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Abstract: In recent years, airborne Light Detection and Ranging (LiDAR) that provided
three-dimensional forest information has been widely applied in forest inventory and has shown
great potential in automatic individual tree crown delineation (ITCD). Usually, ITCD algorithms
include treetop detection and crown boundary delineation procedures. In this study, we proposed
a novel method called region-based hierarchical cross-section analysis (RHCSA), which combined
the two procedures together based on a canopy height model (CHM) derived from airborne LiDAR
data for ITCD. This method considers the CHM as a three-dimensional topological surface, simulates
stereoscopic scanning from top to bottom using an iterative process, and utilizes the individual crown
and vertical structure of crowns to progressively detect individual treetops and delineate crown
boundaries. The proposed method was tested in natural forest stands with high canopy densities
in Liangshui National Nature Reserve and Maoershan Forest Farm, Heilongjiang Province, China.
Its performance was evaluated by an accuracy procedure that considered both the relative position
of treetops and overlapped area of crowns. The average overall accuracy achieved was 85.12% for
coniferous plots, 83.86% for deciduous plots and 86.44% for coniferous and broad-leaved mixed forest
plots. The results revealed that the RHCSA method can detect and delineate individual tree crowns
with little influence from forest types and crown size. It could provide technical support for individual
tree crown delineation in coniferous, deciduous and mixed forests with high canopy densities.

Keywords: treetop detection; crown delineation; hierarchical cross-section analysis; LiDAR;
CHM; ITCD

1. Introduction

Forests are an important natural resource which play a significant role in modulating stores
and fluxes of water and carbon, maintaining ecological diversity, and regulating climate on the
Earth’s surface, and provides timber and other forest products constantly which are closely related to
humans [1–3]. Parameters of individual trees, such as tree location, tree species, tree height, diameter at
breast height (DBH), and crown diameter, are vital for sustainable and precise forest management [4–6].
These individual tree-related properties can also be utilized to estimate forest parameters at stand
level, such as tree species composition, mean tree height, timber volume, canopy density, and mean
basal area [7–10].

Traditionally, forest parameters at the individual tree level have been measured by means of field
surveys [11], which are time consuming and cost-intensive when carried out over broad areas [12,13].
Since the early 1960s, with the extensive application of remote sensing data in forest inventory [14–16]
a variety of image processing techniques were developed for automatically detecting and delineating
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individual tree crowns, such as local maxima filtering with fixed or variable window size [17–19],
valley-following [20–22], region-growing [23,24], and watershed segmentation [25,26]. These methods
make it possible to obtain individual tree-based attributes that can be directly used as input
parameters for environmental modeling without the limitations of the sample sizes and inaccessible
areas [27,28]. In recent decades, airborne Light Detection and Ranging (LiDAR), also referred to
airborne laser scanning (ALS), is becoming one of the most common remotely-sensed data sources
for forest inventory analysis [29–31]. LiDAR remote sensing can provide detailed and precise
three-dimensional structural information of the forest area [32], thus improving the development
of individual tree crowns delineation (ITCD) algorithms [4,33]. Laser-based individual tree crown
delineation can reflect accurate geometrical properties of trees, such as tree height and crown diameter
which cannot be affected by illumination angle and shadows on multispectral imageries [34], and
become attractive techniques for both forestry and remote sensing communities [13].

According to the inputs of ITCD algorithms, LiDAR data can be mainly divided into three
categories: LiDAR point cloud, LiDAR-derived raster, e.g., canopy height model (CHM), and
raster-point combined data [13]. With the increased point density of LiDAR data, a growing number
of ITCD studies have begun to use LiDAR point clouds directly as the data source. Point cloud-based
methods take advantage of multi-return information to describe vertical characteristics under
canopies [35], which cause low information loss and provide an opportunity to multi-layer forests
structure modelling [36,37]. For example, Ferraz et al. [38] firstly defined forest layers and then
applied a clustering method based on mean-shift algorithm using LiDAR point cloud. Vega et al. [39]
developed a multi-scale dynamic segmentation method called PTrees to extract individual trees from
point clouds. However, the method that focused on full exploitation of 3-D points may be currently
restricted by computational burden, which is difficult to be applied broadly [40,41]. Since raster-based
methods are easy to be exploited and improved by powerful knowledge-based approaches [6,13],
it becomes the most commonly used method for individual tree crown delineation. CHM, a type
of LiDAR-derived raster, is the dominant dataset for representing canopy surface in individual tree
crown delineation [8]. Besides CHM, other LiDAR-derived datasets, such as Height-Scaled Crown
Openness Index (HSCOI) and Canopy Maximum Model, were also used for ITCD [42,43]. Sometimes,
researchers combined both raster and LiDAR point data for ITCD studies. For example, researchers
applied CHM for the initial segmentation and subsequently refined the results using a LiDAR point
cloud [4,44,45].

Recently, many ITCD methods have been developed and applied for various forests
conditions [43,46,47]. Thereinto, most studies focus on coniferous forest because (1) many study
area were located in high latitude regions that are dominated by coniferous forests; and (2) the
basic assumption of a conical crown shape which many algorithms were developed based on
is more appropriate for conifers than other forest types [11]. However, it is not easy to obtain
satisfied accuracy under other forest conditions. Ke and Quackenbush [34] compared watershed
segmentation, region-growing, and valley-following method for different forest types on different
images and found that all methods works well on coniferous stand and have demonstrated lower
accuracy for the deciduous stand on either image set. Other researchers also found that the results of
individual tree crown detection are largely influenced by forest types [48,49]. Over-segmentation and
under-segmentation may be greatly increased in complex and closed forests.

