
remote sensing  

Article

Improved Detection of Human Respiration Using
Data Fusion Basedon a Multistatic UWB Radar
Hao Lv †, Fugui Qi †, Yang Zhang, Teng Jiao, Fulai Liang, Zhao Li and Jianqi Wang *

Department of Medical Electronics, School of Biomedical Engineering, Fourth Military Medical University,
Xi’an 710032, China; fmmulvhao@fmmu.edu.cn (H.L.); qifgbme@outlook.com (F.Q.);
yangzhang@fmmu.edu.cn (Y.Z.); jiaoteng@fmmu.edu.cn (T.J.); liangfulai@fmmu.edu.cn (F.L.);
lizhaofmmu@fmmu.edu.cn (Z.L.)
* Correspondence: wangjq@fmmu.edu.cn; Tel.: +86-29-8477-4843
† These authors contributed equally to this work.

Academic Editors: Josef Kellndorfer, Randolph H. Wynne and Prasad S. Thenkabail
Received: 30 June 2016; Accepted: 13 September 2016; Published: 20 September 2016

Abstract: This paper investigated the feasibility for improved detection of human respiration using
data fusion based on a multistatic ultra-wideband (UWB) radar. UWB-radar-based respiration
detection is an emerging technology that has great promise in practice. It can be applied to remotely
sense the presence of a human target for through-wall surveillance, post-earthquake search and
rescue, etc. In these applications, a human target’s position and posture are not known a priori.
Uncertainty of the two factors results in a body orientation issue of UWB radar, namely the human
target’s thorax is not always facing the radar. Thus, the radial component of the thorax motion
due to respiration decreases and the respiratory motion response contained in UWB radar echoes
is too weak to be detected. To cope with the issue, this paper used multisensory information
provided by the multistatic UWB radar, which took the form of impulse radios and comprised one
transmitting and four separated receiving antennas. An adaptive Kalman filtering algorithm was then
designed to fuse the UWB echo data from all the receiving channels to detect the respiratory-motion
response contained in those data. In the experiment, a volunteer’s respiration was correctly detected
when he curled upon a camp bed behind a brick wall. Under the same scenario, the volunteer’s
respiration was detected based on the radar’s single transmitting-receiving channels without data
fusion using conventional algorithm, such as adaptive line enhancer and single-channel Kalman
filtering. Moreover, performance of the data fusion algorithm was experimentally investigated with
different channel combinations and antenna deployments. The experimental results show that the
body orientation issue for human respiration detection via UWB radar can be dealt well with the
multistatic UWB radar and the Kalman-filter-based data fusion, which can be applied to improve
performance of UWB radar in real applications.
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1. Introduction

In recent years, remote sensing of human targets with ultra-wideband (UWB) radar has attracted
increasing attention [1–17]. Since electromagnetic waves transmitted by UWB radar can penetrate
through obstacles, such as clothes, walls, building ruins, etc., this technology can be applied in many
areas, like medicine, public security, emergence rescue, and so on [1–4]. Especially, when a human
target is motionless, the main feature detected by UWB radar is the thorax motion due to his/her
respiration. Since the thorax motion is in order of millimeters, and severe attenuation may exist on
the propagation path of the electromagnetic waves, detection of human respiration using UWB radar
is a challenging task. To cope with this, many studies have been carried out and shown satisfactory
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results in the experiments [1–12]. However, one experimental condition was too simplified to accord
with the reality in most of the studies. For example, the volunteer subjects were positioned facing
toward the radar in [1–4,11,12], and the test person in [5,6] laid supine with their thorax directly towards
the antennas. However, a human target’s position and posture cannot be limited in advance in real
scenarios. One study has shown that, among multiple postures, such as backing towards the antennas,
the narrowband radar detected respiration was strongest when the test person was facing toward the
radar [18]. The result is consistent with radar detection principles, according to which the thorax motion
in the radar’s radial direction mainly contributes to the detected respiration, and a human target’s
postural variation might result in a decrease of the radial component of the thorax motion. Additionally,
the human breathing cross-section of UWB radar varies with the position [7]. Thus, uncertainty of a
human target’s posture and position leads to a key issue affecting the human respiration detected by
UWB radar, namely the detected respiration depends closely on body orientation with respect to the
radar. Since a human target’s body orientation cannot always be guaranteed to be facing toward the radar,
the respiratory-motion response contained in UWB echoes is much weaker than expected. This will result
in performance degradation of UWB radar when being applied in practice, especially for the applications
of non-line-of-sight (NLOS) detection of human targets, such as through-wall surveillance or trapped
victim search and rescue after an earthquake. According to the knowledge of the authors, only a few
studies have considered this issue [8–10]. For example, a hidden Markov model was designed to infer the
subject facing direction in [8], and a setup comprising multiple UWB transceivers was proposed to solve
the issue by choosing the channel with the highest signal quality [9]. However, the two studies aimed at
applying UWB radar in medicine, or, to be more specific, in sleep apnea monitoring. Their experiments
were carried out in free space, in which detection of human respiration using UWB radar is relatively
easy. Mainly for trapped victim detection in post-earthquake emergency rescue, the body orientation
problem of UWB radar has been referred to, but not provided any solution [10].

