Mapping Water Quality Parameters with Sentinel-3 Ocean and Land Colour Instrument imagery in the Baltic Sea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites and In Situ Data
- Field campaigns dedicated for Sentinel-2 and Sentinel-3 validation where bio-optical measurements were carried out from a boat with comprehensive set of optical instrumentation followed by water sample analysis in laboratory (circles on Figure 1).
- Bio-physical sampling campaigns on R/V Salme included both fixed station sampling with limited number of optical measurements (reflectance, IOPs), accompanied with water sampling, and ferrybox measurements between the stations (triangles and lines on Figure 1).
- Reflectance measurements collected for satellite data calibration and validation with Rflex systems [29] on ships of opportunity under the frame of the BONUS FerryScope project (www.ferryscope.org), along with in situ data collected with ferrybox systems (markers in the Southern part of the Baltic Sea).
2.2. Reflectance Measurements
2.3. Sentinel-3 OLCI Data
3. Results
3.1. In Situ Data
3.2. Atmospheric Correction and Reflectance Spectra
3.3. Results of the Remote Sensing Products vs. In Situ Data
3.4. Results of the Empirical Remote Sensing Algorithms vs. In Situ Data
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Gitelson, A.; Keydan, G.; Shishkin, V. Inland waters quality assessment from satellite data in visible range of the spectrum. Sov. Remote Sens. 1985, 6, 28–36. [Google Scholar]
- Schalles, J.F.; Schiebe, F.R.; Starks, P.J.; Troeger, W.W. Estimation of algal and suspended sediment loads (singly and combined) using hyperspectral sensors and experiments. In Proceedings of the Fourth International Conference on Remote Sensing of Marine and Coastal Environments, Orlando, FL, USA, 17–19 March 1997; pp. 247–258. [Google Scholar]
- Darecki, M.; Stramski, D. An evaluation of MODIS and SeaWIFS bio-optical algorithms in the Baltic Sea. Remote Sens. Environ. 2004, 89, 326–350. [Google Scholar] [CrossRef]
- Kutser, T. Quantitative detection of chlorophyll in cyanobacterial blooms by satellite remote sensing. Limnol. Oceanogr. 2004, 49, 2179–2189. [Google Scholar] [CrossRef]
- Kutser, T.; Metsamaa, L.; Strombeck, N.; Vahtmae, E. Monitoring cyanobacterial blooms by satellite remote sensing. Estuar. Coast. Shelf Sci. 2006, 67, 303–312. [Google Scholar] [CrossRef]
- Reinart, A.; Kutser, T. Comparison of different satellite sensors in detecting cyanobacterial bloom events in the Baltic Sea. Remote Sens. Environ. 2006, 102, 74–85. [Google Scholar] [CrossRef]
- Paavel, B.; Arst, H.; Metsamaa, L.; Toming, K.; Reinart, A. Optical investigations of CDOM-rich coastal waters in Parnu Bay. Estonian J. Earth Sci. 2011, 60, 102–112. [Google Scholar] [CrossRef] [Green Version]
- Alikas, K.; Kratzer, S.; Reinart, A.; Kauer, T.; Paavel, B. Robust remote sensing algorithms to derive the diffuse attenuation coefficient for lakes and coastal waters. Limnol. Oceanogr. Methods 2015, 13, 402–415. [Google Scholar] [CrossRef]