Majority of previous methods extracted individual tree crowns by two steps: (1) treetop detection;
and (2) crown boundary delineation. Most treetop detection methods assumed that a treetop is the
local maximum brightness or height value and detected individual treetops using local maxima filter.
However, during treetop detection, branches, or sub-crowns of a deciduous tree may be detected as
small trees (commission error), and small trees with smaller crown size or tree height than average trees
tended to be omitted (omission error). To avoid issues mentioned above, researchers have developed
a series of local maxima filters with variable window sizes to detect individual treetops [16,19,43].
Although local maximum filtering with variable window sizes has been widely developed and used,
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structure of tree crowns are not always regular and cannot be represented by a simple 2-D filtering
window. In the crown delineation process, watershed segmentation and region-growing, as two of
classic image segmentation methods, were often employed based on the markers produced by treetop
detection [16,43]. Although, researchers have improved delineation algorithms by priori knowledge
and morphology of crowns [46,50], the two-steps methods could transfer errors from treetop detection
to crown boundary delineation procedure.

Researchers also developed some ITCD algorithms without prior treetop detection. For example,
Jing et al. [51] segmented multispectral images at different scales by watershed algorithm and then
integrated the multi-layered segments. This approach effectively reduced the over-segmentation
which are caused by branches of the deciduous tree, but required the dominant tree crown sizes
beforehand. Liu et al. [52] developed a boundary refining program called Fishing Net Dragging (FiND)
based on watershed segmentation and used a boundary classification model to merge the adjacent
segments. These approaches do not rely on prior detected treetops, but require some complicated
post-process procedures.

Beyond the ITCD algorithms, accuracy assessment for ITCD studies also varies greatly, which
make it difficult to compare the performance of the algorithms [35]. Some studies evaluated ITCD
accuracy at both plot and individual tree level (e.g., [16,34]), while others only provided accuracy
assessment at individual tree level (e.g., [52]). From two-step perspective, ITCD accuracy assessment
can be divided into detection accuracy and delineation accuracy assessment. Pouliot et al. [53] proposed
accuracy index (AI) to represent detection accuracy and used the root mean square error (RMSE) of
the crown diameters between reference and delineated crowns for delineation accuracy. Ke et al. [11]
used a confusion table to describe the detail of tree crown detection and evaluated accuracy from both
producer’s and user’s perspectives. Some studies used overall accuracy that was evaluated by the
number of matched reference and detected trees [4,51]. While some researchers analyzed different
cases of individual tree crowns matching [51,52]. It is necessary to develop a comprehensive and
stable accuracy assessment system which contains individual tree crown matching and other accuracy
indices for ITCD studies.

In this study, we aimed to propose a novel ITCD algorithm for different forest types in northeastern
China based on LiDAR data. The specific objectives were to (1) develop a one-step ITCD algorithm that
combines the procedures of treetop detection and crown boundary delineation into an iterative process,
which could utilize horizontal relationship among crowns in vertical direction to reduce commission
and omission errors; (2) explore the proposed algorithm under different forest types with high canopy
density, including coniferous forest, deciduous forest, and conifer-broadleaves forest, and compare it
with the marker-controlled watershed algorithm; (3) combine beneficial and complementary aspects
of existed accuracy assessment methods into a new ITCD accuracy assessment program to evaluate
the accuracy of proposed algorithm. It could provide technical support for individual tree crown
delineation in coniferous, deciduous, and mixed forests with high canopy density.

2. Materials

2.1. Study Areas

In this study, nine plots in two study areas (study area I and II) were selected according to forest
types. Study area I is primary forests dominated by conifers and study area II is secondary forests
dominated by deciduous forests and coniferous and broad-leaved mixed forests. Both of study areas
are the typical forests in Northeastern China. All plots were set to 100 × 100 m.

Study area I (Figure 1, Liangshui) is situated in the Liangshui National Nature Reserve,
Dailing district, Yichun , Helongjiang Province, China. Liangshui is geographically located at
128◦47′8”–128◦57′19′′E, 47◦6′49′′–47◦16′10′′N, which was known as the hometown of Korean pine
(Pinus koraiensis). The total area of Liangshui is 12,133 km2 with a total forest volume of 1.7 million m3

and a vegetation coverage of 98% [54]. Korean pine (Pinus koraiensis) accounts for 63.7% of forest
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area in this study area and other coniferous species include Korean spruce (Picea koraiensis), larch
(Larix gmelinii), and fir (Abies nephrolepis). White birch (Betula platyphylla), Ussuri poplar (Populus
ussuriensis), Amur corktree (Phellodendrona murense), Manchurian ash (Fraxinus mandshurica), and
Manchurian walnut (Juglans mandshuria) are the most common deciduous species. Plot 1, 2, 3 are
coniferous plots used in this study (Figure 1).
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Figure 1. Study area located in Liangshui and Maoershan, Heilongjiang Province, China. Plots 1–3 are
coniferous plots; Plots 4–5 are conifer-deciduous mixed plots; Plots 7–9 are deciduous plots. (Projected
coordinate system: WGS_1984_UTM_Zone_52N; Projection: Transverse_Mercator).

Study area II (Figure 1, Maoershan) is situated in the Maoershan Forest Farm, Shangzhi,
Heilongjiang Province, China. Maoershan forest farm is geographically located in 127◦30′–127◦34′E,
45◦21′–45◦25′N. It is a typical natural secondary forests in the Northeast of China. The tree species
mainly comprises Mongolia oak (Quercus mongolica), birch (Betula platyphylla), aspen (Populus davidiana),
Hailar pine (Pinus sylvestris var. mongolica), Korean pine (Pinus koraiensis), larch (Larix gmelinii), and etc.
Plots 4–6 and Plots 7–9 used in this study are conifer-deciduous mixed forests and deciduous forests,
respectively (Figure 1).