Inspired by the multi-channel and multi-transceiving techniques in [11–17,19,20], this paper
proposed a method to solve the body orientation issue based on a multistatic UWB radar.
Compared with UWB monostatic radars, namely single transmitting and single receiving antenna
that are collocated, various combinations of transmitting and receiving antennas in a multistatic
UWB radar form a multisensory system that provides spatial diversity, redundancy information,
multiplexing gain and so on [11–17,19,20]. However, for human target detection, multistatic UWB
radars are mainly used for moving target location and tracking [13–17]. There is no study on improved
detection of human respiration using this type of radar. In the paper, the multistatic UWB radar took
the form of impulse radios and comprised of one transmitting and four separated receiving antennas.
Then, an adaptive Kalman filter was designed to fuse the UWB echo data from all of the receiving
channels to detect the weak respiration contained in those data. A Kalman filter is one of the most
widely used data fusion methods that has performed well in applications, like maneuvering target
navigation, biomedical signal processing and so on [21–26]. Especially for biomedical signal processing,
a Kalman filter has often been applied to extract or predict physiological signals, such as respiration
and ECG [24–26]. Compared with these signals, human respiration detected by UWB radar in NLOS
applications has a much lower signal to noise ratio. So, to investigate the feasibility of the method,
two types of targets were used in the experiment. One was a volunteer that curled upon a camp bed
behind a brick wall. The other was an artificial breathing object that imitated the thorax motion due to
respiration and moved perpendicularly to the radar’s radial direction. In the experiment, the radar
detected the weak respiratory motion response for both the targets based on the Kalman-filter-based
data fusion. Moreover, the radar’s performance was experimentally investigated based on its single
transmitting-receiving channels, and the data fusion algorithm’s performance with different channel
combinations and antenna deploys were experimentally investigated, too. The experimental results
show that data fusion based on a multistatic UWB radar system is feasible to solve the weak respiration
detection issue caused by the body orientation, and can be applied to improve the performance of
UWB radar for human target sensing in real applications.
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The paper is organized as follows: Section 2 presents detailed information about the method,
mainly describing the multistatic UWB radar, the Kalman-filter-based data fusion algorithm, and
the experiment setup; Section 3 illustrates the results from the experiment. Finally, discussion and
concluding remarks are given in Sections 4 and 5, respectively.

2. Materials and Methods

2.1. The Multistatic UWB Radar

The systematic diagram of the multistatic UWB radar is shown in Figure 1. The radar was
custom-made by the Fourth Military Medical University originally for multi-target human sensing or
location [11]. In this paper, it was used for the improved detection of human respiration. The system
can be divided into three functional sections: computer, radar host, and antenna array. The computer
is mainly used for parameter setting, data recording, and processing. The radar host is devoted to
pulse generation, transmission, receiving, sampling, etc. The pulse generator periodically produces
uniform pulses, which are shaped in the transmitter and then sent to the transmitting antenna. At the
same time, the pulses generated by the transmitter are sent to the delay unit to produce a range
gate that triggers the receivers to receive echoes at selective ranges. Therefore, UWB echoes are 2D
ones with range delay (hereafter referred to as range) and measuring time (hereafter referred to as
time) information. The delay unit is designed based on a multi-channel, digitized, step-controlling
technique. Each receiving antenna has its own receiver and analog-to-digital converter (ADC), which
forms an independent receiving or dada channel with the transmitting antenna. The UWB echoes are
synchronously received and sampled in those channels. Power supply isolation is designed among the
channels to mitigate coupling. The antenna array consists of five elements: one transmitting antenna
and four receiving ones. They are all of bow-tie dipoles. The antennas are connected to the radar
host via shielding coaxial cables, by which the position of the receiving antennas can be adjusted with
respect to that of the transmitting antenna. Moreover, the computer and the radar host communicate
through a USB cable. The UWB echo data from all receiving channels are restored and processed in the
computer, which essentially plays the role of a central unit for the multistatic system. The computer
has an Inter(R) Core(TM) i3-2120 CPU and 8 GB of memory.
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The key parameters of the radar are listed in Table 1. The signal mode of the radar is impulse,
which took the form of the second derivative of the Gaussian pulse with a width of 2 ns. The transmitted
pulses’ peak power is approximately 0.26 W. With the pulse repetition frequency for transmission
being 128 kHz, which led to a very low duty cycle, the transmitted pulses’ average power is about
−14.9 dBm. Moreover, the radar’s operating frequency is about 250–750 MHz (−10 dB). So the
power spectrum density (PSD) of the transmitted pulses can be estimated, namely −41.8 dBm/MHz.
It roughly complies with the FCC frequency mask for UWB communication, which is−41.3 dBm/MHz
for below 960 MHz. The receivers’ dynamic range is 80 dB and their noise efficiency is 3 dB. More
significantly for human respiration detection, the minimum step of the receivers controlled by the
delay unit could achieve 10 ps. By multiplying the propagation speed of electromagnetic waves, the
value was less than the thorax motion due to respiration. Thus, human targets’ respiration can result
in detectable range-variation in the IR-UWB echoes. No coherent integration of pulses is used in the
receivers. Additionally, the ADC’s accuracy is 16 bits.

