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Abstract: Grid-based urbanization velocity analysis of remote sensing imagery is used to measure
urban growth rates. However, it remains unclear how critical the spatial resolution of the imagery is to
such grid-based approaches. This research therefore investigated how urbanization velocity estimates
respond to different spatial resolutions, as determined by the grid sizes used. Landsat satellite images
of the Pearl River Delta (PRD) in China from the years 2000, 2005, 2010 and 2015 were hierarchically
aggregated using different grid sizes. Statistical analyses of urbanization velocity derived using
different spatial resolutions (or grid sizes) were used to investigate the relationships between
socio-economic indicators and the velocity of urbanization for 27 large cities in PRD. The results
revealed that those cities with above-average urbanization velocities remain unaffected by the spatial
resolution (or grid-size), and the relationships between urbanization velocities and socio-economic
indicators are independent of spatial resolution (or grid sizes) used. Moreover, empirical variogram
models, the local variance model, and the geographical variance model all indicated that coarse
resolution version (480 m) of Landsat images based on aggregated pixel yielded more appropriate
results than the original fine resolution version (30 m), when identifying the characteristics of spatial
autocorrelation and spatial structure variability of urbanization patterns and processes. The results
conclude that the most appropriate spatial resolution for investigations into urbanization velocities
is not always the highest resolution. The resulting patterns of urbanization velocities at different
spatial resolutions can be used as a basis for studying the spatial heterogeneity of other datasets with
variable spatial resolutions, especially for evaluating the capability of a multi-resolution dataset in
reflecting spatial structure and spatial autocorrelation features in an urban environment.

Keywords: urbanization velocity; spatial resolution; empirical variograms; local variance model;
geographical variance model; spatial autocorrelation

1. Introduction

The rate of urbanization all over the world is quite alarming, with the proportion of the
world’s population living in urban environments projected to reach 66% by 2050 [1]. However, the
understanding of urbanization is primarily based on population figures obtained from the United
Nations; these statistics do not include any information on the population spatial distributions, or
evolution metrics of built-up areas within urban environments [2–4].

Urbanization, urban growth, urban sprawl and urban expansion are different concepts that
have caused much confusion in multidimensional urban systems analysis. For a differentiation, it
can be noted that urbanization can be viewed as a characteristic of the population as a particular
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kind of land use and land cover, as well as a characteristic of social and economic processes and
interactions affecting both population and land [5,6]. Urban growth mainly refers to an increase in
urban population size, independent of rural population [7]. Urban sprawl is treated as a process that
focuses on describing pattern of land-use in an urbanized area through eight distinct dimensions:
density, continuity, concentration, compactness, centrality, nuclearity, diversity, and proximity [5,8].
There is no specific definition of urban expansion—this concept is commonly used to describe urban
population, physical expansion, quality of urban layout, land and housing regulation and so on [9,10].
In most of real world situations, these terms cannot be clearly separated, since urbanization, urban
growth, urban sprawl and urban expansion are highly interlinked. However, it is important to realize
that the huge growth of urban population may cause uncontrolled urban growth, resulting in urban
sprawl and urban expansion. Urbanization may also result from and contribute to urban growth,
urban sprawl and urban expansion [5,9].

Although the complexity of these four terms and their ambiguous and partially overlapping
meanings make it difficult reach a consensus of a distinct urban phenomenon analysis, a variety
of urbanization parameters from the standpoint of the built environment have been proposed to
describe urbanization trends [11–14]. For instance, some of these used specific landscape spatial
metrics to characterize the configuration and composition of urban areas (e.g., [15–19]). While many
such parameters have been identified, it is generally difficult to distinguish between those that are
useful and those that are not. Some studies have measured the accessibility within each city on the basis
of gravity transportation modelling (e.g., [12,20,21]), but the acquisition of these transport network
datasets is problematic. Generally, there appears to be no consensus between those investigating urban
landscapes on the parameters to use for urbanization velocity evaluation. This research therefore
provides below a succinct review of the most widely accepted and commonly used parameters for
measuring urbanization in order to provide a descriptive framework that can be used for measuring
urbanization velocity [8].

A number of studies have also shown that remote sensing data and associated techniques are
advantageous for classifying, monitoring and analyzing urbanization and its development over time
at a range of scales, with an emphasis on mapping large areas at a time [22–24]. Urbanization velocity
(also called urban expansion speed) is defined as the annual growth rate of urban area within a
period. It indicates the absolute differences (in terms of footprints) of urban areas within a certain time
period [25]. The measurement of urbanization using remote sensing imagery has been widely used for
mapping, quantification, and documentation of the extent, growth rates, and percentage change in
urban areas [26–28], and can also be used to predict possible future urban growth [29,30]. Especially
the grid-based urbanization velocity analysis, which typically involves the use of a “grid-based moving
window” on remote sensing imagery to detect the spatial gradient changes of grid-based land use
and land cover [31–33], nighttime luminosity changes [30,34], population changes [35], or temperature
changes [36] through time, were popularly defined to describe the urbanization process. Grid-based
urbanization velocity analyses do not require extensive auxiliary data to obtain spatial-temporal urban
growth [27,37], it is able to avoid some of the redundancies of estimations that are caused by many
landscape parameters [8,38,39] when attempting to describe quantitatively the human settlement
patterns [37,40,41]. It aims to quantify the local urbanization velocity across a landscape [32,42,43].
Spatial and temporal grid-based gradient information can therefore provide consistent, spatially
explicit parameters that can be used to record the expansion of urban areas by estimating the speed
and direction of urban growth [28,44].

Grid-based urbanization velocity analyses are, however, sensitive to the size of the “grid”
(or the spatial resolution) used to compute spatial and temporal characteristic of the urbanization
process [32,45,46]. Grid-based urbanization velocity analyses can, in theory, be carried out at any
scale and descriptions of urban growth may therefore need to be tied to a specific scale. There is little
knowledge about the effects of spatial resolution on urban velocity analyses [47]. At very high spatial
resolutions, transitional patches of human settlement tend to be complex, while coarser resolutions
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tend to smooth out the effects of urbanization. By contrast, although a coarse resolution urbanization
velocity map may show more instances of the same urban expansion features than a high resolution
map, it may demonstrate the agglomeration of land cover types and reveal greater urbanization
evolution process that are not easily detected from the high resolution map [48]. The challenge
is therefore to establish a meaningful and useful multi-resolution urbanization velocity model to
investigate the spatial resolution issue on grid-based urbanization velocity analyses.

