the second step, a dense, multi-view stereo reconstruction on the aligned image set
operating on the pixel level was applied that generated a dense 3D point cloud. For this, we used
the options ‘medium’ and ‘mild’ depth filtering. We used this setting because higher quality takes
exponentially more time and demands more computational resources. Prior tests with the software
showed “medium” as a good compromise with adequate processing time (4.6 cm/pix resolution error).
The mesh was generated using the option ‘height field’ to produce the orthoimages and the surface
models. To texture the orthoimages, the CLAHE pre-processed images were exchanged with the
BRDF-corrected images. The texturing was performed with the software-implemented color correction.
The ground resolution of the orthoimages was 0.025 m·px−1.

2.6. Extraction of Image Variables

We calculated a set of image variables from the orthoimages and the surface models at each
measurement plot to relate them to the agronomic reference measurements. The image variables were
computed from averaging the pixels within the plot areas. Furthermore, crop pixels were identified
to calculate crop coverage (CVR). This was achieved by first converting the respective orthoimages
into the LAB color space because we found the best discrimination between soil and vegetation in
the a-vector corresponding to the red-green variation of the images. Secondly, within the whole
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orthoimage, we randomly selected regions of interest (ROI) containing only soil-related pixels. These
ROIs were combined into a simple vector and the value given at the 90% percentile was used as a
threshold value to differentiate between soil and vegetation pixels in the measurement plots. CVR was
computed as the percentage of all vegetation pixels identified within a plot. All image variables are
described in Table 3.

Table 3. Image variables description and calculation basis.

Image Variable Description/Computation

CVR Percentage of crop pixels within plot area

EXG 1 Related to the green channel
(EXG = 2 green channel − red channel − blue channel)

RED 1 Red channel
BG 1 Ratio of the blue and green channel
RG 1 Ratio of the red and green channel
RB 1 Ratio of the red and blue channel

PHTUAV
2 Plant height from UAV images. Computed by subtracting the M4

surface model (ground surface model) from the M1-3 surface models.
Note: 1 Before computation, the red, green and blue channels were normalized by the sum of all channels.

2.7. Statistical Analysis

The relationships between the image variables and reference measurements were investigated
and tested for significant correlation using a Pearson correlation matrix for M1-3. Principal component
analysis (PCA) was conducted to explore the structural variation and dimensionality within all image
variables for M1-3. PCA was calculated using the correlation matrix to eliminate the influence of
different standard deviations among the image variables. Loading plots were used to summarize
the interrelationship between the image variables. Linear regression analysis was conducted using
the agronomic reference measurements as dependent variables. As independent variables, the scores
from the principal components (PC) that contributed sufficiently to the overall variance of the image
variables were used to prevent multi-collinearity in the regression models. The best models were
chosen by backward selection. Variables with p > 0.1 were deleted from the set of independent
variables [46]. For model comparison, we reported the adjusted R2 values according to Wherry [47].

The NNI was calculated using the approach of Lemaire and Salette [48]:

Nct = a DBM−b, (1)

NNI =
Nt

Nct
(2)

where Nct is the critical N concentration related to a specific dry biomass (DBM). Justes et al. [15]
specified the dilution curve for Nct statistically on wheat crops by proposing values for a = 5.35 and
b = 0.442, which were used for the NNI determination in this study.

All models were validated using an independent model and validation data set by splitting the
field equally in two halves orthogonal to the tractor lane direction. As validation criteria, the R2 of
validation (R2val) expressed as the squared Pearson correlation coefficient, the root mean squared error
(RMSE) and the mean error (ME) were calculated:

R2val =
cov (x, y)

var (x) var (y)
, (3)

RMSE =

√
∑n

i=1 xiyi

n
, (4)

ME = x− y, (5)
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where x and y denotes the reference and predicted values and x and y the means of the reference and
predicted values at the validation locations, n the number of validation points and cov and var the
covariance and variance, respectively.

3. Results and Discussion

3.1. Qualitative Assessment of the Acquired UAV Imagery

Three UAV missions were flown during the growing season on 5/18/15 (M1), 6/4/15 (M2) and
6/16/15 (M3). The phenological stages of the wheat plants ranged from booting with flag leaf sheath
extending (M1) to flowering (M2) to maturity (M3) (Figure 2). At the specific dates, the growth stages
varied to some extent spatially across the fields due to soil heterogeneity. Generally, at locations with
coarser soil texture, where water availability was lower, the growth stages tended to be more mature,
whereas plant biomass was underdeveloped. This differentiation gradually increased at later dates.
Plant diseases were not detected throughout all mission dates.
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Figure 2. Wheat canopies at the dates M1, M2 and M3.