Table 1. Key parameters of the multistatic UWB radar.

Parameter Value

Signal mode impulse
Transmission peak power 0.26 W
Pulse repetition frequency 128 kHz

Operating frequency 250–750 MHz
Receiver dynamic range 80 dB

Receiver sensitivity 3 dB
ADC accuracy 16 bits
Minimum step 10 ps

2.2. The Data Fusion Algorithm

The processing flow of the data fusion algorithm is shown in Figure 2. The algorithm involves the
following main steps:
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(1) Preprocessing. This step is performed inner each channel to eliminate clutters and noises for
all of the receiving channels. Firstly, averaging and down-sampling is performed on the UWB echo
data in its time and range dimension, which not only improves the signal-to-noise-and-clutter ratio
(SNCR) of the data, but also reduces its size for computational efficiency [5,6]. Secondly, a motion
filter, more exactly, a windowed mean subtraction along the time dimension of the data, is applied to
remove those stationary background clutters caused by scattering of the obstacles and human body [6].



Remote Sens. 2016, 8, 773 5 of 19

Thirdly, the time series at all ranges in the data are normalized in power, which compensates for the
sensitivity unbalance among the receiving channels.

(2) Target association. This involves associating detected respiratory-motion responses from all of
the receiving channels belonging to the same target. Target association is one of the most important
issues for data fusion especially in the case of multi-target detection, which has been specifically
examined in related works. Mainly considering single-target detection, the issue was not an emphasis
in this paper and was realized according to the a priori range information of the target. By the way,
the issue might be automatically realized based on confocal imaging of the human target via UWB
radar [14]. After this step, four records of waveforms that belonged to the target are detected and then
fused by Kalman filtering.

(3) Kalman filtering. Kalman filering is carried out based on the knowledge of the process model
and stochastic model of a dynamic system or process. Typically, the process model takes the form of a
linear state-space model as follows:

xk+1 = Akxk + wk (1)

zk = Hkxk + vk

where xk denotes the state vector in time index k and zk denotes the measurement vector, and Ak
denotes the state transition matrix and Hk the measurement matrix. These two equations are usually
referred to, respectively, as the process equation and the measurement equation. So, wk and vk
represent, respectively, the process and measurement noises with means and covariances:

E {wk} = E {vk} = 0

E
{

wivj
T
}
= 0

E
{

wiwj
T
}
=

{
Qi, i = j
0, i 6= j

(2)

E
{

vivj
T
}
=

{
Ri, i = j
0, i 6= j

where E {·} denotes the expectation and {·}T denotes the transpose. The Qi and Ri are the covariance
matrix of process noise and measurement noise, respectively. By minimizing the posteriori estimate
error covariance E

{
ekek

T} in a least square sense, where ek = xk − x̂k is the error between xk and its
optimum estimation x̂k, the time update equations for Kalman filter can be derived as:

x̂−k+1 = Akx̂k (3)

P−k+1 = AkPkAk
T + Qk

where x̂−k denotes the a priori state estimate at time index k given knowledge of the process; x̂k denotes

the posterior state estimate at k given the measurements; P−k = E
{

e−k e−k
T
}

where e−k = xk − x̂−k , is the

priori estimate error covariance; Pk = E
{

ekek
T} where ek = xk − x̂k, is the posterior estimate error

covariance. The Kalman measurement update equations are:

Kk = P−k Hk
T
(

HkP−k Hk
T + Rk

)−1

x̂k = x̂−k + Kk
(
zk −Hkx̂−k

)
(4)

Pk = (I−KkHk) P−k
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where Kk is the Kalman gain that determines the updating weight between new measurements and
predictions from the dynamic model.

To apply the above equations for human respiration detection, a proper dynamic model should
be first designed to describe the breathing process of human targets. Several models have been
proposed for the purpose, i.e., the constant velocity (CV) model, the constant acceleration model (CA),
and the interacting multiple model (IMM) [26]. Due to having no need of precisely predicting the
respiratorymotion, the simple CV model was used in this paper. Thus, the state vector is defined
as xk = {xk, vk}T where xk and vk denote the position and velocity of the moving thorax due to
respiration, respectively. The state transition matrix Ak is treated as a time-invariant matrix A, which
is defined in the model as:

A =

[
1 ∆t
0 1

]
(5)

where ∆t is the sampling interval of the detected waveforms after the target association. Based on the
above definition, the CV model is given by:[

xk+1
vk+1

]
=

[
1 ∆t
0 1

] [
xk
vk

]
+

[
0
1

]
wk (6)

In this way, the human respiration is modeled as a process of position varying at the constant
velocity, and the noise on the velocity describes random acceleration/deceleration that allowed for the
direction change of the position.