- Wasmund, N. Phytoplankton periodicity in a eutrophic coastal water of the Baltic Sea. Int. Rev. Gesamten Hydrobiol. 1994, 79, 259–285. [Google Scholar] [CrossRef]
- Simis, S.G.H.; Ylöstalo, P.; Kallio, K.; Spilling, K.; Kutser, T. Contrasting seasonality in optical-biogeochemical properties of the Baltic Sea. PLoS ONE 2017, 12, e0173357. [Google Scholar] [CrossRef] [PubMed]
- Ligi, M.; Kutser, T.; Kallio, K.; Attila, J.; Koponen, S.; Paavel, B.; Soomets, T.; Reinart, A. Testing the performance of empirical remote sensing algorithms in the Baltic Sea waters with modelled and in situ reflectance data. Oceanologia 2017, 59, 57–68. [Google Scholar] [CrossRef]
- Kahru, M.; Elmgren, R.; Savchuk, O.P. Changing seasonality of the Baltic Sea. Biogeosciences 2016, 13, 1009–1018. [Google Scholar] [CrossRef] [Green Version]
- Groetsch, P.M.M.; Simis, S.G.H.; Eleveld, M.A. Spring blooms in the Baltic Sea have weakened but lengthened from 2000 to 2014. Biogeosciences 2016, 13, 4959–4973. [Google Scholar] [CrossRef]
- The Copernicus Marine Environment Monitoring Service (CMEMS). Ocean Colour BALTIC Observation Products; Quality information document; EU Copernicus Marine Service: Brussels, Belgium, 2016. [Google Scholar]
- Kahru, M.; Elmgren, R. Multidecadal time series of satellite-detected accumulations of cyanobacteria in the Baltic Sea. Biogeosciences 2014, 11, 3619–3633. [Google Scholar] [CrossRef] [Green Version]
- Kutser, T.; Metsamaa, L.; Dekker, A.G. Influence of the vertical distribution of cyanobacteria in the water column on the remote sensing signal. Estuar. Coast. Shelf Sci. 2008, 78, 649–654. [Google Scholar] [CrossRef]
- Kahru, M.; Horstmann, U.; Rud, O. Satellite detection of increased cyanobacteria blooms in the Baltic Sea—Natural fluctuation or ecosystem change. AMBIO 1994, 23, 469–472. [Google Scholar]
- Arst, H.; Kutser, T. Data processing and interpretation of sea radiance factor measurements. Polar Res. 1994, 13, 3–12. [Google Scholar] [CrossRef]
- Kowalczuk, P.; Olszewski, J.; Darecki, M.; Kaczmarek, S. Empirical relationships between coloured dissolved organic matter (CDOM) absorption and apparent optical properties in Baltic Sea waters. Int. J. Remote Sens. 2005, 26, 345–370. [Google Scholar] [CrossRef]
- Kowalczuk, P.; Zablocka, M.; Sagan, S.; Kuliński, K. Fluorescence measured in situ as a proxy of CDOM absorption and DOC concentration in the Baltic Sea. Oceanologia 2010, 52, 431–471. [Google Scholar] [CrossRef]
- Koponen, S.; Attila, J.; Pulliainen, J.; Kallio, K.; Pyhälahti, T.; Lindfors, A.; Rasmus, K.; Hallikainen, M. A case study of airborne and satellite remote sensing of a spring bloom event in the Gulf of Finland. Cont. Shelf Res. 2007, 27, 228–244. [Google Scholar] [CrossRef]
- Attila, J.; Koponen, S.; Kallio, K.; Lindfors, A.; Kaitala, S.; Ylöstalo, P. MERIS Case II water processor comparison on coastal sites of the northern Baltic Sea. Remote Sens. Environ. 2013, 128, 138–149. [Google Scholar] [CrossRef]