The first objective of this research was to investigate the effect of imagery spatial resolution on
grid-based urbanization velocity analysis, which required an investigation into the most appropriate
size to use for the “moving window” (expressed as the grid size, which is an effective surrogate for
spatial resolution). Since the widespread use of remote sensing data has generally increased interest in
studying the capability issues relating to spatial resolution of images, the second objective was thus to
investigate whether or not the available fine resolution remote sensing data for grid-based urbanization
velocity analyses in the case study of Pearl River Delta are appropriate for the spatial resolution at
which the investigated processes operate, or the spatial resolution at which decisions are required.
The third objective was to take the grid-based urbanization velocity as the independent variable,
and test the inherent characteristics of spatial autocorrelations and spatial structure heterogeneities.
These characteristics are useful to effectively validate the results of grid-based urbanization velocity
analyses at different spatial resolution.

Increasing numbers of flexible variance methods are providing effective ways of identifying
spatial resolution thresholds and spatial resolution domain problems. Frequently used methods for
dealing with different spatial resolutions (referred to as multi-scale methods) include local variance
analysis [49,50], geographical variance analysis [51,52], semivariance analysis [53,54], multifractal
analysis [55,56], wavelet transform analysis [57,58], and Fourier transform analysis [59,60]. All of
these methods are able to quantify landscape characteristics of different spatial resolutions in their
mathematical formulations and procedures, but their selection heavily depends on the nature of the
data and the objectives of the investigation [53].

In this study, the grid-based urbanization velocity analysis is based on spatio-temporal changes
within an urban area compared to neighboring areas, using a moving window. This research
systematically organizes the moving window (i.e., spatial resolution or grid size of remote sensing
data) into a hierarchical, grid-based nested dataset. Through a thorough and succinct literature
analysis [50,51,53,61–65], the empirical variogram model, local variance model and the geographical
variance model, were selected to investigate the urbanization velocity analysis results at different
spatial resolutions. They show the advantages of analyzing the spatial autocorrelation and spatial
structural heterogeneities for hierarchical grid size. Meanwhile, these three methods have rarely been
used to identify spatial resolution thresholds and domains within urbanization velocity analyses.
This research also can quantify and validate their capability in investigating the influence that
the hierarchical grid size (i.e., spatial resolution) has on quantitative descriptions of urban growth.
The investigation of grid size (i.e., spatial resolution) effects on urbanization velocity analysis was set
out in the Pearl River Delta study area between the years of 2000 and 2015.

2. Study Areas and Data Collection

2.1. Study Area

The Pearl River Delta (PRD) in southeastern China extends from 21◦N to 24◦N and from 112◦E
to 115◦E (as shown in Figure 1). The twenty seven cities of the PRD are home to a population of
more than 55 million. According to the World Bank Group (2015), the PRD has become the largest
“megaregion” in the world in terms of both surface area and population. Long-term monitoring
by Taubenböck et al. [23] has revealed that its spatial extent in 2011 was 13.14 times greater than in
1975, making this megaregion among the most dynamic areas in the world, even outperforming the
two-dimensional spatial growth rates of China’s other megaregions such as Shanghai (about 6 times)
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or Beijing (7.5 times) [66]. A comprehensive evaluation of multi-resolution urbanization velocity of
this emerging megacity in the PRD, which is the objective of this study, is expected to make a valuable
contribution to ensuring the sustainable development of the area.
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Figure 1. Study area: the Pearl River Delta (PRD) megaregion.

2.2. Data Collection

The imageries used for the land use and land cover (LULC) classification were at a resolution
of 30 meters (hereafter referred to as 30 m) and obtained from Landsat Surface Reflection products
(Landsast 4/5-TM; 2000, 2005, 2010) and Landsat 8 archive products (Landsat 8 -OLI/TIRS; 2015).
As shown in Table 1, eight Landsat images can cover the whole areas of PRD in each year. The time
period for each year was defined to be from July and October, which revealed the most abundant
leafage and minimum cloud cover (<0.1%). Since PRD has a subtropical climate and the spectral
information of the typical vegetation areas do not show dramatic changes during the period July to
October, there are moderate seasonal variations of the NDVI values in this area for the time period
chosen. The one-kilometer LULC data for 2000, 2005, 2010 collected from the Data Center for Resources
and Environmental Sciences of the Chinese Academy of Sciences (RESDC) served as auxiliary data for
the land use classification through generating coarse resolution masks of LULC classification in PRD.

High resolution imagery data (<5 m), which were available online from Google Earth, and urban
footprint data with a spatial resolution of 30 m, obtained from the German Aerospace Center ([66]),
were used as reference datasets to provide appropriate ground truth information to validate LULC
classification over the PRD area.

The original census data were obtained from the Guangdong Statistical Yearbooks for 2000, 2005,
2010, and 2014 (http://www.gdstats.gov.cn/tjsj/gdtjnj/). Census data from these four years (which
are available for 27 original city-scale administrative units) were used to obtain the socio-economic
indicators, including GDP, GDP per capita, Total value of retail sales, Total number of Job, Income per
capita, Deposit balance, Population. This research employed these socio-economic indicators as the
criteria used to investigate the effects of different spatial resolutions in urbanization velocity analyses.

http://www.gdstats.gov.cn/tjsj/gdtjnj/
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Table 1. Data collection of Landsat 4-5/8 from 2000 to 2015.

Year
(Path, Row) (121,44) (121,45) (122,43) (122,44) (122,45) (123,43) (123,44) (123,45)

2000 15 September 15 September 21 August 21 August 21 August 8 October 8 October 13 September
2005 12 August 12 August 18 July 18 July 18 July 11 September 11 September 11 September
2010 29 October 29 October 18 September 18 September 18 September 7 July 7 July 7 July
2015 8 August 8 August 18 October 18 October 18 October 6 August 6 August 22 August

3. Methodology

3.1. Workflow

A hierarchical grid-based urbanization velocity framework (Figure 2) was established based
on Landsat data with variable sized moving windows to investigate how the size of the grid size
influences urbanization velocity analysis results. The variable resolution grid-based urbanization
velocity model is described below, followed by a description of the methods used to analyze the spatial
correlation, spatial structure and spatial autocorrelation characteristics of the urbanization velocity
analysis results at each grid size (e.g., spatial resolution). Finally, all these models were combined to
determine the optimum spatial resolution to use in grid-based urbanization velocity analysis.
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3.2. Land Use and Land Cover Classification

The atmospherically and geometrically corrected Landsat-4/5 TM surface reflection products
were used to facilitate the land surface changes directly. The Landsat-8 archive images were converted
to the surface reflection products through the equations provided by the US Geological Survey [67].