2.2. LiDAR Data

The LiDAR data were acquired on September 2009 and 2015 using a LiteMapper 5600 airborne
LiDAR system (Integrated Geospatial Innovations company, Kreuztal, Germany) and CAF’s LiCHy
airborne observation system (The Chinese Academy of Forestry, Beijing, China) for study area I and
study area II, respectively [55,56]. These two sets of LiDAR data were both acquired by the Chinese
Academy of Forestry (Beijing, China) and Northeast Forestry University (Harbin, Heilongjiang, China).
The characteristics of LiDAR data for these two study areas are summarized in Table 1.
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Table 1. Characteristics of LiDAR data used for two study areas.

Characteristics Study Area I Study Area II

LiDAR sensor Riegl LMS-Q560 Riegl LMS-Q680i
Flying altitude AGL 1000 m 1200 m

Scan angle range ±30◦ ±30◦

Laser beam divergence 0.5 mrad 0.5 mrad
Laser wavelength 1550 nm 1550 nm
Laser pulse length 3.5 ns 3 ns
Total coverage area 200 km2 360 km2

Point density >2 pts/m2 (max: 8 pts/m2) >2 pts/m2 (max: 10 pts/m2)

2.3. Reference Data

Since it is difficult to obtain accurate field data for validation, the reference data used in this study
were visually interpreted from high spatial resolution orthoimages for accuracy assessment, which
was a common method used in ITCD studies (e.g., [12,16,34]). The spatial resolution of orthoimageries
were 0.5 m and 0.2 m for study area I and study area II, respectively. Both of the orthoimageries
had three broad spectral bands: blue (with a center wavelength of 450 nm), green (550 nm), and red
(625 nm). The reference data, including treetops and tree crowns, were determined using ArcGIS 10.2.

3. Methods

3.1. Data Preprocessing

Data preprocessing in our study consisted of three steps: (1) classify the raw LiDAR point data
into ground and above-ground points using TerraSolid’s TerraScan software (Terrasolid Ltd., Helsinki,
Finland); (2) derive CHM using the classified point clouds, that is the difference between Digital
Surface Model (DSM) and Digital Terrain Model (DTM) interpolated from surface points and ground
points, respectively; (3) correct and smooth the CHM by using a pit-filling algorithm [57] and Gaussian
filtering with a window size of 3 × 3 pixels.

In original CHM, some unnatural black or grey holes caused by abnormal or sudden changes of
the height values exists regularly [58]. These pits may cause potential errors in the treetop detection
and crown delineation [3,59]. In this study, the original CHM was filled by a semi-automated pit-filling
algorithm outlined by Ben-Arie et al. [57]. Then, a Gaussian filtering with window size of 3 × 3 pixels
was used for image smoothing and noise removal according to trial-and-error.

3.2. ITCD Algorithm

3.2.1. Algorithm Description

In this study, we proposed a novel method called region-based hierarchical cross-section
analysis (RHCSA) based on a canopy height model (CHM) derived from airborne LiDAR data
for ITCD. Like other tree crown delineation algorithms (such as watershed segment, level-set, and
valley-following), this algorithm considered tree canopies as a three-dimensional topographic surface
that a tree crown can be manifested as a mountain-like uplift on a CHM. A tree apex is equal to
a mountaintop and the height values decrease continuously from the treetop to crown the boundary.
From a three-dimensional perspective, the RHCSA algorithm vertically scanned the CHM from top
to bottom by a horizontal plane, see Figure 2a–c. In the process, the higher individual tree (tree B)
produced a cross-section earlier (Figure 2d) than the shorter tree (tree A). Figure 2e,f indicated that
the two cross-sections dilated with the decrease of scanning height. The cross-sections of tree A and
B appeared at previous step must be contained in the subsequent cross-section. Cross-sections of
individual tree crown regions that do not contact with others typically appear circular, as shown
in Figure 2d,e, and the cross-sections produced by multiple contacted trees often appear irregular
shape, like Figure 2f.
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Thus, RHCSA is a discretization method that slices the CHM by a series of equidistant horizontal
planes to simulate stereoscopic scanning from top to bottom. After level cutting, a CHM was resolved
into horizontal crown regions at different heights in vertical space. The nth cross-section region (CSR)
in the ith layer of level cutting was defined as CSRn

i , and the set containing all the CSRn
i in ith level

was defined as a CSRi. The containment relationship of CSRi among successive cutting levels can be
defined as Equation (1) according to the vertical structure of raster data:

CSRi ⊆ CSRi+1 (1)

Based on the containment relationship, RHCSA automatically determined whether a CSRn
i was

emerged for the first time, or produced by a single crown or an intersection of several crowns, then
segmented the CSRn

i that contained more than one tree from top to bottom. In RHCSA algorithm,
each level cutting represented one iteration. Individual tree crowns and treetops will be extracted
completely until all iteration ends (until level cutting reach the last layer).
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Figure 2. A 3D schematic diagram of RHCSA algorithm based on a CHM containing tree A and tree B.
(a–c) represents vertical scanning process on CHM; (d–f) are the corresponding cross-sections produced
from (a) to (c), respectively.