- Harvey, E.T.; Kratzer, S.; Philipson, P. Satellite-based water quality monitoring for improved spatial and temporal retrieval of chlorophyll a in coastal waters. Remote Sens. Environ. 2015, 158, 417–430. [Google Scholar] [CrossRef]
- Wozniak, S.B.; Darecki, M.; Zablocka, M.; Burska, D.; Dera, J. New simple statistical formulas for estimating surface concentrations of suspended particulate matter (SPM) and particulate organic carbon (POC) from remote-sensing reflectance in the southern Baltic Sea. Oceanologia 2016, 58, 161–175. [Google Scholar] [CrossRef]
- Wozniak, M.; Bradtke, K.M.; Darecki, M.; Krężel, A. Empirical Model for Phycocyanin Concentration Estimation as an Indicator of Cyanobacterial Bloom in the Optically Complex Coastal Waters of the Baltic Sea. Remote Sens. 2016, 8, 212. [Google Scholar] [CrossRef]
- Soja-Wozniak, M.; Craig, S.E.; Kratzer, S.; Wojtasiewicz, B.; Darecki, M.; Jones, C.T. A Novel Statistical Approach for Ocean Colour Estimation of Inherent Optical Properties and Cyanobacteria Abundance in Optically Complex Waters. Remote Sens. 2017, 9, 343. [Google Scholar] [CrossRef]
- Kari, E.; Kratzer, S.; Beltran-Abaunza, J.M.; Harvey, T.E.; Vaičiūtė, D. Retrieval of suspended particulate matter from turbidity—Model development, validation, and application to MERIS data over the Baltic Sea. Int. J. Remote Sens. 2017, 38, 1983–2003. [Google Scholar] [CrossRef]
- Raag, L.; Sipelgas, L.; Uiboupin, R. Analysis of natural background and dredging-induced changes in TSM concentration from MERIS images near commercial harbours in the Estonian coastal sea. Int. J. Remote Sens. 2014, 35, 6764–6780. [Google Scholar] [CrossRef]
- Simis, S.G.; Olsson, J. Unattended processing of shipborne hyperspectral reflectance measurements. Remote Sens. Environ. 2013, 135, 202–212. [Google Scholar] [CrossRef]
- Kervinen, M.; Simis, S.G.H.; Keto, V.; Boettcher, M. Rflex WFS API Reference, FerryScope D1.2, Version 1.0; Finish Environment Institute: Helsinki, Finland, 2015; Available online: http://ferryscope.org/wp-content/uploads/2014/10/FerryScope-D1.2-RflexAPIQuickStart-v1.0.4.pdf (accessed on 19 October 2017).
- Lorenzen, C.J. Determination of chlorophyll and phaeopigments: Spectrophotometric equations. Limnol. Oceanogr. 1967, 12, 343–346. [Google Scholar] [CrossRef]
- HELCOM. Helcom Combine—Manual for Marine Monitoring in the COMBINE Programme of HELCOM; HELCOM: Helsinki, Finland, 2015. [Google Scholar]
- Davies-Colley, R.J.; Vant, W.N. Absorption of light by yellow substance in freshwater lakes. Limnol. Oceanogr. 1987, 32, 416–425. [Google Scholar]
- Kutser, T.; Vahtmäe, E.; Paavel, B.; Kauer, T. Removing glint effects from field radiometry data measured in optically complex coastal and inland waters. Remote Sens. Environ. 2013, 133, 85–89. [Google Scholar] [CrossRef]
- Mobley, C.D. Estimation of the remote-sensing reflectance from above-surface measurements. Appl. Opt. 1999, 38, 7442–7455. [Google Scholar] [CrossRef] [PubMed]