Despite the fact that some influences from satellite drift/changeover, incomplete calibration,
correction loss, images monthly variation, as well as atmospheric effects may still exist, these influences
are typically much smaller compared with those caused by environmental drivers. Hence, in this
study, such potentially existing differences between images were ignored.

Object-based image analysis (OBIA) was employed to identify the LULC classification based
on Landsat 4/5 TM and Landsat-8. When compared with the traditional per-pixel methods in
image classification, OBIA approaches have already demonstrated some advantages in pattern
recognition, such as exhibiting useful shape, context and texture information for urban phenomenon
analyses [68,69]. This research aims to explore the pattern characteristics of built-up areas under the
urbanization process. Here, OBIA is an alternative to dividing the built-up areas in Landsat images
into multi-scale built-up objects. The pixels in each semantic object share relatively similar spatial,
textual and contextual information to avoid “salt and pepper” phenomena that commonly appear in
per-pixel analyses.

A multi-level segmentation/and classification OBIA framework was designed within the
eCognition Developer 9 software in order to create spatially contiguous and homogeneous objects.
The most appropriate segmentation scale (scale = 15) was determined by use of the scale estimation tool
ESP2 [70]. Then the fuzzy classification approach which was developed by Wei et al. [69] for Landsat
images was used to classify the data into two classes: built-up areas and non-built-up areas. Fuzzy
ruleset-based classifications have the advantages of addressing the uncertainty in the Landsat surface
reflection products values. It uses n-dimensional tuples of memberships to describe the degree of class
assignments, making the ruleset transferable to all the four years of images [69,71,72]. Hence, fuzzy
sets were employed to handle most sources of vagueness in the spatial-temporal LULC classification
of Landsat surface reflection products.

As a first step, the LULC was classified into five classes: urban, rural, vegetation areas (excluding
forest), forest and water following the approach of Wei et al. [69]. However, this research mainly
focuses on measuring the annual growth rate of built-up areas within a period. Therefore, in a second
step the LULC classification was simplified through the following three-step process: (1) The 1-km
LULC cover data for 2000, 2005, 2010 provided by RESDC were used to generate coarse resolution
masks of built-up areas, which served as auxiliary data for the following steps. (2) The built-up areas
were determined by using the normalized difference vegetation index (NDVI, the fuzzy membership
ranged from 0.24 to 0.38), the normalized difference water index (NDWI, the fuzzy membership ranged
from 0.04 to 0.08), the specific leaf area vegetation index (SLAVI, the fuzzy membership ranged from
0.53 to 0.58), the land and water masks index (LWMI, the fuzzy membership ranged from 105 to 200),
and the normalized difference moisture index (NDMI, the fuzzy membership ranged from 0.03 to 0.05).
The membership functions for each feature were combined by the fuzzy-logic operator. And (3) all
other areas were assigned as non-built-up areas. Before carrying out the fuzzy classification, the eight
images were mosaicked for each year.

3.3. Urbanization Velocity Estimation at Different Spatial Resolutions

As described above, the velocity of urbanization is defined as annual growth rate of built-up
areas growth within a period. It indicates the absolute differences in built-up areas footprints within
a certain time period. The annual growth rate of built-up areas is based on the unit of a grid, i.e., a
raster cell. Therefore, when using multiple scales, such grid-based urbanization velocity estimation
compares the built-up densities changed in each unit with its neighborhood areas within a moving
window over a specific time periods. It is closely akin to the index of instantaneous horizontal velocity
of temperature change and nighttime-light change proposed by Loarie et al. [46] and Ma et al. [30].
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As shown in Equations (1)–(4), the grid-based urbanization velocity estimations were based on
the areas classified as “built-up” in the 30 m spatial resolution Landsat images from 2000, 2005, 2010
and 2015.

Vurban =
Ttrend

Gspatial
(1)

Ttrend =

2015
∑

2000
(t − tave)(Lt − Lave)

2015
∑

2000
(t − tave)

2
(2)

Gspatial =

n
∑
i

Gspatial_i

n
Gspatial_i =

√
[dL/dx]2 + [dL/dy]2 (3)

[dL/dx] = [(L2 + 2L5 + L8)− (L0 + 2L3 + L6)]/(8 × xsize)
[dL/dy] = [(L6 + 2L7 + L8)− (L0 + 2L1 + L2)]/(8 × xsize)

(4)

where Ttrend is the temporal trend of images from 2000 to 2015, and tave is the mean value of the
year. Gspatial is the mean annual density of build-up areas at the location of each grid from 2000 to
2015. Li stands for the pixel value of built-up areas density within the image. Gspatial_i stands for
the spatial gradient of built-up areas density at the location of each grid, which is estimated by the
average maximum technique [73] based on the 3 × 3 grid cell neighborhood (as shown in Figure 3 and
Equations (3) and (4). For the urbanization velocity (UV) estimates processing at the boundary of PRD,
the boundary pixels were assigned as the null values, and the author only took into consideration
those moving windows that did not contain any null values.
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Figure 3. The hierarchy of moving windows that were employed when investigating urbanization
velocity at different resolutions.

As shown in Figure 3, the grid value Li at Level 1 contain only two values, 0 and 1: 1 stands
for 100% of built-up areas density, and 0 stands for 0% of built-up areas density. The pixel values of
this level are derived from the land use and land cover classification of 30 m Landsat data. In order
to investigate the urbanization velocity at different spatial resolutions (or called grid size), the 3 × 3
moving window was enlarged to a hierarchical nested dataset that included another nine levels
of spatial resolution (from fine to coarse resolution): 60 × 60 m (Level 2), 120 × 120 m (Level 4),
240 × 240 m (Level 8), 480 × 480 m (Level 16), 960 × 960 m (Level 32), 1920 × 1920 m (Level 64),
3840 × 3840 m (Level 128), 7680 × 7680 m (Level 256), and 15,360 × 15,360 m (Level 512). The pixel
values Li from Level 2 to Level 512 are derived from pixel aggregated resampling algorithm, implying
an idealized square-wave response of original images. Although these aggregate resolutions are
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probably unrealistic for the individual sensor case, they may be statistically valid for coarse resolution
of remote sensors [62]. The objective was to investigate the basic effect of different spatial resolutions
on grid-based urbanization velocity estimation, rather than to mimic the response characteristics of a
particular remote sensing sensor. This approach avoids the controversies over the exact definition of
spatial resolution and how it should be measured [62,74].