There have been two approaches for data fusion using Kalman filtering, namely measurement
and state vector fusion [27,28]. The former one was used in this paper, where the detected waveforms
(after the target association) from all receiving channels were directly integrated into an augmented
measurement vector in a centralized scheme to achieve optimum performance [28]. In this way,
the measurement vector is zk =

{
z1

k, z2
k, z3

k, z4
k
}T where zi

k, i = 1, 2, 3, 4 denotes the waveforms from
channel 1, 2, 3, and 4, respectively. Then the data fusion is realized by expanding the measurement
matrix Hk to zk according to the measurement in Equation (1). In this paper, Hk is also treated as a
time invariant matrix H as follows:

H =


1
1

0
0

1
1

0
0

 (7)

Thus, the measurement noise covariance matrix becomes Rk = diag
[
R1

k, R2
k, R3

k, R4
k
]
, where

Ri
k, i = 1, 2, 3, 4 denotes the noise covariance of the detected waveforms from channel 1, 2, 3, and

4, respectively.
Another key issue of applying Kalman filter for data fusion is to identify the process and

measurement noise covariance in the state space model. Incorrect identification of these two parameters
would lead to performance suboptimality and divergence problems. For identification of the process
noise covariance, the adaptive-fading-factor approach in [23] was used in this paper. The approach
uses a factor αk to scale the process noise covariance Qk in (3), namely Qk+1 = αkQk. Based on the
concept that the actual innovation covariance estimated from the measurements and the theoretical
innovation covariance should be equal, αk is defined as follows:

αk =
trace(E{dkdk

T})
trace

(
HkP−k Hk

T + Rk

) (8)

where trace (·) denotes the trace of a matrix, dk = zk −Hkx̂−k denotes the actual innovation sequence
and HkP−k Hk

T + Rk the theoretical innovation covariance. The identification of Rk is usually easier
than that of Qk. In this paper, the noise covariance of the detected signals from each channel Ri

k was
updated by estimating the stand deviation (std) of differentiated short-time signal segment ∆zi

k [20]:
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Ri
k =

std
(
∆zi

k
)

√
2

(9)

Based on the above description, the schematic diagram of the Kalman filtering is shown in
Figure 3. The algorithm can be divided into two iterative modules: the time update equations and the
measurement update equations. Below the two modules are the adaptive identification processes of
the process and measurement noises, respectively.
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2.3. The Experiment Setup

The experimental setup is shown in Figure 4. The experiment was carried out through a brick
wall of 28-cm thickness in the Bio-radar Laboratory, Fourth Military Medical University, Xi’an, China.
On the floor behind the wall, there were coordinates of ranges and angles with the origin being the
transmitting antenna. The antennas of the multistaticUWB radar were deployed as a line array in
which the receiving antennas were placed close with the transmitting one. The antenna array was
about 1.1 m above the floor. In the experiment, the time window of the multistatic UWB radar was set
as 0–60 ns. The parameter, which corresponds to the range dimension in the 2D UWB data, determines
the detection range of the radar. By multiplying the propagation speed of electromagnetic waves,
the time window theoretically ranges from 0 m to 9 m in free space. Additionally, the sampling
number in the range of the data was set as 2048. This means that the 0–60 ns range is quantified
into 2048 points. The measuring speed in the time of the data was set as 64 Hz. For a measurement
duration being about 80 s, this means that 64× 80 records of data are measured. Given the sampling
number, each record contains 2048 data points. The UWB raw data were stored and processed in the
computer. All the processing algorithms were implemented in the MATLAB (Mathworkd Inc., Natick,
MA, USA) environment.
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Two types of measurement were performed by using different targets. In the first one, as shown
in Figure 5, a healthy volunteer (25 years old, male) was measured by the radar. During the
measurement, he curled upon a camp bed behind the wall and with his feet pointing to the transmitting
antenna. By the posture, his body orientation was nearly parallel to the radar’s radial direction. Thus,
the respiratory-motion response in the UWB echoes was theoretically much weaker than that when
his thorax faced to the radar. Additionally, the volunteer was measured at three different positions,
namely (4 m, 0◦), (6 m, 0◦), and (6 m, −20◦) away from the transmitting antenna. Under the scenarios,
performance of the multistatic UWB radar and the data fusion algorithm for improved detection
of weak respiration was investigated. During the measurement, the volunteer kept motionless and
breathed freely. At the same time, he the counted number of his breaths. The number was then used
to figure out the respiration rate, which would provide a comparison for the results detected by the
UWB radar.
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Figure 5. Measurement of the volunteer that curled upon a camp bed with his feet pointing to the
transmitting antenna. In the figure, he was positioned approximately at (6 m, −20◦) away from the
origin, namely the transmitting antenna.