The distribution of the RGB colors in the orthoimages was structured according to the spatial
variation of the plant coverage, growth stage, leaf vitality and degree of senescence (Figure 3). Darker
greenish colors indicate areas with denser crop canopy and higher plant vitality, whereas lighter
yellow-brownish colors are associated with sparser crop canopy and lower vitality. Soil-induced water
deficit stress reduced leaf area development and plant height, causing spatial variation in the crop
canopy throughout the field. It also invoked an earlier senescence of the leaves [49]. For M1, the
lighter-colored areas corresponded to average plant water content: 64%, LAI: 2.27 and dry biomass:
0.80 kg·m−2, whereas within the greenish areas, the same parameters were higher, with plant water
content: 74%, LAI: 3.61 and dry biomass: 0.92 kg·m−2. The effect of the soil-induced water deficit
stress increased from M1 to M3, leading to stronger structuring in the orthoimages with an advancing
image tone to more yellow and brown colors. This structuring and pattern indicates near-surface
sedimentological changes. They were established by the remnants of the former fluvial geomorphology
in the Pleistocene shaped by the floodplain of the river Elbe. At that time, differences in the river flow
rates caused a braided river system with lots of small river channels broken by temporary islands.
This resulted in highly local differences in soil texture, which is typical for the fields in this area and
invoked the patterning of the wheat canopy. As observed from the zoomed representations depicted in
Figure 4a–c, the wheat canopy completely changed within only a few days from M2 to M3. That change
cannot be observed from M1 and can only be vaguely outlined at M2. This sudden change emphasizes
the need of high temporal availability of aerial image data for cultivated land—an advantage of UAV
imagery over remote sensing imagery by satellite and airplanes due to its independence of cloud
conditions, its easy mission planning and low costs. Moreover, the high spatial resolution of the UAV
images allows the differentiation of these changes down to the individual plant level (Figure 4d).
Using these images in a geographical information system, farmers would be able to locate and monitor
changes in their crops with high accuracy over the entire field. Depending on the aim of the qualitative
assessment of the farmer this zoom level may become useful, e.g., plant diseases (yellow rusts) spread
from small nests.
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The same strong patterning as in the UAV imagery occurred in the surface models (M1-3) of the
wheat canopy. As observed in Figure S1, the patterning of M1 was not the same as the ground surface
model (M4). Thus, changes in the surface model of M1 may show differences in plant growth.
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3.2. Relationship between Agronomic Parameters and Image Variables

The biophysical parameters FBM, DBM, LAI and PHT were highly correlated with each other at
M1-3 (Table 4). Specifically, the correlation between LAI and FBM was high because plant water is
mainly stored in plant leaves, and plant water varied significantly in this field.

The correlations between the biophysical parameters and the image variables were significant in
most cases. Overall, the average correlation strength between all image variables and the biophysical
parameters increased from M1 to M3 (r = 0.64 < 0.73 < 0.82). This increase can be explained by the
higher variation and by the better differentiation of the image tone that was observed at the later
missions in the field. The image variables BG and RB were the most strongly correlated. Moreover,
PHTUAV, calculated from the surface models, had a valuable contribution to explaining the biophysical
parameters of the wheat canopy. From M1 to M3, the correlation of PHTUAV with FBM, DBM, LAI
and PHT was highly significant (r > 0.80). The only exception occurred at M1, in which PHTUAV was
somewhat more weakly correlated with DBM (r = 0.68). The weaker correlation can be explained by
dry matter being mainly stored in the wheat leaves and not in the wheat stems at booting stage. The
dry matter in the leaves does not significantly contribute to the actual plant height [50]. This result can
also be anticipated from the lower correlation of PHT with DBM at M1 compared to M2 and M3.

Table 4. Correlation matrix (Pearson) of the crop parameters (FBM—fresh biomass, DBM—dry
biomass, LAI—leaf area index, PHT—plant height, Nt—total nitrogen content) and image variables
(CVR—coverage, EXG—green SVI, RED—red channel, BG—blue green ratio, RG—red green ratio,
RB—red blue ratio, PHTUAV—plant height calculated from UAV). The grey color indicates the matrix
area with correlations of reference measurements vs. image variables.