3.4. Statistical Test for the Dependence of Urbanization Velocity on Spatial Resolution

How to effectively validate the scale dependent/independent characteristics of urbanization
velocity (UV) estimations across multiple grid sizes (i.e., different spatial resolutions) is the biggest
challenge. This research therefore approached the UV analysis for different spatial resolutions from
a statistical perspective, while focusing on concepts of spatial dependence on spatial resolution
and correlation. The scale-dependence of the UV analysis results was tested by investigating the
Pearson correlation coefficients between the UV analysis results and the corresponding city-based
socio-economic indicators. All 27 of the large cities in the Pearl River Delta are individual municipalities
as well as self-contained economic areas. It is therefore appropriate to calculate the geometric mean
of the UV estimates on a city-scale. The annual growth rates of socio-economic indicators for the
27 cities of the Pearl River Delta are fixed values and not influenced by the spatial resolution. They can
therefore also be used to establish the relationships with multi-level urbanization velocity results to
explore the scale influence. Seven typical socio-economic indicators (including GDP, GDP per capita,
Total value of retail sales, Total number of jobs, Income per capita, Deposit balance, Population) from
the Chinese statistical yearbooks were selected to do a correlation analysis with UV estimates. These
socio-economic indicators represent specific urbanization processes at specific instants in time and can
therefore be used to investigate the spatial resolution issues in urban growth analysis.

3.5. Quantitative Descriptions of Spatial Resolution Domains and Thresholds

Characterizing a landscape’s spatial variability helps to identify a suitable resolution for capturing
the spatial grid size of the surface properties and for optimizing the field data collection [53,75].
Through a thorough and succinct literature review [50,51,53,54,61,62,76–78], this research divided the
spatial variability analyses of multi-resolutions UV estimates into two groups:

Spatial autocorrelation analysis, which is a linear combination of empirical variogram models
used to calculate the structural parameters of the semivariogram from the spatial autocorrelation
perspective to evaluate the differences in spatial variability at different spatial resolutions and to
characterize the impact of the spatial resolution.

Spatial structure analysis, which involves using the geographical variance and local variance
methods to quantify the level of variability in spatial structures of different grid sizes within a landscape.
The mean extent of the grid size with the highest level of variability is defined as the “proper spatial
resolution” to capture the spatial variability of the landscape pattern.

3.5.1. Empirical Variogram Method

Empirical variogram models are powerful geostatistical tools for understanding the loss of
spatial autocorrelation and spatial variability as spatial resolution decreases [49,79]. The nature of a
variogram is also an important property characterizing the spatial continuity and regularity of the
data at different resolutions, based on a probabilistic approach considering the image as one of many
possible realizations of a second-order stationary random function expressed as follows:

γ(h) = δ2
k=l

∑
k=1

bkgk(rk, h) (5)

where γ(h) is the modeled variogram, δ2 is the variogram sill (i.e., overall image variance), bk is the
proportion of overall image variance, δ2 related to each range γk, γk is the variogram range related



Remote Sens. 2017, 9, 80 9 of 25

to each elementary variogram function gk. This use of theoretical variogram models has been fully
described by [53,54].

To detect the multi-scale spatial autocorrelation of the UV analysis results, the exponential,
spherical, Gaussian, Matern, and nugget effect models were tested to identify the best fits of the
experimental variogram models for each scale. The sill δ2 and the variogram range γk were used as
spatial variability parameters for quantifying the overall spatial variance of multi-scale datasets [54].
The attributes of land use classification results with highly skewed data distribution may present
problems in variogram calculation. Hence, the normal test was performed before establishing the
variogram models. The variogram interpretations were based on certain lag distance, the normal
test were thus based on the stratified random samples. The Shapiro-Wilk normality test showed that
p-values of all the datasets were larger than 0.05.

Empirical variograms for different orientations have been reported by Garrigues et al. [54] to
showed little variation, so this research only compared the omnidirectional variograms that represented
simultaneously the horizontal, vertical, and two diagonal directions of the multi-resolution pixel grids
in this study. The nugget effect in the variogram model relates to either uncorrelated spatial structures
or randomly spatial structure features that are evident at spatial scales smaller than the pixel size.

3.5.2. Local Variance Method

Woodcock and Strahler [62] proposed a local variance method to find an appropriate resolution
for understanding the spatial structure of multi-resolution images. Local variance is calculated as
the mean value of the standard deviation of a moving 3 × 3 pixel window over an entire image.
Graphs of local variance in images with different spatial resolutions can be treated as a function of the
resolution in order to describe the relationship between the sizes of the objects in the images and the
spatial resolution.

The results of the urbanization velocity analyses based on moving windows of different sizes
can be considered to represent the original image data that have been degraded to several levels of
lower spatial resolutions. The graphs of local variance can be used to determine the scales at which
the objects in the built-up areas most closely approximate those in the surrounding areas within a
complex urban system. If, for instance, the spatial resolution is considerably finer than the size of the
objects in urban growth areas within the image, most of the objects in the images will correlate well
with neighbors’ objects and the local variance will be low. If, however, the sizes of objects in urban
growth areas approximate the pixel size (i.e., the spatial resolution), then the likelihood that they will
resemble neighbors’ objects is reduced and the local variance will increase. As the pixel size (i.e., the
spatial resolution) increases further until one pixel may contain a number of objects, the local variance
will start to decrease. The peak of the graph therefore indicates that the point at which the size of
the moving window (or the spatial resolution) matches the size of the objects in the areas of urban
growth [51,62]. The objective was to investigate and determine the grid size (i.e., spatial resolution) for
moving windows that can capture a major proportion of the urban growth.

3.5.3. Geographic Variance Method

The geographic variance (GV) method proposed by Moellering and Tobler [52] has the potential
to consistently and logically detect and describe landscape objects of different sizes. The GV procedure
allows the relative spatial variability to be measured, as well as the independent contribution of spatial
variability made by each grid size (i.e., the spatial resolution) to a nested hierarchy. The multi-resolution
urbanization velocity analysis results can be treated as regularly grouped hierarchical data to which
GV analysis can be applied and in which the total variance of UV estimates within the PRD can be
partitioned hierarchically at different grid sizes. Moellering and Tobler [52] derived the scale variance
components for a 3-level (∂, β, γ) hierarchy in which the total variation of the system is expressed as
the total sum of squares. As shown in Equation 6, γ represent the original spatial resolution of the
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image, ∂ represent the grid group aggregated from γ level, β represent the grid groups aggregated
from γ level.