The other measurement used an artificial breathing object, which was shown in Figure 6a.
The breathing object used a servo motor to drive a precise gear-shaft module that can turn the
motor’s rotation into linear displacement. Then the module brought a reflector (a rectangular metal
plate) fixed above it in motion to imitate the thorax motion due to respiration. During the measurement,
the object’s frequency was set to 0.2 Hz and its displacement was ±1 mm. Additionally, the object
was placed to make its reflector move perpendicularly to the radar’s radial direction, or parallel
to the line of the antenna array. In this way, the object can hardly be detected by a monostatic
UWB radar, namely a transmitting-receiving pair in the multistatic system. Thus, the object was
detected using the multistatic UWB radar with the antenna array deployed the same as in the first
measurement. Since frequency and displacement of the object’s motion can be precisely controlled,
another two deployments of the antenna array were also tested: (1) as shown in Figure 6b, the receiving
antennas Rx1 and Rx2 were placed at a distance of about 0.75 m, and the receiving antennas Rx3 and
Rx4 about 1.5 m away from the transmitting one; (2) as shown in Figure 6c, the transmitting antenna
was moved about 1.5 m away from its original position. In the two antenna deployments, the object’s
motion was expectedly easier to be detected by adjusting the receiving or transmitting angle of the
multistatic UWB radar.
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Figure 6. Measurement of the artificial breathing object: (a) photo of the object; (b) the multistatic UWB
radar’s receiving antennas were separated from the transmitting one; (c) the transmitting antenna was
moved away from the receiving ones.

3. Experimental Results

3.1. Detection Results of the Volunteer Target

The UWB echo data measured from the volunteer target are preprocessed and shown in Figure 7.
The data corresponds to when the volunteer was positioned approximately (4 m, 0◦) away from
the transmitting antenna. In the figure, the preprocessed results are in grayscale color to present
the amplitude of the data. As aforementioned, the data are 2D with range and time information.
Thus, in the subfigures, the horizontalaxis denotes the time with the unit of second (s). After the
preprocessing, the measuring speed of the data (in the horizontal direction) changes from 64 Hz to
4 Hz by down-sampling in time. This means that the sampling interval ∆t in Equation (5) is equal to
1/4 s, which still satisfies the Nyquist sampling theorem for respiration detection. The vertical axis
denotes the range that corresponds to the time window of the radar. It should be noted that start point
of the time window and the dielectric constant of the brick wall was not calibrated. Thus, the range
takes the propagation time of the electromagnetic waves as the unit, i.e., nanosecond (ns). It is clear
that only irregular clutters and noises can be observed in the subfigures since the respiratory-motion
response contained in all data channels are too weak to be detected. Thus, the target association was
manually realized according to the priori range information of the target. As indicated by the blue
broken line in the figure, four time records of waveforms at the target’s ranges (29.4 ns in channels 1
and 2, and 28.8 ns in channels 3 and 4) were picked up for the data fusion.