3.2.2. Iterative Process

In the iterative process of RHCSA algorithm, the iteration time is defined by users which can be
calculated as follow:

I =
Hstarting − Hending

Hstep
(2)

where I is the iteration time, Hstarting and Hending represent starting height and ending height in
scanning process, respectively. Hstarting is equal to the maxima pixel-value of the input CHM, and
Hending is a user-defined parameter which could be decided by the crown base height of study area.
Hstep is the step of level cutting. The detailed of vertical crown scanning may be improved with the
step subdivision, but the efficiency of this algorithm will decrease. In this study, we set up a small
step of 0.1 m to make sure that no obvious uplift exists during scanning. Hending was set to 2 m in this
study in order to remove soil and grass. The iteration process of this method is illustrated in Figure 3.
The main steps of one iteration are described as follows, including level cutting, identification of first
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emerged individual tree regions, classification of cross-section regions, segmentation of fusion regions,
and adjustment of segments and markers.Remote Sens. 2017, 9, 1084  7 of 21 
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• Level cutting

The iterative process started with level cutting which can be seen as an image binarization
procedure at different levels. Cross-section image (CSI) produced by image binarization can be defined
as Equation (3):

CSI =

{
1, i f p ≥ Ti
0, i f p < Ti

(3)

Ti = Hstarting − i× Hstep (4)

where p means the pixel values on CHM and Ti represents the threshold of image binarization at the
ith level which can be calculated by Equation (4). On the CSI, crown regions have values of ones
and non-crown regions have values of zeros. Then, cross-section regions were separated from CSI by
connected-component labeling which is an algorithmic application of graph theory used in computer
vision to detect connected regions in binary digital images [60].

• Identification of the first emerged individual tree regions

During top-to-bottom level cutting, an individual tree crown follows a “growing” process among
levels, that is, CSR of an individual tree emerges firstly and then grows with the iterations progressing.
In one iteration, we defined the CSRn

i that do not contain any CSR at the previous iteration (CSRi−1)
as the first emerged individual tree region (FEITR). Then, the centroid of the CSRn

i belonging to FEITR
was defined as a marker. An overall dataset called MFEITR was created to save all markers of FEITR
produced at each level. MFEITR is defined as Equation (5):

MFEITR = {centroid(CSRn
i ) ε MFEITR|CSRn

i ∩ CSRi−1 = ∅} (5)

where centroid() is the function to determine the center of the current region, CSRn
i is the nth

cross-section region in the ith layer of level cutting. ∩ represents intersection, and ∅ represents
an empty set.

• Classification of cross-section regions

In this step, all cross-section regions were classified into two categories: individual tree region
(ITR) and fusion region (FR). ITR is the cross-section region that belongs to an individual tree, and FR
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represents a cross-section of multiple contacted trees. According to the relationship of between CSRn
i

and MFEITR, CSRn
i can be classified by Equation (6):

CSRn
i =

{
ITRn

i i f count(CSRn
i ∩MFEITR) = 1

FRn
i i f count(CSRn

i ∩MFEITR) > 1
(6)

where count() is the function that determines count. ITRn
i is the nth ITR in the ith level and FRn

i is the
nth FR in the ith level. When CSRn

i has the only one intersection with MFEITR, it can be classified as
ITRn

i , otherwise it is classified as FRn
i .

• Segmentation of fusion regions

After classification of cross-section regions, we employed marker-controlled watershed
segmentation to segment FRs into separated ITRs. Watershed segmentation is one of the most popular
techniques for segmentation and treats each concave tree crown in the inverted CHM as a catchment
basin [61]. We segmented FRs using MFEITR as markers. As a result, all FRs were divided into ITRs
and there is no CSR with more than one marker inside.

However, branches and sub-crowns of deciduous trees may be misclassified as FEITR markers
that are included in MFEITR and will cause commission errors in this step. Thus, we considered the
containment relationship between MFEITR and CSR and the horizontal shapes of crown regions
produced by level cutting to reduce commission errors. Similar to other algorithms [15,16,51],
circularity was applied as an index to reduce over-segmentation, see Equation (7):

C =
A

πr2 (7)

where A is the area of the CSRn
i and r is the largest distance between the centroid and the border of the

CSRn
i .
At a certain height, an individual tree crown does not contract with other crowns, its cross-section

usually appears circular. While a cross-section of a tree cluster is likely to be composed of overlapped
circles, and the edge of the cluster also becomes somewhat lobate [51]. Thus, simple rules have been
added in the segmentation process to reduce commission errors.

(a) if A > AT , segment FRn
i into ITRs.

(b) if A ≤ AT and C < CT , segment FRn
i into ITRs.

(c) if A ≤ AT and C ≥ CT , reclassify FRn
i into a ITR.

where A and C are the area and circularity of the FRn
i , respectively; AT and CT are thresholds of

area and circularity, respectively. AT was designed for controlling crown area and avoiding the
special condition that a CSR of a large closed tree cluster appears to be circular. In this study, AT was
empirically set to 500 pixels. CT was designed to make sure that the shape of every crown is not far
from circular. The parameter CT was set to 0.85 in this study as typical values mentioned in Wolf
and Heipke [15]. The sensitivity of parameters CT under different forest conditions will be discussed
in Section 5.2.

• Adjustment of segments and markers

After classification and segmentation of the CSR, a pixel-based binary morphology opening
operation was applied to refine the crown boundaries at each level and remove the objects that are
smaller than the structuring element (SE) [51]. We employed the opening operation with a disk SE
width of three pixels after watershed segmentation to refine the segment boundaries and remove the
irregular segment objects produced by small noise in the CHM.

During the segmentation and refinement procedure, the containment relationship between
MFEITR and ITR may be changed. The ITR which was directly reclassify from FR may have more
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than one markers. The marker in MFEITR need to be adjusted before next iteration. Each individual
tree crown should contain only one marker and only the highest one was preserved. Through this
procedure, invalid markers (i.e., false treetops) caused by large branches and the noise in the CHM was
removed efficiently. After the adjustment procedure, the RHCSA algorithm skips to the next iteration
and continues level cutting the CHM.

3.2.3. Output of Individual Treetops and Crowns

According to above procedures, false treetops were removed from MFEITR, which represented
the set of all emerged treetops at each level. After the iteration, MFEITR was the output of the detected
treetops. ITR images represented the horizontal boundary of crowns at different heights. According to
the containment relationship in the RHSCA algorithm, the ITR image at the last level contained all the
previous ITRs and should be the output of delineated individual tree crowns.