SSTotal =
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∑
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∑
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∑
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(6)

where I is the number of ∂ level groups, Ji is the number of β level groups in each ith ∂ group, and Kij
is the number of γ level groups in each ijth β level group. Xijk stands for the UV estimates at each pixel
at the γ level, and N is the total number of Xijk observations. ni is the number of observations in the ith
region, and nij is the number of observations in the jth state of the ith region. This method has been
fully described by [52].

When plotting the scale variance of the hierarchical levels of grid-size dataset, a peak would
imply that high variability occurs at the corresponding grid size (i.e., the spatial resolution). A peak
would also reflect the relative contribution of that particular grid size (i.e., the spatial resolution) to the
total variability of the hierarchical dataset [78,80].

4. Results

4.1. Land Use/Land Cover Accuracy

Two methods were employed to assess the accuracy of the LULC classification. In the first
accuracy assessment method, the sample design tool in ARCgis 10.3.1 was used to randomly generate
2000 reference samples for each image. Then the reference data were assigned the attributes based
on the high resolution SPOT images from the online Google Earth portal. These high resolution
historical remote sensing maps can provide appropriate ground truth information to validate our
LULC classification results. Taking the year of 2010 as an example (as shown in Figure 4), 18.5% of the
samples were attributed as built-up areas, and the rest samples were assigned as non-built-up areas.
The same procedure was employed to the other three years. Then all the samples were used to carry out
the combined analysis of the 30 m resolution LULC classification results. Finally, the overall accuracy
of each year was obtained through their respective error matrixes (as shown in Table 2). The overall
accuracies of the four images yielded values of 92.35%, 89.60%, 90.45%, and 87.95%. These classification
accuracies are clearly above a generally assumed satisfactory classification overall accuracy of 85%.

In the second accuracy assessment method, two years (the years 2000 and 2005) of urban footprint
data in the Pearl River Delta provided by Taubenböck et al. [23,24] were used to validate the built-up
areas classification. These urban footprint data were originally derived from the combination of
high resolution TerraSAR-X strip maps images (3 m resolution) in combination with Landsat images.
Taubenböck et al. [23,24] mainly selected random distribution points separately in different cities
around the Pearl River Delta (e.g., Shenzhen, Guangzhou, Dongguan, Foshan, Zhaoqing, Zhongshan,
Huizhou, Jiangmen) by visual comparison to available VHR Ikonos and QuickBird data as well as
topographic reference information from these cities. Their overall accuracies range from 80% to 90%.
Thus, these urban footprint maps prove high and stable accuracy values on the regional scale, and they
are powerful to demonstrate the spatial connectivity between cities based on the continuity of built-up
areas patterns [53,78]. The results show that the proportions of overlay areas between urban footprint
and built-up areas in this research were 90.3% in 2000 and 86.5% in 2010. This high consistency of
the built-up areas and the urban footprint information strongly supports the urbanization velocity
detection based on the patterns of built-up areas.
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Table 2. The overall accuracy of land use and land cover (LULC) classification in the Pearl River Delta
for the years 2000 to 2015.

2000 Reference Built-Up Areas Reference Non-Built-Up Areas Ground Truth Total

Built-up areas 91 50 141
Non-built-up areas 103 1756 1859
Total 194 1806 2000
Overall accuracy 0.9235

2005 Reference Built-Up Areas Reference Non-Built-Up Areas Ground Truth Total

Built-up areas 143 128 271
Non-built-up areas 80 1649 1729
Total 223 1777 2000
Overall 0.8960

2010 Reference Built-Up Areas Reference Non-Built-Up Areas Ground Truth Total

Built-up areas 167 88 255
Non-built-up areas 103 1642 1745
Total 270 1730 2000
Overall accuracy 0.9045

2015 Reference Built-Up Areas Reference Non-Built-Up Areas Ground Truth Total

Built-up areas 242 147 389
Non-built-up areas 94 1517 1611
Total 336 1664 2000
Overall accuracy 0.8795

4.2. Multi-Scale Urbanization Velocity

Overall mean geometric velocities of urbanization in the whole PRD area ranged from 2.10
sq·km·year−1 to 3.67 sq·km·year−1 across the multiple moving window sizes. As shown in Figure 5,
twenty-seven major cities in the PRD have undergone varying degrees of urbanization velocity. Based
on the geometrical interval theory in Arcgis 10.3.1 [81], the urbanization velocity can be categorized
into four levels: very low (≤0), low (0–5), median (5–30), high (≥30). More specifically, nine cities
(Huadu, Guangzhou, Nanhai, Dongguan, Panyu, Foshan, Shunde, Zhongshan, Shenzhen) revealed
above-average urbanization velocities across multiple grid sizes (Figure 6). As the grid sizes increased
to Level 16, the urbanization velocity for the city of Zengcheng gradually increased and eventually
reached the average urbanization velocity for all 27 cities. All of these cities gradually expanded,
becoming interconnected and coalescing to form increasingly continuous built-up areas between 2000
and 2015 through con-urbanization. The urban growth velocity analyses (shown in Figures 5 and 6)
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revealed that urbanization velocities varied for each city, but that the grid size had no statistically
significantly influence on the magnitudes of urbanization velocities determined for these 27 cities.
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4.3. Lack of Scale–Dependence in Urbanization Velocity (UV) Estimations

The Pearson correlation analyses indicate that there are only three socio-economic indicators,
(including GDP, total value of retail sales, total number of jobs) which revealed a moderate relationship with
urbanization velocity results based on the 30 m resolution Landsat images (Level 1). Therefore, these
three indicators were employed to carry out the correlation analyses with other spatial resolutions for
the UV estimates. Table 3 shows in great detail that 8 out of 10 relationships between UV estimates and
socio-economic indicators using different spatial resolutions yielded moderate correlations (>0.396),
with the exceptions being for two UV analysis results at Level_256 resolution (including totally
727 pixels) and Level_512 resolution (including totally 182 pixels). Although the missing pixels caused
by the coarse resolution at these two low spatial resolution levels influenced the correlation coefficients
between UV estimates and socio-economic data, the mutual relationships between UV estimates and
socio-economic indicators are generally stronger than the influence of spatial resolution. It therefore
appears to be reasonable to conclude that the inter-relationships between the city-based UV analysis
results and socio-economic indicators are independent of the spatial resolution.