- Kallio, K.; Attila, J.; Härmä, P.; Koponen, S.; Pulliainen, J.; Hyytiäinen, U.-M.; Pyhälahti, T. Landsat ETM+ images in the estimation of seasonal lake water quality in boreal river basins. Environ. Manag. 2008, 42, 511–522. [Google Scholar] [CrossRef] [PubMed]
- Kallio, K.; Koponen, S.; Pulliainen, J. Feasibility of airborne imaging spectrometry for lake monitoring—A case study of spatial chlorophyll a distribution in two meso-eutrophic lakes. Int. J. Remote Sens. 2003, 24, 3771–3790. [Google Scholar] [CrossRef]
- Moses, W.J.; Gitelson, A.A.; Berdnikov, S.; Povaznyy, V. Estimation of chlorophyll-a concentration in case II waters using MODIS and MERIS data—Successes and challenges. Environ. Res. Lett. 2009, 4, 4. [Google Scholar] [CrossRef]
- Zimba, P.V.; Gitelson, A. Remote estimation of chlorophyll concentration in hypereutrophic aquatic systems: Model tuning and accuracy optimization. Aquaculture 2006, 256, 272–286. [Google Scholar] [CrossRef]
- Mayo, M.; Gitelson, A.; Yacobi, Y.Z.; Ben-Avraham, Z. Chlorophyll distribution in Lake Kinneret determined from Landsat Thematic Mapper data. Int. J. Remote Sens. 1995, 16, 175–182. [Google Scholar] [CrossRef]
- Gitelson, A.A. The peak near 700 nm on radiance spectra of algae and water: Relationships of its magnitude and position with chlorophyll concentration. Int. J. Remote Sens. 1992, 13, 3367–3373. [Google Scholar] [CrossRef]
- Wang, F.; Han, L.; Kung, H.T.; Van Arsdale, R.B. Applications of Landsat-5 TM imagery in assessing and mapping water quality in Reelfoot Lake, Tennessee. Int. J. Remote Sens. 2006, 27, 5269–5283. [Google Scholar] [CrossRef]
- Kallio, K.; Kutser, T.; Hannonen, T.; Koponen, S.; Pulliainen, J.; Vepsäläinen, J.; Pyhälahti, T. Retrieval of water quality from airborne imaging spectrometry of various lake types in different seasons. Sci. Total Environ. 2001, 268, 59–77. [Google Scholar] [CrossRef]
- Kutser, T.; Pierson, D.C.; Kallio, K.; Reinart, A.; Sobek, S. Mapping lake CDOM by satellite remote sensing. Remote Sens. Environ. 2005, 94, 535–540. [Google Scholar] [CrossRef]
- Alikas, K.; Kratzer, S. Improved retrieval of Secchi depth for optically-complex waters using remote sensing data. Ecol. Indic. 2017, 77, 218–227. [Google Scholar] [CrossRef]
- Ligi, M.; Kutser, T.; Paavel, B.; Uudeberg, K.; Reinart, A.; Soomets, T.; Vahtmäe, E. 2017 Variability of the optical properties of the Baltic Sea coastal waters. Boreal Environ. Res. 2017. submitted. [Google Scholar]
- Jaelani, L.M.; Matsushita, B.; Yanga, W.; Fukushima, T. Evaluation of four MERIS atmospheric correction algorithms in Lake Kasumigaura, Japan. Int. J. Remote Sens. 2013, 34, 8967–8985. [Google Scholar] [CrossRef]
- Gower, J.; King, S.; Borstad, G.; Brown, L. The importance of a band at 709 nm for interpreting water-leaving spectral radiance. Can. J. Remote Sens. 2008, 34, 287–295. [Google Scholar]