3.3. Accuracy Assessment

Based on some existing accuracy assessment methods (e.g., [13,52]), an evaluation system
was proposed to comprehensively assess the accuracy of ITCD studies. The accuracy assessment
scheme started with individual tree crowns matching between delineated and reference crowns, then
quantitative assessment metrics were calculated on the basis of matched crowns.

3.3.1. Individual Tree Crowns Matching

The accuracy assessment of individual tree crown delineation considers correspondence between
delineated crowns and reference crowns on a location-by-location basis [11,13]. Since individual
tree crowns matching may be affected by the matching order, this study defined correspondence
of “individuals” from the perspectives of reference crowns and detected crowns. The reference
crown perspective represents how well each reference crown was delineated, while the detected
crown perspective reflects whether a detected crown is represented by reference crowns. From each
perspective, different correspondences were determined by considering both the overlapped crown
area and the position of treetops. The accuracy metrics from the two perspectives were defined
as Table 2.

Table 2. Summary of accuracy metrics for individual tree crowns matching from reference crown and
detected crown perspectives.

Perspective Accuracy Metrics Descriptions 1

Reference
crown

perspective

1:1 match Only one DetT inside a RefC, O is greater than 50% of both area of DetC and RefC
Near-match Only one DetT inside a RefC, O is greater than 50% of the area of DetC or RefC

Split More than one DetT inside a RefC, O is greater than 50% of RefC area
Merge No DetT inside a RefC, O is greater than 50% of RefC area

Multi-intersected More than one DetT inside a RefC, O is less than 50% of RefC area
Mis-located match Only one DetT inside a RefC, O is less than 50% of both area of DetC and RefC

Omission No DetT inside a RefC, O is less than 50% of both area of DetC and RefC

Detected
crown

perspective

1:1 match Only one RefT inside a DetC, O is greater than 50% of both area of DetC and RefC
Near-match Only one RefT inside a DetC, O is greater than 50% of the area of DetC or RefC

Split No RefT inside a DetC, O is greater than 50% of DetC area
Merge More than one RefT inside a DetC, O is greater than 50% of DetC area

Multi-intersected More than one RefT inside a DetC, O is less than 50% of both area of DetC and RefC
Mis-located match Only one RefT inside a DetC, O is less than 50% of both area of DetC and RefC

Commission No RefT inside a DetC, O is less than 50% of both area of DetC and RefC
1 DetT: detected treetop; DetC: detected crown; RefT: reference treetop; RefC: reference crown; O: the overlapped
area between delineated crown and reference crown.

3.3.2. Quantitative Assessment

In this study, producer’s accuracy (PA) and user’s accuracy (UA) were introduced from traditional
accuracy assessment of classification [26,34], corresponding to the reference crown perspective and
detected crown perspective, respectively. Producer’s accuracy indicates the probability that a reference
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tree is correctly delineated, as defined in Equation (8). User’s accuracy indicates the probability that
a delineated tree will be correctly represented by reference trees, as defined in Equation (9):

PA =
NPM + NPNM

NRe f
(8)

UA =
NUM + NUNM

NDet
(9)

where NPM, NPNM are the number of 1:1 matches and near-matches, respectively, from reference
crown perspective. NRe f is the total number of reference crowns. NUM, NUNM are the number of
1:1 matches and near-matches, respectively, from detected crown perspective. NDet is the total number
of detected crowns.

Overall accuracy (OA) can describe the relationship between reference crowns and detected
crowns on both perspectives. In this study, overall accuracy was calculated by the harmonic mean
of PA and UA, as defined in Equation (10), which was similar to the definition of F-score in previous
ITCD studies [35,39].

OA = 2× PA×UA
PA + UA

(10)

Since 1:1 match and near-match crowns from reference and detected crown perspectives are
different, we introduced an “overall match” that consider the two cases from both perspectives. In this
study, if a crown belongs to a 1:1 match or near-match crown from both detected and reference crown
perspectives, it is defined as an “overall match”. Detection accuracy (RMSE(P)) was defined as root
mean square error (RSME) of the Euclidean distance between the reference and detected treetops of
the overall match crowns [62], see (Equation (11)). Delineation accuracy (RMSE(D)) was defined as the
difference of crown diameter between delineated and reference crowns [34], see (Equation (12)),

RMSE(P) =

√
∑|dist (Re f Pi − DetPi)|2

No_match
(11)

RMSE(D) =

√
∑(Re f Di − DetDi)

2

No_match
(12)

where, dist() is the function of calculating Euclidean distance, No_match is the total number of the
overall match. Re f Pi and DetPi represent the position of the reference and detected treetops for the ith
overall crowns, respectively. Re f Di and DetDi represent the crown diameter of the reference and the
delineated crowns for ith overall crown, respectively.