Mission Variable FBM DBM LAI PHT Nt CVR EXG RED BG RG RB

M1 DBM 0.87
LAI 0.98 0.82
PHT 0.94 0.84 0.90
Nt 0.44 ns 0.23 ns 0.45 0.27 ns

CVR 0.71 0.63 0.69 0.77 −0.01 ns

EXG 0.69 0.52 0.73 0.73 −0.05 ns 0.83
RED 0.54 0.56 0.51 0.41 ns 0.53 −0.02 ns −0.16ns
BG −0.95 −0.82 −0.97 −0.93 −0.26 ns −0.78 −0.82 −0.42 ns

RG 0.02 ns 0.11 ns −0.01 ns −0.09 ns 0.43 ns −0.47 −0.68 0.82 0.14 ns

RB 0.88 0.80 0.87 0.78 0.52 0.43 ns 0.35 ns 0.85 −0.82 0.44 ns

PHTUAV 0.83 0.68 0.83 0.88 0.17 ns 0.76 0.74 0.26 ns −0.85 −0.18 ns 0.65
M2 DBM 0.97

LAI 0.94 0.93
PHT 0.94 0.90 0.90
Nt −0.06 ns −0.04 ns −0.16 ns −0.19 ns

CVR 0.81 0.78 0.82 0.86 −0.53
EXG 0.74 0.65 0.75 0.81 −0.48 0.89
RED 0.78 0.82 0.70 0.71 0.29 ns 0.47 0.26 ns

BG −0.92 −0.86 −0.89 −0.95 0.30 ns −0.92 −0.93 −0.59
RG 0.08 ns 0.20 ns 0.01 ns −0.04 ns 0.68 −0.31 ns −0.56 0.63 0.23 ns

RB 0.97 0.95 0.91 0.93 0.05 ns 0.75 0.70 0.86 −0.90 0.19 ns

PHTUAV 0.86 0.81 0.84 0.92 −0.38 ns 0.94 0.88 0.55 −0.94 −0.24 ns 0.82
M3 DBM 0.98

LAI 0.96 0.92
PHT 0.92 0.94 0.85
Nt −0.29 ns −0.32 ns −0.19 ns −0.49
CVR 0.88 0.92 0.77 0.96 −0.50
EXG 0.94 0.90 0.94 0.83 −0.35 ns 0.80
RED 0.87 0.80 0.85 0.74 −0.03 ns 0.71 0.78
BG −0.97 −0.92 −0.95 −0.86 0.28 ns −0.84 −0.98 −0.88
RG 0.41 ns 0.36 ns 0.38 ns 0.32 ns 0.31 ns 0.31 ns 0.19 ns 0.74 −0.39 ns

RB 0.94 0.87 0.94 0.80 −0.14 ns 0.75 0.90 0.96 −0.96 0.58
PHTUAV 0.92 0.95 0.85 0.98 −0.56 0.94 0.84 0.68 −0.85 0.23 ns 0.77

ns not significant at the 95% probability level.

In contrast, Nt was only weakly or not significantly correlated with the biophysical parameters
throughout all missions. We expected a significant correlation between RED and Nt because a
cross-correlation between the chlorophyll content in plant leaves and the nitrogen content exists.
Because chlorophyll absorbs light in the red wavelengths, it may cause variation in the RED image
variable or red-related SVIs, which could be related to Nt [51,52]. The correlation of Nt with the
image variables was generally higher than correlation with the biophysical parameters but it was still
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relatively weak. On M1 and M2, significant correlations between RED and Nt were found. However,
at M3, no significant correlation existed, which can be explained by the large appearance of senescent
plant leaves with no or little chlorophyll content left. The linear relationship between the chlorophyll
content and Nt breaks down when the vegetation becomes senescent [28]. As the wheat reaches
maturity, wheat leaves lose chlorophyll and N is used for grain development [14]. The best relationship
between the chlorophyll content and Nt was found near the flowering growth state for wheat [14,18].
RED and RG had the highest correlation with Nt at M2, whereas, at M3, the biophysically related
image variables PHTUAV and CVR were negatively correlated with Nt and RED was not correlated.