- Kutser, T.; Verpoorter, C.; Paavel, B.; Tranvik, L.J. Estimating lake carbon fractions from remote sensing data. Remote Sens. Environ. 2015, 157, 138–146. [Google Scholar] [CrossRef]
- Brockmann, C.; Doerffer, R.; Peters, M.; Stelzer, K.; Embacher, S.; Ruescas, A. Evolution of the C2RCC neural network for Sentinel 2 and 3 for the retrieval of ocean colour products in normal and extreme optically complex waters. In Proceedings of the ESA Living Planet, Prague, Czech Republic, 9–13 May 2016. [Google Scholar]
- Simis, S.G.H.; Ruiz-Verdu, A.; Antonio Dominguez-Gomez, J.; Pena-Martinez, R.; Peters, S.W.M.; Gons, H.J. Influence of phytoplankton pigment composition on remote sensing of cyanobacterial biomass. Remote Sens. Environ. 2007, 106, 414–427. [Google Scholar] [CrossRef]
- HELCOM. Guidelines for Monitoring of Chlorophyll a; HELCOM: Helsinki, Finland, 2017. [Google Scholar]
- Raateoja, M.; Seppala, J.; Ylostalo, P. Fast repetition rate fluorometry is not applicable to studies of filamentous cyanobacteria from the Baltic Sea. Limnol. Oceanogr. 2004, 49, 1006–1012. [Google Scholar] [CrossRef]
- Kutser, T.; Paavel, B.; Metsamaa, L.; Vahtmäe, E. Mapping coloured dissolved organic matter concentration in coastal waters. Int. J. Remote Sens. 2009, 30, 5843–5849. [Google Scholar] [CrossRef]
Band Number | Central Wavelength (nm) | Bandwidth (nm) |
---|---|---|
Oa1 | 400 | 15 |
Oa2 | 412.5 | 10 |
Oa3 | 442.5 | 10 |
Oa4 | 490 | 10 |
Oa5 | 510 | 10 |
Oa6 | 560 | 10 |
Oa7 | 620 | 10 |
Oa8 | 665 | 10 |
Oa9 | 673.75 | 7.5 |
Oa10 | 681.25 | 7.5 |
Oa11 | 708.75 | 10 |
Oa12 | 753.75 | 7.5 |
Oa13 | 761.25 | 2.5 |
Oa14 | 764.375 | 3.75 |
Oa15 | 767.5 | 2.5 |
Oa16 | 778.75 | 15 |
Oa17 | 865 | 20 |
Oa18 | 885 | 10 |
Oa19 | 900 | 10 |
Oa20 | 940 | 20 |
Oa21 | 1020 | 40 |
Algorithm (Wavelength) | Algorithm (OLCI Bands) | Reference |
---|---|---|
Chlorophyll a and Other Pigments | ||
R560/R665 | B6/B8 | [36] |
R665/R709 | B8/B11 | [21] |
R665/R754 | B8/B12 | |
R674/R709 | B9/B11 | [37] |
R674/R754 | B9/B12 | |
R709/R754 | B11/B12 | [38] |
(1/R6651/R709) × R754 | (1/B8 − 1/B11) × B12 | [39] |
(R490 − R665)/R560 | (B4 − B8)/B6 | [40] |
R709 − ((R665 + R754)/2) | B11 − ((B8 + B12)/2) | [41] |
R709 − R754 | B11 − B12 | |
Total Suspended Matter | ||
R665/R560 | B8/B6 | [42] |
R709 | B11 | [43] |
Coloured Dissolved Organic Matter | ||
R665/R490 | B8/B4 | [21] |
R665/R560 | B8/B6 | [44] |
Secchi | ||
(R560/R709)0.788 × 1.125 | (B6/B11)0.788 × 1.125 (turbid waters) | [45] |
(R490/R709)0.697 × 2.137 | (B4/B11)0.697 × 2.137 (clear waters) | [45] |
Chl a (mg m−3) | Phycocyanin (ppb) | TSM (mg L−1) | SPIM (mg m−3) | SPOM (mg m−3) | aCDOM(412) (m−1) | Turbidity (NTU) | Secchi (m) | atot (m−1) | ctot (m−1) | btot (m−1) | bbtot (m−1) | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Boat | Mean | 1.53 | 1.52 | 6.83 | 4.94 | 1.90 | 0.99 | - | 5.18 | 0.55 | 1.61 | 1.07 | 0.02 |
Min | 0.38 | 0.11 | 4.55 | 2.90 | 0.99 | 0.60 | - | 2.20 | 0.39 | 0.69 | 0.29 | 0.01 | |