Figure 8 presents the four time records of waveforms picked up from the data in Figure 7, and
the detected respiration after the data fusion. The left column of Figure 8 presents the time-domain
waveforms and the right column presents their power spectrum that was obtained by performing
discrete fast Fourier transform (FFT) on the waveforms. The sign “nu” in the figure represents
non-unit. The significant peaks due to the respiration can be observed from the power spectrum
except for that which corresponds to channel 4 (subfigures denoted as Ch3: 4 m & 0 deg) in the figure.
The detected respiration frequency is approximately 0.23 Hz. During the measurement, referring to the
experiment setup, the volunteer breathed 18 times in about 85.1 s duration. It meant that his respiration
frequency was approximately 0.21 Hz, which was essentially in agreement with the detected result.
Thus, the volunteer’s respiration was correctly detected by some single channels (channels 1, 2 and
3) of the multistatic UWB radar, as well as the data fusion of multiple channels. It should be noted
that the detected respiration by the latter appears to have a higher SNCR than those by the former.
In the data fusion results (subfigures denoted as Kalman: 4 m & 0 deg, Averaging: 4 m & 0 deg),
the Kalman method does not significantly outperform the simple averaging method. The latter was
realized by averaging all the waveforms in time and then calculating the power spectrum of the
averaging result. Figure 9 presents the time-domain waveforms (a) and their power spectrum (b)
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corresponding to the data when the volunteer was detected at the position (6 m, 0◦). From top to
bottom in the figure, the rows are, respectively, waveforms of channel 1, 2, 3, 4, and the data fusion
result. In the lower right subfigure (denoted as Kalman: 6 m & 0 deg), a frequency peak appeared
at 0.23 Hz by the Kalman data fusion method. This complies with the respiration frequency actually
counted during the measurement. By the fusion method based on the waveform averaging, the
respiration was not correctly detected (subfigures denoted as Averaging: 6 m & 0 deg). Additionally,
the correct frequency peak corresponding to respiration can hardly be observed from any channel of
the radar in the subfigures in the right column (denoted as Ch1: 6 m & 0 deg, Ch2: 6 m & 0 deg, Ch3:
6 m & 0 deg, Ch4: 6 m & 0 deg). This is due to the fact that the data in Figure 9 were measured when
the volunteer was positioned further than that in Figure 8, which led to a decrease of the UWB echo’s
SNCR. Figure 10 presents the results corresponding to the data when the volunteer was detected
at the position (6 m, −20◦). Compared with the position (6 m, 0◦), the volunteer’s respiration was
expectedly more difficult to be detected. However, as shown in the lower right subfigure (denoted as
Kalman: 6 m & −20 deg), the respiration was detected by the Kalman filtering method. The detected
respiration frequency is approximately 0.21 Hz. It should be noted that, although the correct frequency
appeared in two subfigures in the right column of the figure (denoted Ch4: 6 m & −20 deg, Averaging:
6 m & −20 deg), the SNCR for these subfigures was too low to be determine the presence of respiration
in practice (see the background noise peak around 0.1 Hz in Channel 4, denoted by the red arrow).
As shown in Figure 10, the detected respiration based on the Kalman filtering (denoted as Kalman:
6 m & −20 deg) appears to have a much higher SNCR than that based on the simple averaging.
It also presents better quality than the detected respiration based on the Kalman filtering in Figure 9
(subfigures denoted as Kalman: 6 m & 0 deg). This might be caused by the breathing variation
even using the same volunteer as the detection target in the two measurements. This is the reason
why the artificial breathing object was used to investigate the radar’s performance with different
antenna deployments.
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Figure 8. Four waveforms detected by the target association and the data fusion result (a) and their 
corresponding power spectrum in the frequency domain (b) when the volunteer was measured at the 
position (4 m, 0°). The rows from top to bottom are the waveforms from channel 1, 2, 3, 4 and the 
detected respiration, respectively. The detected respiration was fused by two methods: one is the 
Kalman filtering proposed in this paper and the other is a simple method based on averaging all four 
waveforms. 

To investigate the performance of the radar, the respiration detection algorithm in [6] and a 
single-channel Kalman filtering were used as reference to process the above data. The former 
algorithm adds an adaptive line enhancer (ALE) and a low pass filter (LPF) to the waveforms in 
Figure 8, Figure 9, and Figure 10. The ALE utilized the narrowband and periodic characteristics of 
respiration and performed adaptive filtering on the waveforms to enhance the respiration. Then, the 
LPF with a cutoff frequency of 0.5 Hz was used to further enhance the ALE output. For the latter 
reference algorithm, the waveforms in the figures were processed by the adaptive Kalman filter 
independently, where the measurement vector is ൛ݖ୩ ൟ,			݅ = 1, 2, 3, 4 and the measurement matrix ۶ 
becomes [1			0]. The results corresponding to the former algorithm are presented in Figure 11. Since 
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Figure 8. Four waveforms detected by the target association and the data fusion result (a) and their
corresponding power spectrum in the frequency domain (b) when the volunteer was measured at
the position (4 m, 0◦). The rows from top to bottom are the waveforms from channel 1, 2, 3, 4 and
the detected respiration, respectively. The detected respiration was fused by two methods: one is
the Kalman filtering proposed in this paper and the other is a simple method based on averaging all
four waveforms.

To investigate the performance of the radar, the respiration detection algorithm in [6] and
a single-channel Kalman filtering were used as reference to process the above data. The former
algorithm adds an adaptive line enhancer (ALE) and a low pass filter (LPF) to the waveforms in
Figures 8–10. The ALE utilized the narrowband and periodic characteristics of respiration and
performed adaptive filtering on the waveforms to enhance the respiration. Then, the LPF with a cutoff
frequency of 0.5 Hz was used to further enhance the ALE output. For the latter reference algorithm,
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the waveforms in the figures were processed by the adaptive Kalman filter independently, where the
measurement vector is