In Figure 5, the scree plots and the loading plots for the first few components were computed by
PCA using the correlation matrix of the image variables for each of the missions as extracted at the
measurement plots. The scree plots show the component variances against the components and the
loading plots show the degree of the relationship to a specific PC. Loading vectors that point in the
same or opposite direction indicate positively or negatively correlated variables whereas orthogonal
loading vectors highlight dissimilar variables.

Most of the variance explained by the image variables was projected onto the first three principal
components of the PCA as observed from the eigenvalues depicted in the scree plot (Figure 5).
The loading plots show a specific multivariate grouping of the image variables. Two main groups can
be identified: the image variables influenced by the red signal (RED, RG, RB) and the image variables
related to the blue signal and biophysical parameters (BG, EXG, CVR, PHTUAV). On M1 and M2, the
first group was mainly related to PC 2 whereas the biophysical group was related to PC 1 and PC 3.
At M3, the groups became similar.
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3.3. Modeling the Biophysical Wheat Parameters

We performed linear regression on PC 1-3 as independent variables. The relevant PCs were
chosen by backward selection with p < 0.1 (Table 5). All models were significant at p < 0.001. The best
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overall model fits were obtained at the later missions (M2 and M3) for FBM and PHT (R2 > 0.92), and
the lowest model fit was achieved by DBM at M1 (R2 = 0.70). Thus, model quality increased towards
the later dates. This gradient was most evident for DBM, due to the reduction of plant water within the
wheat canopy caused by senescence of the plant leaves. The image tone increasingly represented the
variation of dry biomass in the orthoimages of the later missions. Additionally, the contribution of PC 3
is more important at M2 and M3 because the plant height has a larger influence on DBM at flowering
and maturity than at booting. Overall, the contribution of the PCs varied between the models, and
in almost all cases, more than one PC was significant, which emphasizes the need to use different
image variables to estimate the biophysical parameters. For all models, PC 1 was a highly significant
predictor. Since CVR, PHTUAV and BG load highest on PC 1, it shows that these variables are relevant
for determining the biophysical parameters from UAV RGB imagery. However, the red-related image
tone variables, i.e., RED, RG and RB, which loaded strongly on PC 2, had an influence on most models.
Interestingly, the influence of PC 2 was relatively high for determining PHT, which means that the
image tone may also support the estimation of plant height derived from the UAV crop surface models.
Moreover, the inclusion of plant height information helps to linearize the other biophysical parameters
in wheat crops when observed over several growth stages [53]. Therefore, it is advisable to use both
the image tone and the surface models to estimate the biophysical parameters due to their strong
interrelationship within the wheat canopy.

Table 5. Linear regression results with validation for the biophysical crop parameters. The principal
components of the image variables (PC) were used as independent variables.

Variable Mission R2 Significance PC R2val (n = 10) RMSE (n = 10) ME (n = 10)

FBM M1 0.92 *** 1***, 2*** 0.93 0.46 −0.38
FBM M2 0.93 *** 1***, 2***, 3 0.87 0.53 −0.33
FBM M3 0.97 *** 1***, 2** 0.99 0.48 −0.40
DBM M1 0.70 *** 1***, 2 0.73 0.10 −0.06
DBM M2 0.89 *** 1***, 2*** 0.83 0.14 −0.08
DBM M3 0.94 *** 1***, 2**, 3** 0.94 0.21 −0.15
LAI M1 0.94 *** 1***, 2***, 3* 0.96 0.46 −0.41
LAI M2 0.83 *** 1***, 2 0.90 0.48 −0.15
LAI M3 0.90 *** 1***, 3* 0.93 0.48 −0.36
PHT M1 0.87 *** 1*** 0.87 0.06 −0.05
PHT M2 0.93 *** 1***, 2 0.90 0.06 −0.05
PHT M3 0.96 *** 1***, 2***, 3*** 0.88 0.15 −0.11

Significant at the * 0.05; ** 0.01; or *** 0.001 probability level.

3.4. Modeling the Nitrogen Status

The models for Nt were weaker than the models for the biophysical parameters (Table 6). The
importance of PC 2 specifically at M1 and M2 was related to the influence of the red-related image
tone variables because of their dependence on the chlorophyll content. A highly significant model was
only obtained for M2 (p < 0.001) during flowering due to the well-established physical relationship
between the chlorophyll content and Nt that can be observed during this growth stage. However, PC 3
also had a significant influence at M2 and M3 because of the increasing influence of PHTUAV and the
declining influence of the red image tone variables for determining Nt as was shown earlier in the
correlation matrix.