Table 3. Relationships between mean city-based urbanization velocity (UV) analysis results and
socio-economic indicators across multiple scales.

UV Level 1 Level 2 Level 4 Level 8 Level 16 Level 32 Level 64 Level 128 Level 256 Level 512

Estimates
Growth Rate

Per capita GDP 0.442 * 0.471 * 0.496 * 0.499 * 0.454 * 0.426 * 0.262 0.303 * 0.423 * 0.081
Total value of retail sales 0.624 * 0.634 * 0.661 * 0.661 * 0.617 * 0.560 * 0.413 * 0.371 0.503 * 0.304

Total number of jobs 0.621 * 0.662 * 0.654 * 0.657 * 0.688 * 0.623 * 0.605 * 0.590 * 0.390 * 0.292

* Correlation is significant at the 0.05 level (2-tailed).

4.4. Spatial Autocorrelation and Spatial Variability of UV Analysis Results Based on Different
Spatial Resolutions

The empirical variogram models are shown in Figure 7 and the respective model parameters can be
found in Table 4. Previous studies illustrate that the semivariance value in the empirical omnidirectional
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variograms models consistently decreases as nominal pixel size increases [54]. However, from Figure 7
it can be seen that the semivariance value in the omnidirectional variogram models does not decrease
consistently as the nominal pixel size increases, which appears to contradict the general hypothesis and
findings to date. In fact the semivariances alone are of limited use for characterizing the impact that the
spatial resolution has on the results of land use and land cover analyses [53]. This research therefore
evaluated the differences in spatial autocorrelation and spatial variability between UV estimates
obtained using different spatial resolutions by comparing different variogram model parameters
(including the variogram sill ∂2, the range, and the rate of spatial variability), in order to estimate the
overall image variance.Remote Sens. 2017, 9, 80  15 of 25 
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Table 4. Parameters of the fitted variogram models.

Spatial Variability
(Sill), ∂2

Range
(km)

Linear Theoretical
Models

Rate of Spatial Variability
Increase (+) or Decrease (−)

Level 1 1925.2 24.736 Gau -
Level 2 6044.8 174.49 Ste +2.1
Level 4 188,067.2 170,479.5 Ste -
Level 8 7850.1 265.8 Ste +3.1

Level 16 2086.7 0 Nug -
Level 32 2596.9 0 Nug -
Level 64 20,256.6 4385.8 Ste -
Level 128 105.6 15.562 Ste −0.9
Level 256 128.6 9.173 Ste −0.9
Level 512 69.2 26.587 Sph −0.9

The UV estimates at 10 spatial resolution levels have been generated using linear regionalization
variogram models in Figure 7. The models’ sill ∂2 generally increases as the window size (i.e., spatial
resolution) increases from Level 1 resolution to Level 8 resolution, but then decreases as the window
size increases further from Level 8 resolution to Level 512 resolution. The empirical variogram models
are flat, with nugget effects at Level 16 resolution and Level 32 resolution. This means that there were
no correlations between UV analysis results and the spatial extent of the image at these two levels of
spatial resolution, indicating spatially independent variance of UV estimates. The high variability of
the sill ∂2 at Level 8 resolution is explained by the intrinsic variability in the structure of built-up areas
(e.g., variations in the density and connectivity of built-up areas, etc.), as well as vegetation areas that
contrast with the built-up areas. In this case, the UV analysis results at Level 8 resolution were better
able to represent the intrinsic variability of urbanization in the Pearl River Delta.

In the empirical variogram model, the sill is an indicator of the overall spatial variance of the data.
If the sill is not reached before a maximum distance of image, it implies that the spatial extent of the
image is not sufficiently large to encompass the low frequency variation in the data. The maximum
distance is usually defined as one-third of the full spatial extent of the image subsets [54]. In this
research, most of the variograms reach a sill within one-third of the spatial extent of the image, except
for the Level 4 resolution and the Level 64 resolution. The characteristics of the spatial structures of
UV estimates at Level 4 and Level 64 are consequently very uncertain, since the spatial extents of the
images are too small to detect the spatial variability of UV analysis results. Moreover, the variograms
from Level 128 resolution through to Level 512 resolution increase at a very short spatial extent in the
image, indicating that the UV analysis results at these three spatial resolutions are roughly structured
and spatial structures of UV analysis results have dimensions similar to the spatial resolution of the
image. In order to further demonstrate the rate of spatial variability, the authors assumed that the
variogram derived from a 30 m resolution moving window approximates the actual spatial variability
of the landscape. The decreasing or increasing sill rates relative to the sill at 30 m resolution then
correspond to the loss or gain in the spatial variability of UV estimates as the pixel size increases.
As shown in Table 4 (column 5), intra-pixel spatial heterogeneity of UV estimates increases rapidly
with increasing pixel size until this size reaches the Level 8 resolution. From this point on spatial
heterogeneity of UV estimates gradually decreases with lower resolution. UV analysis results at the
Level 8 resolution indicate an overall spatial variability that is 3.077 times greater than at the original
resolution, and most of the UV estimates’ spatial variability is lost at the Level 512 resolution. The rate
of decay of sill served as a reference for evaluating spatial information decay in multi-resolution UV
analysis results.

Generally speaking, the parameters of variogram sill ∂2, the range of the variogram model, and
the rate of spatial variability all characterize the important variability of UV analysis results at different
spatial resolutions. The variogram models highlight that at Level 8 resolution (i.e., at 240 m spatial
resolution) the intra-pixel spatial heterogeneity is fully explained by this spatial resolution. It is
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therefore a suitable resolution to capture the major part of the variability in the spatial structural of UV
analyses results in the Pearl River Delta.

4.5. Local Variance and Geographical Variance Of the UV Analysis Results at Different Spatial Resolutions

Local variance as a function of the grid size used for the UV estimation is presented graphically in
Figure 8. The graph begins with low local variance at the initial 30 m resolution of the image. Due to
the dominance of urban agglomeration processes in the PRD over the past 15 years, most of the pixels
have similarly high UV estimates. The standard deviation of a 3 × 3 window based on the original
resolution is therefore very low. As the grid size increases, the number of pixels with a high UV
estimates decreases and the likelihood that surrounding pixels will be similar also decreases. In this
situation the local variance increases. This trend continues until a peak in local variance is observed at
Level 16 (i.e., at about 480 m coarse resolution). As the resolution increases beyond this peak, pixels
tend to become aggregated to the extent that they again become more similar and the local variance
decreases. Level 16 therefore indicates a moving window size (or spatial resolution) that matches the
sizes of urban growth units at which a large proportion of urban growth processes occur.
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explanations of the non-linearity of the curve).