4. Results

4.1. Individual Tree Crowns Matching

This study conducted the proposed RHCSA algorithm in nine plots of 100 × 100 m, which
belonged to coniferous forest, coniferous-broadleaved mixed forest, and deciduous forest. A total of
2768 reference crowns were manually delineated according to high spatial resolution orthoimages.
A total of 2898 crowns were delineated by the proposed algorithm and slightly over-segmented
reference crowns. Since both the overlapped area and treetop locations were considered in the proposed
accuracy assessment approach, the number of each cases from the reference crown perspective is
different from that from detected crown perspective [52]. Table 3 summarizes the result of individual
tree crowns matching in the nine plots from both reference and detected crown perspectives. In the
coniferous (Plots 1–3) and mixed forest plots (Plots 4–6), the numbers of reference crowns were always
greater than that of detected crowns, while the results of deciduous stands are in direct contradiction.
This is because deciduous trees with irregular branches tended to be over-segmented and conifers
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with small crowns tended to be omitted. In general, 1:1 matches are dominant in all metrics from both
perspectives and the number of near-matches accounted for about 10% of the number of 1:1 matches.
This illustrated that most reference crowns can be delineated well and a majority of delineated crowns
can represent reference crowns. The number of “merge” errors (about 40) was much larger than
that of “split” errors (about 10) in coniferous stands. In deciduous and mixed forest stands, “split”
errors increased, especially in deciduous forests. However, “merge” errors of deciduous forests
were much lower than that of the other two from both reference and detected crown perspectives.
This is because a conifer tree that usually has a small crown tends to be merged with adjacent trees.
However, deciduous trees that usually have larger crowns are not easy to be omitted. It is observed
that no omission errors occurred except for Plot 3 (only two). This indicated that the RHCSA method
has great potential to control omission and commission error. Due to the small number (less than five),
“Multi-intersected” and “Mis-located match” were not the main errors in the nine plots, either.

Figures 4 and 5 illustrated the results of the detected individual treetops and tree crowns
by the proposed methods for the nine plots. In these figures red points and blue points present
detected treetops and reference treetops, respectively; red lines and blue lines represent the boundaries
of detected individual tree crowns and reference individual tree crowns, respectively. The blue
points that were not corresponding to red points in Figure 4 may belong to omission errors, split
or multi-intersected errors. Overall, the proposed algorithm detected most individual treetops and
successfully delineated most individual tree crowns in three types of forests. However, there are still
some omitted trees and some over-segmented crowns in each plot.
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Table 3. Accuracy assessment of individual tree crowns matching on both reference and detected crown perspectives using RHCSA method.

Forest Type Plot Perspective 1 1:1 Match Near-Match Split Merge Multi-Intersected Mis-Located Match Omission/Commission Total 2

Coniferous

Plot 1
RCP 212 28 2 37 1 0 0 280
DCP 198 12 3 31 0 0 8 252

Plot 2
RCP 224 30 1 42 1 0 0 298
DCP 213 13 2 30 0 0 0 258

Plot 3
RCP 296 30 10 44 1 0 2 383
DCP 282 13 11 39 1 1 5 352

Mixed forest

Plot 4
RCP 319 22 4 32 3 0 0 380
DCP 306 9 6 28 0 0 1 350

Plot 5
RCP 281 26 11 44 1 1 0 364
DCP 263 17 13 38 0 0 3 334

Plot 6
RCP 287 27 14 32 0 1 0 361
DCP 281 14 17 31 0 0 9 352

Deciduous

Plot 7
RCP 208 31 25 25 2 0 0 291
DCP 214 30 38 20 5 0 5 312

Plot 8
RCP 209 19 12 17 0 0 0 257
DCP 209 14 14 16 3 0 2 258

Plot 9
RCP 228 13 22 18 2 1 0 284
DCP 228 21 34 16 1 0 0 300

1 RCP: Reference crown perspective; DCP: Detected crown perspective; 2 total: the total number of reference crowns and detected crowns from the reference and the detected crown
perspective, respectively.
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4.2. Quantitative Assessment

Quantitative assessment based on PA, UA, OA, detection accuracy, and delineation accuracy was
conducted in this study. Table 4 shows that the RHCSA method had good performances and obtained
PA, UA, and OA of around 85% for all nine plots. The accuracies of mixed forest plots were highest
(i.e., PA: 87.02%, UA: 85.88%, OA: 86.44%), and followed by coniferous plots (i.e., PA: 85.35%, UA:
84.91%, OA: 85.12%). The lowest accuracies were obtained in deciduous plots (i.e., PA: 85.24%, UA:
82.55%, OA: 83.87%), but still above 80%. For the detection and delineation accuracy assessment,
the detection accuracy (i.e., RMSE(P)) and delineation accuracy (i.e., RMSE(D)) varied from about
0.6–1 m and about 0.5–0.7 m for nine plots, respectively. The RHCSA method could accurately describe
individual tree positions and crown diameters for overall matched trees.
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Table 4. Quantitative assessment results of the RHCSA algorithm.

Forest Type Plot PA (%) UA (%) OA (%) Detection (m) Delineation (m)

Coniferous

Plot 1 85.71 83.33 84.51 0.63 0.61
Plot 2 85.23 87.60 86.40 0.67 0.65
Plot 3 85.12 83.81 84.46 0.69 0.54

Average 85.35 84.91 85.12 0.67 0.6

Mixed forest

Plot 4 89.74 90.00 89.87 0.67 0.58
Plot 5 84.34 83.83 84.09 0.75 0.50
Plot 6 86.98 83.81 85.36 0.83 0.56

Average 87.02 85.88 86.44 0.75 0.55

Deciduous

Plot 7 82.13 78.21 80.12 0.91 0.67
Plot 8 88.72 86.43 87.56 0.63 0.72
Plot 9 84.86 83.00 83.92 0.84 0.56

Average 85.24 82.55 83.87 0.79 0.66

To further explore the performance of the RHCSA in three different forest types, ANOVA
(Analysis of Variance) was conducted for the five accuracy metrics (i.e., PA, UA, OA, detection
and delineation accuracy). Table 5 illustrated the means of the accuracy metrics in three forest types
and the p-values of ANOVA. The null hypothesis of the ANOVA was that there was no statistically
significant difference of every accuracy index among the three forest types. From Table 5, it showed that
the p-values of all accuracy metrics were much greater than 0.05, which indicated that no statistically
significant differences of accuracies were found among the three forest types. Thus, the proposed
RHCSA algorithm had very stable performances for different forest types.

Table 5. Mean and ANOVA results of the five accuracy metrics for three forest types.