To calculate the NNI, we combined the DBM and Nt estimations using Equations (1) and (2).
The validation results are given in Table 7. For each mission, we obtained the same error of 0.11 NNI.
The NNI reference values indicated a slight undernourishment of the wheat crops, with most NNI
values smaller than 1.0, and the variability of the NNI was relatively small for the heterogeneous field
(Figure S3). The scatter plots showed a linear relationship between validations and predictions but
were influenced by some extremely erroneous predictions, specifically at M3.
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Table 6. Linear regression results with validation for the nitrogen content. The principal components
of the image variables (PC) were used as independent variables.

Variable Mission R2 Significance PC R2val (n = 10) RMSE (n = 10) ME (n = 10)

Nt M1 0.22 * 2* 0.43 0.20 −0.13
Nt M2 0.65 *** 1*, 2***, 3** 0.64 0.14 −0.08
Nt M3 0.40 ** 2**, 3* 0.24 0.17 0.05

Significant at the * 0.05; ** 0.01; or *** 0.001 probability level.

Table 7. Nitrogen nutrition index (NNI) validation results based on the linear regression results of Nt

and DBM calculated by Equations (1) and (2).

Variable Mission R2val (n = 10) RMSE (n = 10) ME (n = 10)

NNI M1 0.73 0.11 −0.09
NNI M2 0.58 0.11 −0.08
NNI M3 0.37 0.10 −0.03

4. Discussion

Compared to studies investigating proximal sensing to estimate biophysical crop parameters, the
UAV image variables were competitive. Several studies tested LiDAR systems from a tractor as an
online proximal sensing system for adapting application on the go. They related either the vegetation
volume or the reflection height (distance between crop surface and laser scanning unit) derived by
triangulation or time-of-flight of the reflected laser beam with biomass and LAI measurements. The
studies reported R2 values for FBM between 0.77 and 0.99, for DBM between 0.72 and 0.99 and for LAI
between 0.70 and 0.96 [22,54,55]. Sensing LAI was further investigated using a combined radiometer
and ultra-sound sensing system yielding an R2 value of 0.84 [24] and a mobile LAI system based on
canopy light transmittance yielding R2 values ranging from 0.73 to 0.86 [20] between the sensor and
LAI reference measurements.

These sensing approaches were not developed to map entire fields but to calculate application
rates from sensor measurements online. Similarly, UAV systems might be used this way by having a
cable-tethered UAV system flying in front of the application unit. This would enable greater influence
on the field of view because the UAV system’s flight altitude would not be fixed, in contrast to the
online sensors presented above [56]. Nevertheless, offline approaches, which are more related to UAV,
can represent an entire field as a parameter map. Specifically satellite remote sensing products have
been related to various biophysical parameters due to their large spatial coverage and their possibility
for regional and global upscaling. Studies that related common SVIs used in satellite-based remote
sensing such as normalized difference vegetation index (NDVI) or enhanced vegetation index (EVI)
with biomass and LAI reported relationships in a wide range from non-significant to highly significant.
These results depended on the specific SVI, the spatial and spectral resolution of the satellite system
and the growth stage [27,28,57,58]. The newer commercial satellites make it now possible to depict
the earth’s surface in sub-meter resolution. WorldView-3 (DigitalGlobe Inc., Longmont, CO, USA.),
for example, delivers imagery with 0.30 m (panchromatic) and 1.1 m (RGB) ground resolution [58]
with a revisiting time of less than five days. These properties are quite competitive with airborne or
even UAV platforms. However, cloud coverage may limit the use of satellites for monitoring during
crop growth. In addition, high scene prices and/or special order rules such as selling only large areas
(10 × 10 km) may hinder the adoption of these data for precision agriculture.

UAV systems can include information about the canopy volume of the wheat crops estimated
from point clouds calculated by the overlapped UAV imagery in addition to the spectral information
contained in the image tone which might be well suited to estimate biophysical crop parameters.
Bendig et al. [29] showed highly linear relationships between crop height measurements and plant
heights calculated from UAV surface models with an R2 of 0.92 over multiple growth stages in a
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controlled test site with different cultivars and N-treatments. Grenzdörffer and Zacharias [59] reported
an R2 between 0.60 and 0.72 within different cultivars. For comparison, when we pooled all the plant
height measurements from the missions into one data set, we obtained a relationship with an R2

of 0.85 (Figure S2). Hunt et al. [60] related the NIR, green and blue signal from a commercial camera
system recorded from an airborne platform with DBM and LAI measurements and reported significant
relationships with an R2 of 0.65 and 0.85, respectively. LeLong et al. [35] modeled LAI with NDVI on
the basis of UAV imagery. They reported an RMSE between 0.5 and 0.6 LAI shortly before and after
flowering of durum and bread wheat.