For an additional city-level analysis, the whole of the PRD was further partitioned into city-based
scenes. Their corresponding graphs of local variance were investigated in order to identify the moving
window sizes that best matched urban growth units in the different cities. As shown in Figure 9, for
the cities in the central urban agglomeration areas such as Guangzhou, Foshan, and Dongguan, the
peaks in local variance were observed at low levels (ranging from Level 2 to Level 4), or at 60 m to
120 m fine resolution. In contrast, cities in the outer areas of the PRD yielded local variance peaks
at higher levels (Level 8 to Level 32) or at coarser resolutions (480 m to 960 m). This means that the
most appropriate spatial resolution for analyzing urbanization velocity may be different in the core
areas (where urbanization was already high at the beginning of the 15 year study) than the outer areas,
where major urbanization processes started later.
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Figure 9. City-based analyses yield maximum local variances for each city in the Pearl River Delta and
differentiate a core area from an outer zone.

The geographical variance derived using the GV method is shown graphically in Figure 10.
The cumulative scale variation can be seen to reach a peak at Level 16 resolution, which is consistent
with the tendency of the local variance analysis described previously. Since all of the large cities are
known to be self-contained economic geographic areas undergoing rapid urban agglomeration with
other cities, the very large geographical variance value at Level 16 resolution can be interpreted as
indicating that the urban growth units in the Pearl River Delta area generally form large spatial patterns
(Level 16 spatial resolution equal to 480 m coarse resolution). This may therefore be the appropriate
spatial resolution at which to examine variations in urbanization velocity within the whole PRD area.
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Nevertheless, a city-based geographical variance analysis revealed spatial structure differences
within the PRD. Figure 11 shows that the peak variances in the central part of the PRD are detected
mainly at Level 1 to Level 4 resolutions. This area is also the main urban corridor of the most rapid
urban sprawl [23]. The cities in the outer areas of the PRD yielded the largest geographical variances,
detected mainly at Level 8 to Level 32 resolutions. These results indicate the importance of choosing
the appropriate resolution to use for different cities or groups of cities.Remote Sens. 2017, 9, 80  18 of 25 
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5. Discussion

Our research has primarily addressed the spatial resolution issue when measuring urbanization
velocities and urbanization patterns. This research mainly investigated the effect that multiple grid
sizes have when defining the geographical extent of urban growth through modeling their spatial
autocorrelation and spatial variability effects at different resolutions.

5.1. Scale-Independence in the City-Based Urbanization Velocity Analysis Results

Statistical analyses (including the Pearson correlation analysis) were used to investigate
urbanization velocity analyses at different spatial resolutions for scale-dependence or independence
from a mathematical perspective. Ten different window sizes (or spatial resolutions) showed
moderately strong correlations between socio-economic indicators and urbanization velocity, yet
remained statistically independent of spatial resolution. These results confirm that the GDP, Total
value of retail sales and Total number of jobs indicators can be very useful for measuring the rate
and extent of urban growth [82]. However, it is worth to note that although the integration of
urbanization information and data from socio-economic sources is vital for accurate definition of
political urban area units by urban planners, these three indicators only may not fully explain the
driving factors of urbanization process. Other typical socio-economic factors, including GDP per
capita, Income per capita, Deposit balance and Population, did not reveal significance in respect
to the multi-level urbanization velocity results. While the three socio-economic indicators selected
cannot comprehensively represent the driving factors of urbanization, the associations between the
urbanization velocity results with other urban development indicators, such as transportation network,
infrastructure facilities, etc., will be taken into consideration in future studies. The multiple spatial
resolution urban velocity analyses in this research have also shown that those cities with above-average
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urbanization velocities are always conjunct with the core area of the Pearl River Delta and the extent of
central agglomeration areas was not significantly affected by changes in spatial resolution, challenging
the notorious modifiable areal unit problem (MAUP). The urban agglomeration process in the PRD
consequently seems to be unaffected by spatial resolutions, being evident over a wide range of spatial
resolution (with resolution (pixel sizes) ranging from 30 m resolution to 15,360 m resolution).

5.2. Spatial Variances of the Multi-Resolution Urbanization Velocity Analysis Results

This research outlined three complementary approaches (empirical variogram, local variance, and
scale variance) that can be used to represent spatial heterogeneity of the urbanization velocity analysis
results. The spatial heterogeneity of urbanization velocity analysis results can be considered to be
essential for validating the spatial extent of urbanization and for the process of choosing a suitable
modeling scheme. It may be dependent on the spatial size of the surface structures and may be useful
for optimizing field programs [53,78].

The empirical variogram models showed that the spatial autocorrelations varied with the grid
size (i.e., spatial resolution), as a result of the different rates of loss of spatial variability for different
spatial resolutions. The results show that a relatively coarse image resolution (such as the 240 m or
480 m resolutions) is able to capture more spatial variability in urbanization velocity than the original
fine spatial resolution (30 m), as well as exhibiting a higher degree of autocorrelation. This research
therefore concludes that relatively coarse resolutions (such as 240 m or 480 m) are already able to
delineate urbanization velocity in the PRD. The degree of spatial autocorrelation and spatial variability
of urbanization velocity estimates in the PRD can be used as references for other studies, although not
in absolute terms, as the positional accuracy, spatial consistency and content efficiency for urbanization
processes may be specific to the particular study area.

The results have confirmed the theory that the level of spatial autocorrelation in the variogram
model is higher at coarse spatial resolutions (i.e., 3840 m resolution (Level 128) to 15,360 m resolution
(Level 512) in this research; see also [53,77]), deviating significantly from UV analysis results at
the original smaller scale. Nevertheless, at some fine and coarse spatial resolutions (i.e., 120 m
resolution (Level 4) to 1920 m resolution (Level 64), in this research) variogram models failed to detect
spatial autocorrelation in the model results when the landscape variability exceeded the modelling
scale. This means that the variogram method is constrained by the image resolution. Some previous
researchers have stated that descriptions of spatial autocorrelation and variability in an entire study
area may not be sufficient to quantify the local spatial variability in sub-areas [49,54]. Meanwhile,
this research only compared the omnidirectional variograms that represented simultaneously the
horizontal, vertical, and two diagonal directions of the multi-resolution pixel grids in this study,
the pattern of urbanization velocity estimates that might all growth in a certain direction might also
influence the spatial autocorrelations heterogeneities. It is therefore still necessary to consider strategies
for combining different orientations of empirical variogram models with the specific spatial extent of
an image subset, in order to quantify local variability and local spatial autocorrelation. Since analyses
using different spatial resolutions have generally been gaining in popularity, this research also suggests
that the variogram model should be included as an important component of the multi-scale spatial
data investigations.