Forest Type PA (%) UA (%) OA (%) Detection (m) Delineation (m)

Coniferous forest 85.35 84.91 85.12 0.67 0.60
Mixed forest 87.02 85.88 86.44 0.75 0.55

Deciduous forest 85.24 82.55 83.87 0.79 0.67
p-value 0.64 0.51 0.57 0.33 0.19

α = 0.05.

5. Discussion

5.1. Comparison with Previous Studies

According to the above results analysis, it is evident that a region-based hierarchical cross-section
analysis has obtained high and consistent accuracy for all three forest types. Under the natural forest
condition with high canopy density, the RHCSA method was less affected by the variation of crown
size and required less prior information. From Table 5, the highest overall accuracy (86.44%) was
derived from the closed coniferous-broadleaved mixed forest, which is different from the other ITCD
studies where the algorithms performed well in coniferous stands [46,52]. That is because the RHCSA
algorithm could detect “dumpy” protrusions on CHM and not be limited by the typical conical
structures. Thus, RHCSA performed well in coniferous-broadleaved mixed forest and had stable
performances for the three forest types.

For comparison, we implemented a local maxima filter (LMF) [63] and the marker-control
watershed segmentation (MCWS) [43] to extract individual tree crowns in Plots 3, 6 and 9 (coniferous,
mixed forest, and deciduous stands). Firstly, we adopted the same preprocessing steps as that we used
in RHCSA. Secondly, 5 × 5 and 7 × 7 local maxima filters were used to detect treetops in Plots 3, 6
and 9, respectively, according to crown diameter. Then we employed a marker-control watershed
segmentation using detected treetops as markers. The results are summarized in Tables 6 and 7.
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Table 6. Comparison of individual tree crowns matching between MCWS and RHCSA.

Plot Method Perspective 1 1:1 Match Near-match Split Merge Multi-Intersected Mis-Located Match Omission/Commission Total 2

Plot 3 (Coniferous)
MCWS

RCP 257 26 49 50 1 0 0 383
DCP 267 33 55 32 3 1 10 401

RHCSA
RCP 296 30 10 44 1 0 2 383
DCP 282 13 11 39 1 1 5 352

Plot 6 (Mixed forest)
MCWS

RCP 209 25 87 37 3 0 0 361
DCP 251 43 118 27 5 0 17 461

RHCSA
RCP 287 27 14 32 0 1 0 361
DCP 281 14 17 31 0 0 9 352

Plot 9 (Deciduous)
MCWS

RCP 149 13 87 34 0 1 0 284
DCP 182 46 125 22 3 2 17 397

RHCSA
RCP 228 13 22 18 2 1 0 284
DCP 228 21 34 16 1 0 0 300

1 RCP: reference crown perspective; DCP: detected crown perspective; 2 total: the total number of reference crowns and detected crowns on reference crown and detected crown
perspective, respectively.

Table 7. Comparison of accuracy metrics between MCWS and RHCSA.

Plot Method PA (%) UA (%) OA (%) Detection (m) Delineation (m)

Plot 3 (Coniferous)
MCWS 73.89 74.81 74.35 0.81 0.51
RHCSA 85.12 83.81 84.46 0.69 0.54

Plot 6 (Mixed forest)
MCWS 64.82 63.77 64.29 0.85 0.58
RHCSA 86.98 83.81 85.36 0.83 0.56

Plot 9 (Deciduous)
MCWS 57.04 57.43 57.24 0.91 0.54
RHCSA 84.86 83.00 83.92 0.84 0.56
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From Table 6, according to the total number of reference crowns and detected crowns, the MCWS
method generally overestimated the number of individual trees. For example, the MCWS method
detected 461 individual crowns, compared to 361 reference crowns in Plot 6 The counts of “split” error
of MCWS were quite high from both two perspectives, especially in deciduous and mixed forest plots.
Compared to the results of RHCSA method in the same plot, the number of “split” error decreased by
approximately 70%. It indicated that RHCSA method can effectively reduce the over-segmentation,
which was a common error for the MCWS method. This is because the RHCSA method combines the
procedures of treetop detection and crown delineation into an iterative process which considers the
horizontal relationship between the crowns in vertical space, instead of considering an appropriate
window size for a given tree crown.

From Table 7, the overall accuracies of the RHCSA method were consistently higher than those of
the MCWS method, and obtained 85.36%, 84.46%, and 83% in mixed forest, coniferous and deciduous
stands, respectively. Different from the RHCSA method, the highest overall accuracy (74.35%) of
the MCWS method was acquired in coniferous plot (Plot 3), and followed by mixed forest (64.29%,
Plot 6) and deciduous forest (57.24%, Plot 9). The MCWS method is ideal for detecting and delineating
conifers with uniform crown sizes [11] and difficult to perform well in deciduous forests because of
various sizes and shapes. For detection and delineation accuracy, there was no significant difference
between the two methods. Both methods could provide accurate information on tree location and
crown diameter for overall matched trees (less than 1 m for detection accuracy; around 0.5 m for
delineation accuracy).

To better delineate individual tree crowns, many study utilize complicated user-defined
parameters in ITCD algorithms according to field or empirical data [51,64]. For example, Jing et al. [65]
proposed multi-scale crown delineation method and correctly delineated 69%, 65%, and 73% of
individual tree crowns in coniferous, deciduous, and mixed forests, respectively. This method had great
advantages in eliminating false treetops caused by branches (commission error). However, the ITCD
accuracy greatly depended on the selection of the scale. A few representative scales may not be
adequate for complex forests with various trees species. In RHCSA algorithm, level cutting was applied
to avoid over-segmentation caused by various crown sizes instead of scales, and no complicated
parameters were required. The main parameter that directly affect the accuracy and efficiency in
the RHCSA algorithm is level cutting step. The default step was set to 0.1 m which is adequate for
most situations, because the horizontal shape of crowns varies little in every 0.1 m on the CHM.
The efficiency of the ITCD algorithm depends on iteration times (level cutting step) and image size
without the influence of the number of trees. It took about 60–70 s to complete ITCD for the each
1 ha plot, using Matlab R 2014a on a computer with a 2.5 GHz Intel Core i7-4710 HQ CPU. When we
shorted the step into 0.01 m, the time consuming increased to about 600 s while the overall accuracy
has an increase of only 2%. Readers could ask for the application code of the RHCSA algorithm for
academic use. The sample data (Plots 3, 6 and 9) is available online for academic use (mat format).