In contrast to the biophysical UAV models, estimating the N status from UAV imagery was only
moderately competitive with studies investigating proximal or hyperspectral sensing. Erdle et al. [23]
investigated for its accuracy of Nt and NNI calculation a number of different proximal sensing systems
used for online application such as the GreenSeeker® and the CropCircle. They reported R2 values
between 0.41 and 0.83 for Nt or 0.52 and 0.91 for NNI shortly before flowering. Pölönen et al. [31]
investigated a hyperspectral UAV system and found an R2 value of 0.72 for Nt models. The study of
Chen et al. [61] investigated the relationship between different SVIs and nitrogen status calculated
from hyperspectral field measurements. They reported an error between 0.13 and 0.37% for Nt and an
error between 0.13 and 0.17 for NNI shortly before booting. The R2 ranged from 0.28 to 0.92, with an
error of 0.82 to 0.90 for NNI. However, they observed a larger range of Nt and NNI values compared
to the range in this study. They concluded that a mechanistic model that combines SVIs with a clear
theoretical basis, i.e., SVIs related with Nt and DBM, should be more conclusive for the estimation of
the NNI rather than the arbitrary use of SVIs, e.g., the NDVI. In the same way, UAV imagery can be
considered a large improvement over airborne and satellite imagery because the combination of crop
surface models with image tone variables provides a more direct approach to understand and model
the NNI spatial distribution within fields. In addition, the estimation of Nt is also easier because of
UAV imagery. Because the senescence of plant leaves is increasingly propagating within the wheat
canopy during the later growth stages, biophysical parameters become increasingly important to
describe Nt in the wheat canopy, and the use of PHTUAV derived from crop surface models becomes
more sensible for estimating Nt.

Online sensing delivers instant information about the crop variability. This is not possible with
UAVs today. However, online sensing has the strong limitation that it is ground and vehicle based.
The field of view of the measurement is quite narrow and linear along the driving direction. In contrast,
UAV images deliver spatial information about crop variation over the entire field without interpolation
as is with high spatial and temporal resolution. The offline approach of UAVs would also allow for
more insight rather than the “black box” online sensing approach.

According to Colomina and Molina [62], UAV missions should use an 80%–90% image overlap to
compensate for the instability of the platform. However, we did not experience any problems with
image alignment and dense cloud computing in Agisoft using the 60% overlap setting. Therefore, we
decided to use this more economical approach. Using the 80% setting would have increased mission
time about 50% and doubled up lithium polymer batteries (10,000 mAh/5 s). In addition, memory
storage for images and processing time for photogrammetry would have been increased drastically.
Having in mind that many fields in Eastern Germany are even larger than 50 ha, the 80% overlapping
approach is nearly unsuitably for farmers and even for agricultural services.

For adopting UAV to precision agriculture, the processing and analyzing of UAV images should
be as easy as possible. However, in this study they were a number of processing steps included that
might seem overstated. According to Lelong et al. [35] and Rasmussen et al. [63], UAV imagery should
be preprocessed to account for vignetting or BRDF effects. In this study, we used algorithms that
were openly described in the UAV literature and relatively simple to implement. Applying these
pre-processing algorithms on the images before photogrammetric processing had a visible effect on the
final UAV scene (Figure S4). Therefore, we decided to use the pre-processed UAV scenes for modeling.
Furthermore, we extracted the plant pixel from the sample plots to relate only those with the crop
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parameters at first. Of course, plant separation as well as computation of the coverage would need
some additional GIS analysis in order to work properly for mapping the entire image (field). Therefore
it would be preferably to skip this process altogether in order to oblige to a more simplistic image
processing. To prove this we extracted all image variables without segmentation on the basis of all
pixels within the sample area. The average correlation strength between all image variables and the
crop parameters did not change drastically. Therefore we decided to skip the plant separation step for
the image variables and used it only for calculating the CVR variable (coverage).