The results of the local variance and geographical variance methods are also particularly pertinent
to understanding the “resolution of action” of the UV analysis results. The “resolution of action” is
assumed to allow the identification of dimensions for particular patterns, which can subsequently
facilitate an understanding of the underlying processes [51,78]. When this research used moving
windows of different grid sizes to obtain a hierarchical nested urban sprawl structure for the PRD, the
graphs for local variance and geographical variance demonstrated similar scaling trends of the spatial
structure characteristics. In other words, with the spatial resolution that yielded the maximum spatial
variability in the geographical variance model coincided with the spatial resolution that yielded the
highest likelihood of the neighborhood being similar in the local variance model. Graphs of the local
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variance and geographical variance models consequently implied that the within-class variance of
urbanization velocity is an understandable, and even predictable, effect. Coarser spatial resolutions
(i.e., 480 m) were better than the original resolution for delineating the urbanization patterns and
processes within the PRD.

The empirical variogram model has proven useful in studying the spatial autocorrelation
and optimal spatial resolution of remote sensing data in ecosystem [83–86]. The local variance
model is commonly used in defining an optimal size of geographical forest patterns [87], ecological
biodiversity [88,89] and LULC patterns [61,62]. The geographical variance model has also been
employed to measure the scope and conceptual context of neighborhood [90–92] and landscape
ecology [80]. Nevertheless, these three methods are rarely tested in the grid-based urbanization
spatial pattern analysis. There have been very few discussions as to whether any such grid-based
urbanization patterns might depend on resolutions of observation. This research is the authors’ first
attempt to embed these experimental or measured variations models to quantify heterogeneous spatial
variation in urbanization process. The components of three spatial variance models (i.e., plotted as
a function of spatial resolution) are robust for describing hierarchical spatial structure features and
spatial autocorrelation characteristics of urbanization patterns in a simple computation way and their
results are easy to interpret.

Generally speaking, all three methods highlighted by this case study show that the influence
of spatial resolution on spatial variance in urbanization velocity analyses at different resolutions is
generally predictable: as the spatial resolution decreases (or the size of the moving window increases),
the spatial variability and spatial autocorrelation gradually increase to a peak and then decrease again
as the resolution decreases further. Although the spatial variability reaches a peak at a Level 8 resolution
in the variogram model and at a Level 16 resolution in both the local variance and geographical
variance models, all these three models (including the variogram model, the local variance model
and geographical variance model) are necessary in order to systematically evaluate the properties of
data regularization that shape grid-based urbanization phenomena. Depending on the characteristics
of spatial autocorrelation and spatial structure variability in the multi-resolution hierarchical nested
dataset, this research identified the coarse resolution 240 m (Level 8) spatial resolution to be appropriate
for describing the variability in spatial structure and spatial autocorrelation of the urbanization velocity
analysis results in PRD. This level was a suitable “resolution of action” for characterizing grid-based
urbanization velocity within the PRD. Nevertheless, urban land types in different cities demonstrate
different land use and land cover objects. The resolution variance diagnostic in this research would be
insufficient to resolve the resolution selection issue in other areas. It is clearly demonstrated that it is
difficult to identify changes in urban agglomeration processes using only one specific spatial resolution
for different cities. The applicability of these spatial variance models should be further examined.

6. Conclusions and Outlook

Remote sensing data are widely believed to be constrained by the minimum spatial resolution
of the sensor. This research has, however, shown that a resolution of 30 m in Landsat satellite
data was more than adequate for a multi-scale urbanization velocity analysis over the whole of the
PRD. Coarser resolution satellite data (>30 m) clearly presents new possibilities for multi-resolution
urban growth analysis, particularly with regard to differentiating urban structures within cities.
Nevertheless, fine to coarse resolution imagery data are indispensable for long-term observations
of spatial distributions and fluctuations in built-up areas, and enable planners to track urbanization
processes in a spatially and temporally explicit manner. Compared to other ways of grid-based
urbanization velocity analysis utilizing built-up area information, which are based on using the
variations of vegetation cover [33,93,94], impervious surface [95], night-time luminosity data [96],
and land surface temperature data [97], are somewhat limited by the time-consuming nature of
image classification.
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Spatial resolution can be used to refer both to the magnitude of a study (e.g., its geographic extent)
and also to the degree of detail (e.g., its spatial variance) [77]. Concepts of spatial autocorrelation
and intra-pixel heterogeneity within the structure of multi-resolution data were thus used in this
research as a basis for understanding the effects of spatial variability in a grid-based hierarchy. With
the advantages of being simple, well grounded in theory, and largely compatible with multi-scale
grid models, the empirical variogram, local variance and geographical variance models used in this
research have provided an understanding of the nature and cause of spatial variability in satellite
imagery. Nevertheless, investigations into the effects of scale on irregularly grouped hierarchical
data now have access to a growing arsenal of techniques. Among them this research encountered
various kinds of scale-based decomposition of variation. Further research is required into developing
systematic procedures for extrapolating information from one scale to another.

Spatial resolution has emerged as a critical issue in the description of the hierarchical structure of
complex urban systems. Remote sensing data and geographic technologies will undoubtedly advance
the development of research into multi-scale urban geography. When exploring multi-resolution
issues in urbanization velocity analyses, this research found that urbanization velocity analysis across
multiple resolutions may yield accurate representations, but the specifications of feature characteristics
may differ for different scales. Meanwhile, relationships between socio-economic indicators and
urbanization velocity that are independent of scale may provide an initial insight into likely quantitative
relationships between the spatial structures within urban landscapes and the social characteristics
of urbanization. This may aid in the understanding of how social and economic factors, as well as
population growth, might influence urban expansion and density within the PRD. The usefulness
of grid-based urbanization velocity analysis may be critically affected by the nature of the grid size
in the original remotes sensors. Nevertheless, the remote sensing-based conceptual distinctions and
methodological guidelines regarding spatial resolution in this research can help resolve “the spatial
resolution question” in urban geography.
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