Max | 2.95 | 2.93 | 9.14 | 7.36 | 3.50 | 3.20 | - | 12.7 | 0.80 | 2.33 | 1.76 | 0.05 | |
N | 17 | 17 | 17 | 17 | 17 | 17 | - | 17 | 15 | 15 | 15 | 15 | |
R/V Salme stations | Mean | 4.33 | 1.14 | 2.23 | - | - | - | - | 3.32 | 0.64 | 2.12 | 1.48 | - |
Min | 1.81 | 0.13 | 1.20 | - | - | - | - | 2.50 | 0.58 | 1.84 | 1.2 | - | |
Max | 6.02 | 1.44 | 4.53 | - | - | - | - | 4.00 | 0.75 | 2.79 | 2.2 | - | |
N | 16 | 8 | 16 | - | - | - | - | 16 | 16 | 15 | 15 | - | |
R/V Salme Ferrybox | Mean | 1.12 | 0.35 | - | - | - | - | 0.66 | - | - | - | - | - |
Min | 0.00 | 0.00 | - | - | - | - | 0.24 | - | - | - | - | - | |
Max | 2.63 | 1.81 | - | - | - | - | 12.8 | - | - | - | - | - | |
N | 822 | 299 | - | - | - | - | 771 | - | - | - | - | - | |
FerryScope | Mean | 1.60 | - | - | - | - | - | 0.29 | - | - | - | - | - |
Min | 0.82 | - | - | - | - | - | 0.19 | - | - | - | - | - | |
Max | 2.48 | - | - | - | - | - | 0.36 | - | - | - | - | - | |
N | 385 | - | - | - | - | - | 385 | - | - | - | - | - |
Central Wavelength (nm)/Band | FerryScope | R/V Salme | Field | |||
---|---|---|---|---|---|---|
R | P | R | P | R | P | |
400 (B1) | 0.06 | 0.25 | 0.55 | 0.03 | 0.51 | 0.04 |
413 (B2) | 0.06 | 0.26 | 0.56 | 0.03 | 0.55 | 0.02 |
443 (B3) | 0.07 | 0.20 | 0.66 | 0.01 | 0.67 | 0.00 |
490 (B4) | 0.31 | 0.00 | 0.65 | 0.01 | 0.77 | 0.00 |
510 (B5) | 0.59 | 0.00 | 0.38 | 0.16 | 0.81 | 0.00 |
560 (B6) | 0.77 | 0.00 | −0.16 | 0.58 | 0.82 | 0.00 |
620 (B7) | 0.71 | 0.00 | −0.48 | 0.07 | 0.77 | 0.00 |
665 (B8) | 0.68 | 0.00 | −0.47 | 0.08 | 0.68 | 0.00 |
674 (B9) | 0.69 | 0.00 | −0.49 | 0.06 | 0.68 | 0.00 |
681 (B10) | 0.69 | 0.00 | −0.51 | 0.05 | 0.68 | 0.00 |
709 (B11) | 0.64 | 0.00 | −0.41 | 0.13 | 0.58 | 0.02 |
754 (B12) | 0.60 | 0.00 | −0.18 | 0.51 | 0.43 | 0.09 |
779 (B16) | 0.60 | 0.00 | 0.06 | 0.82 | 0.37 | 0.14 |
865 (B17) | 0.60 | 0.00 | 0.07 | 0.82 | 0.61 | 0.01 |
885 (B18) | 0.59 | 0.00 | −0.63 | 0.01 | 0.71 | 0.00 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toming, K.; Kutser, T.; Uiboupin, R.; Arikas, A.; Vahter, K.; Paavel, B. Mapping Water Quality Parameters with Sentinel-3 Ocean and Land Colour Instrument imagery in the Baltic Sea. Remote Sens. 2017, 9, 1070. https://doi.org/10.3390/rs9101070
Toming K, Kutser T, Uiboupin R, Arikas A, Vahter K, Paavel B. Mapping Water Quality Parameters with Sentinel-3 Ocean and Land Colour Instrument imagery in the Baltic Sea. Remote Sensing. 2017; 9(10):1070. https://doi.org/10.3390/rs9101070
Chicago/Turabian StyleToming, Kaire, Tiit Kutser, Rivo Uiboupin, Age Arikas, Kaimo Vahter, and Birgot Paavel. 2017. "Mapping Water Quality Parameters with Sentinel-3 Ocean and Land Colour Instrument imagery in the Baltic Sea" Remote Sensing 9, no. 10: 1070. https://doi.org/10.3390/rs9101070
APA StyleToming, K., Kutser, T., Uiboupin, R., Arikas, A., Vahter, K., & Paavel, B. (2017). Mapping Water Quality Parameters with Sentinel-3 Ocean and Land Colour Instrument imagery in the Baltic Sea. Remote Sensing, 9(10), 1070. https://doi.org/10.3390/rs9101070