It has to be acknowledged that the image variables were strongly interrelated with each other
(Table 4). This might influence the linear regression due to the influence of multicollinearity. To avoid
this problem, one can transform the variables into an alternative space in which the transformed
variables become uncorrelated with each other. This can be avoided by using PCA. It is also a useful
tool to explore relationships between variables in a more holistic way since most of the variance of
the image variables is summarized within a few principal components (PC). To some extent, PCA
is affected by strong non-linear behavior of the input variables. In our case, we do not see severe
non-linearities among the image variables itself that would justify a more sophisticated non-linear PCA
analysis to reduce the dimensionality such as kernel PCA. In order to back up the linear dimension
reduction approach, we used the Kayser-Meyer-Olkin criterion and calculated the measure of sampling
adequacy (MSA). The MSA value for the complete correlation matrix was 0.71. This is classified as
middling (quite good). No MSA value was lower than 0.6 [64]. Of course, image variables and crop
variables tend to have non-linear relationships in later growths stages. To some extent, this was
reduced by summarizing the image variables via PCA into components (Figure S5).

5. Conclusions

With low-cost UAV imagery based on an RGB consumer-level camera, we were able to compute
ultra-high resolution orthoimages and surface models from a cultivated 11 ha wheat field even by
using only a 60% image overlap. We observed the development of spatial patterns in the wheat canopy
from booting to grain filling with three flight missions and were able to qualitatively assess the changes
in the wheat canopy down to the individual plant level.

Various biophysical parameters, i.e., the leaf area index, fresh biomass, dry biomass and plant
height, were highly correlated with the blue-channel-related ratios, the plant height calculated from
the surface models and the plant coverage calculated from thresholding the UAV imagery. Both the
image tone and the surface models derived from the UAV imagery were important to describe the
spatial variability of the biophysical characteristics observed in the wheat canopies. Linear regression
models for these parameters with principal components calculated from the image variables yielded
R2 values between 0.70 and 0.97 for the entire data and 0.73 and 0.99 for the validation. Our study
revealed that even under water-deficit conditions, UAV imagery can be used to estimate biophysical
parameters properly. For example, deriving biomass or LAI maps from UAV imagery would help to
establish irrigation systems more properly or improve plant disease forecasting.

Modeling the N content yielded only low R2 values, with the best model obtained at flowering
growth stage, with an R2 of 0.65. The red image tone variables were the most important predictors
because the red signal is influenced by chlorophyll absorption and chlorophyll can be related to the
N content. During the later missions, the plant height and coverage derived from the UAV images
became important because with further propagation of senescence, chlorophyll content decreases in
the wheat leaves. When calculating the N status with the NNI, we obtained a constant error over all
missions, with 0.10 to 0.11 NNI. However, the errors obtained here were comparable to other studies
conducted with hyperspectral field measurements. The R2 values might be underrepresented due
to the low N variability because of the soil-induced water deficit stress conditions. Therefore, the
prospects for low-cost RGB UAV imagery might be limited for wheat crops under these conditions to
observe the spatial variability of N and NNI because the RGB image tone was only broadly related
to changes in N during the flowering growth stage. However, the combination of morphological
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information, calculated from surface models, and the image tone is sensible for observing the NNI
because it is dependent on the biophysical and biochemical characteristics of the wheat crops. Future
studies should be focused on the relationship between UAV imagery and NNI under more variable
N conditions using low cost RGB cameras and hyperspectral UAV sensing should investigate wheat
crops under water-deficit conditions.

Supplementary Materials: The following are available online at www.mdpi.com/2072-4292/8/9/706/s1.
File_S1.csv. The data of the extracted image variables and the crop parameter are given as a semicolon-separated
data file. Table S1. Results of research studies relating UAV imagery with some agronomic parameters of wheat
crops. Figure S1. Surface models derived from UAV images with 60% overlap. M1 shows the wheat canopy
heights at BBCH 41-47, and M4 shows the surface heights of the tilled soil. Figure S2. Scatter plot of the plant
heights calculated from the surface models and the plant height measurements at the reference plots. Data were
pooled from M1-3. The correlation coefficient (Pearson) was significant at p < 0.001. Figure S3. Scatter plots of
the predictions and validations for the nitrogen nutrition index (NNI). Figure S4. UAV TIFF images before (top)
and after pre-processing (bottom). Figure S5. Scatter plot matrix showing the relationship between the image
variables and PC 1 with the crop parameters.
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