{
zi

k
}

, i = 1, 2, 3, 4 and the measurement matrix Hk becomes [1 0]. The results
corresponding to the former algorithm are presented in Figure 11. Since the respiratory characteristic in
time domain is not significant in the above figures, only the power spectrum is presented in the figure.
By the algorithm, the volunteer’s respiration was correctly detected from some channels (subfigures
denoted as Ch1: 4 m & 0 deg, Ch2: 4 m & 0 deg, Ch3: 4 m & 0 deg) only when he was positioned
at (4 m, 0◦). However, the detected respiration from these channels appears to have a much lower
SNCR than that detected by the Kalman filtering (subfigures denoted as Kalman: 4 m, 0◦ in Figure 8).
The results of the single-channel Kalman filtering were shown in Figure 12. As shown in the figure,
only when the volunteer was at (4 m, 0◦), his respiration was correctly detected from each single
channel. For the waveforms when the volunteer was at (6 m, 0◦) and (6 m, −20◦), the respiration can
hardly be detected even by the adaptive Kalman filtering in those single channels.
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Figure 9. Four waveforms detected by the target association and the data fusion result (a) and their
corresponding power spectrum in the frequency domain (b) when the volunteer was measured at
the position (6 m, 0◦). The rows from top to bottom are the waveforms from channel 1, 2, 3, 4 and
the detected respiration, respectively. The detected respiration was fused by two methods: one is
the Kalman filtering proposed in this paper and the other is a simple method based on averaging all
four waveforms.
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Figure 10. Four waveforms detected by the target association and the data fusion result and (a) their 
corresponding power spectrum in the frequency domain (b) when the volunteer was measured at the 
position (6 m, −20°). The rows from top to bottom were the waveforms from channel 1, 2, 3, 4 and the 
detected respiration, respectively. The detected respiration was fused by two methods: one is the 
Kalman filtering proposed in this paper and the other is a simple method based on averaging all four 
waveforms. 
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Figure 10. Four waveforms detected by the target association and the data fusion result and (a) their
corresponding power spectrum in the frequency domain (b) when the volunteer was measured at
the position (6 m, −20◦). The rows from top to bottom were the waveforms from channel 1, 2, 3, 4
and the detected respiration, respectively. The detected respiration was fused by two methods: one is
the Kalman filtering proposed in this paper and the other is a simple method based on averaging all
four waveforms.
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(4 m, 0◦) (a); the volunteer was at the position (6 m, 0◦) (b); and the volunteer was at the position
(6 m, −20◦) (c). The rows from top to bottom corresponds to channel 1, 2, 3 and 4, respectively.
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Figure 12. Results processed by the single-channel Kalman filtering: the volunteer was at the position
(4 m, 0◦) (a); the volunteer was at the position (6 m, 0◦) (b); and the volunteer was at the position
(6 m, −20◦) (c). The rows from top to bottom corresponds to channel 1, 2, 3 and 4, respectively.
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Moreover, the Kalman filtering performance was evaluated with different channel combinations.
To evaluate the performance of data fusion using these channel combinations, a band relative intensity
ratio (BRIR) was defined as:

BRIR =
i=imax+1

∑
i=imax−1

|P [i]|
/

i=NFFT/2+1

∑
i=1

|P [i]| ∗ 100% (10)

where |P [i]| denotes the power spectrum obtained using discrete FFT. imax denotes the peak index in
the power spectrum; NFFT denotes the point number of the discrete FFT. Taking the data measured at
(4 m, 0◦), for example, imax = 29 and NFFT = 512. Since imax corresponds to the frequency peak that
was caused by respiration, the BRIR could roughly quantify the SNCR for the detected respiration.
The band is expanded by imax − 1 and imax + 1, considering the resolution limit of the discrete FFT.
According to the definition, BRIR for data fusion results with different channel combination were
calculated and listed in Tables 2–4. As listed in Table 2, namely for the data measured at (4 m, 0◦), the
maximum value of BRIR achieves 5.76% when channels 1, 3, and 4 were fused together. In the case
of the result fused from all the channels, the BRIR is 4.51%. For the two cases, the power spectrum
of the detected respiration is shown in Figure 13. The band expansion in the BRIR is denoted by the
rectangular shadow in the figure. It is clear that the detected respiration fused from channels 1, 3 and 4
(the blue line) appears to have a greater SNCR than that fused from all of the channels (the red line).
Thus, the former has a higher BRIR. In table 3, the BRIR is 2.61% when the four channels were fused
together. This is much lower than the maximum value, which achieves 6.63% in the case of fusing
channels 1 and 4. Additionally, in Table 4, the BRIR achieves a maximum, namely 5.83%when channels
2, 3, and 4 were fused together, rather than in the case of fusing all of the channels. This means that the
fusion result in the latter case was not optimal for the three sets of data.

Table 2. BRIR for data fusion results with different channel combination of the multistatic UWB radar.
The data was measured when the volunteer was (4 m, 0◦) away from the radar.

Channel Combinations BRIR

2 channels
1 and 2 1 and 3 1 and 4 2 and 3 2 and 4 3 and 4

5.18% 5.55% 5.23% 3.88% 5.02% 4.59%

3 channels
1, 2, and 3 1, 2, and 4 1, 3, and 4 2, 3, and 4

5.26% 5.49% 5.76% 4.38%

4 channels 4.51%

Table 3. BRIR for data fusion results with different channel combination of the multistatic UWB radar.
The data was measured when the volunteer was (6 m, 0◦) away from the radar.