5.2. Sensitivity Analysis of CT

Another major parameter that affected the overall accuracy in the RHCSA algorithm was the
circularity, which was applied for segmenting fusion regions in the iterative process. To further
investigate the impact of circularity under different forest conditions, we adjusted the circularity
threshold (CT) from 0.5 to 1 with a step of 0.5 and analyzed the variation of overall accuracy in all
plots. Figure 6 showed the impact of the circularity threshold on the overall accuracy of ITCD for three
forest types. For coniferous forests, the overall accuracy increased rapidly with the increase of CT
until reaching a sill, see Figure 6a. A small CT value tended to prevent fusion regions from further
segmentation and resulted in more “merge” errors. Figure 6a illustrated that the CT with the highest
overall accuracy for coniferous forests was about 0.9, which indicated that the crown of a conifer tree
appears close to a circle [25]. Although the overall accuracy increased with the increase of CT for mixed
and deciduous forests as well, the increase rates were not as high as that of coniferous forest. The CT
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that led to the peak values of the overall accuracy for mixed forest and deciduous forest were slightly
lower than that for coniferous forest, that is, about 0.8–0.85 and 0.7–0.75, respectively (see Figure 6b,c).
This is because that coniferous crowns are more circular than deciduous and mixed forests, while
deciduous trees have larger and more irregular crowns. Although a higher CT could lead to higher
accuracy in coniferous stands, the average circularity will decrease and a lower CT could obtain higher
accuracy with the number of deciduous trees increased in a plot.
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5.3. Limitations

Although RHCSA is a promising ITCD algorithm, several limitations still exist. First of all, RHCSA
considers CHM as mountain-like topographic surfaces, some flat crowns and suppressed trees without
a dominant protrusion on CHM are difficult to detect and delineate. It becomes serious when a small
tree is under adjacent tree crowns and causes “merge” error. Second, since RHCSA was developed for
the forests in Northeastern China, it performed well for boreal temperate forest. The performances
of other forests, like bamboo forests and rainforests, are unknown due to lack of data. In the future,
the RHCSA method could be validated using other types of forest data from other countries.

Additionally, the topographic effect is another factor that influenced the accuracy of the ITCD
method [6,66]. Since the RHCSA algorithm detection and delineation of individual tree crowns relied
on the “peak” and “valley” structures shown on CHM, it could result in errors if the structure changed
due to extreme topographic factors (e.g., steep slope). However, the terrain is relatively flat in our
study area, and no significant correlation was found between the slope and the overall accuracy based
on correlation analysis. From a topography perspective, the RHCSA algorithm performed well for
a relatively flat area. The performance influenced by other topographic factors (e.g., slope) should be
investigated in the future.

6. Conclusions

Individual tree crown delineation using airborne LiDAR techniques plays a significant role
in precise forestry and forest inventory and analysis. In this study, we developed a region-based
hierarchical cross-section analysis (RHCSA) for treetop detection and crown delineation using
LiDAR-derived CHM. This novel method used level cutting method to detect individual trees and
delineate its horizontal boundaries at each level through an iterative process. The proposed algorithm
is a one-step individual tree crown delineation (ITCD) algorithm with a few user-defined parameters
and not influenced by treetop detection accuracy. Additionally, we also developed a comprehensive
accuracy assessment scheme which could provide a guidance for ITCD studies and future applications
using single tree approach.

Results showed that RHCSA method obtained stable and high accuracy for different forest types,
including coniferous forest, coniferous-broadleaves forest and deciduous forest. The accuracies of
mixed forest plots were highest (i.e., producer’s accuracy (PA): 87.02%, user’s accuracy (UA): 85.88%,
overall accuracy (OA): 86.44%), followed by coniferous plots (i.e., PA: 85.35%, UA: 84.91%, OA: 85.12%)
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and deciduous plots (i.e., PA: 85.24%, UA: 82.55%, OA: 83.87%). The detection and delineation
accuracy (i.e., RMSE(P) and RMSE(D)) were relatively small (less than 1 m). RHCSA method
effectively improved OA by more than 10% comparing with the traditional marker-control watershed
segmentation (MCWS) algorithm, especially for deciduous forest (more than 20%) and mixed forest
(about 20%). Both RHCSA and MCWS algorithms could provide accurate information on tree location
and crown diameter for overall matched trees (less than 1 m for detection accuracy; around 0.5 m
for delineation accuracy). However, there are still some limitations in RHCSA method. Since the
RHCSA process only considers the segmentation of canopy surface, some intersected crowns and
small crowns under the surface are difficult to detect and delineate. Next, RHCSA has been designed
and tested for boreal temperate forest. It is still necessary to investigate the performances of other
forests (e.g., bamboo forests and rainforests). In addition, although it is suitable to use the RHCSA
algorithm for a relatively flat area, the effect of topographic factors (e.g., slope) on accuracy should be
explored in the future. In future, ITCD studies could combine basic image segmentation algorithms
and tree morphological characteristics to improve the accuracy of the crown delineation based on
LiDAR point cloud data.

Supplementary Materials: The following are available online at www.mdpi.com/2072-4292/9/10/1084/s1,
Sample data: CHM for plots 3, 6 and 9.
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