Channel Combinations BRIR

2 channels
1 and 2 1 and 3 1 and 4 2 and 3 2 and 4 3 and 4

2.66% 5.63% 6.63% 3.19% 4.02% 2.52%

3 channels
1, 2, and 3 1, 2, and 4 1, 3, and 4 2, 3, and 4

4.04% 5.31% 6.11% 2.21%

4 channels 2.78%

Table 4. BRIR for data fusion results with different channel combination of the multistatic UWB radar.
The data was measured when the volunteer was (6 m, −20◦) away from the radar.

Channel Combinations BRIR

2 channels
1 and 2 1 and 3 1 and 4 2 and 3 2 and 4 3 and 4

4.03% 3.62% 4.73% 3.99% 5.54% 5.22%

3 channels
1, 2, and 3 1, 2, and 4 1, 3, and 4 2, 3, and 4

4.15% 5.49% 4.54% 5.83%

4 channels 5.33%
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power spectrum (right column) with different antenna deployments: (a,b) the transmitting and 
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3.2. Detection Results of the Artificial Object

Detected results of the artificial breathing object are shown in Figure 14. The rows from top to
bottom correspond to the results detected by those antenna deploys described in Section 2.3. In this
extreme case, namely the reflector’s moving orientation perpendicular to the radar’s radial direction,
only subfigures e and f present the motion’s characteristics correctly. The detected respiration rate is
0.2 Hz, which accords with the frequency setting of the artificial object. The subfigures corresponds to
the antenna deploy that the transmitting antenna was moved away from the receiving ones. With this
deployment, the radar’s illumination angle was changed by adjusting the transmitting antenna from
its original position. Thus, the effective component of the object’s motion, as well as the cross-section
of the object, might increase to benefit for the detection.
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Figure 14. Detection results of the artificial breathing object (left column) and their corresponding
power spectrum (right column) with different antenna deployments: (a,b) the transmitting and
receiving antennas were placed close together; (c,d) the transmitting and receiving antennas were
placed separately; and (e,f) the transmitting antenna was moving away from the receiving ones.
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4. Discussion

In the experiment, the volunteer’s respiration was detected by the multistatic UWB radar when
he curled behind a brick wall at three positions. When he was poisoned at (4 m, 0◦), his respiration
was correctly detected by the Kalman fusion method. Based on the same experimental data, the
volunteer’s respiration detected from the radar’s single transmitting-receiving channel appeared lower
SNCR, even using the ALE and single-channel Kalman filtering algorithms. Then the volunteer was
positioned further from the radar, namely at (6 m, 0◦), which led to a weaker respiratory component
in the UWB echo data. In this case, the Kalman fusion method outperformed any single channel
significantly since the latter failed to detect the respiration correctly. When the volunteer was more
further positioned at (6 m, −20◦), the respiration detected by the Kalman fusion still appeared better
quality. This is due to the fact that the multisensory information is provided by the multistatic UWB
radar about the volunteer’s respiration. By fusing the information, the radar’s performance was
improved compared with the radar’s single transmitting-receiving channel. Additionally, based on
the priori CV model to describe the respiratory process, the Kalman-based fusion performed better
than the averaging-based fusion. In the experiment, the method was also investigated with different
antenna deployments using the artificial breathing object that moved perpendicularly to the radar’s
radial direction. The experimental results show that the object’s motion can also be correctly detected
in this extreme case when the transmitting antenna of the radar was deployed away from the receiving
antennas. This implies that the multistatic UWB radar’s performance can be further improved by
adding transmitting antennas with different illumination angles. In this way, information from more
data channels will be fused together. According to the data fusion results with different channel
combinations, it might produce suboptimal detection result based on the fusion scheme in this paper.
So, how to optimally combine the data channels, namely choosing representative observations under
blind conditions, will become a key issue for data fusion [20]. Moreover, future work will be performed
on detection of multiple human targets using the multistatic UWB radar. Under the scenario, the
difficulty of target association will be greatly increased. The Kalman filtering based on the linear CV
model might no longer be applicable, too. Thus, non-linear particle filtering might be used to cope
with the issue [19].

5. Conclusions

This paper presented a method to deal with the UWB-radar-based human respiration detection
problem caused by the human targets’ body orientation. The method used a multistatic UWB radar to
provide multisensory information about the thorax motion due to respiration, and an adaptive Kalman
filter to fuse those information together. The radar was based on impulse radios and had an antenna
array comprising of one transmitting and four receiving antennas. The Kalman filter used the CV
model to describe the breathing process of human targets, and the adaptive-fading-factor approach to
identify the process noises of the model. The method’s feasibility was investigated experimentally,
in which respiration of a volunteer that curled behind a brick wall and that of an artificial breathing
object was correctly detected. Thus, the method can improve the performance of UWB radar in
applications like through-wall surveillance and post-earthquake search and rescue.
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